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Abstract: Joint optimal subcarrier and transmit power allocation with QoS guarantee for enhanced
packet transmission over Cognitive Radio (CR)-Internet of Vehicles (IoVs) is a challenge. This open
issue is considered in this paper. A novel SNBS-based wireless radio resource scheduling scheme
in OFDMA CR-IoV network systems is proposed. This novel scheduler is termed the SNBS
OFDMA-based overlay CR-Assisted Vehicular NETwork (SNO-CRAVNET) scheduling scheme. It is
proposed for efficient joint transmit power and subcarrier allocation for dynamic spectral resource
access in cellular OFDMA-based overlay CRAVNs in clusters. The objectives of the optimization model
applied in this study include (1) maximization of the overall system throughput of the CR-IoV system,
(2) avoiding harmful interference of transmissions of the shared channels’ licensed owners (or primary
users (PUs)), (3) guaranteeing the proportional fairness and minimum data-rate requirement of
each CR vehicular secondary user (CRV-SU), and (4) ensuring efficient transmit power allocation
amongst CRV-SUs. Furthermore, a novel approach which uses Lambert-W function characteristics
is introduced. Closed-form analytical solutions were obtained by applying time-sharing variable
transformation. Finally, a low-complexity algorithm was developed. This algorithm overcame
the iterative processes associated with searching for the optimal solution numerically through
iterative programming methods. Theoretical analysis and simulation results demonstrated that,
under similar conditions, the proposed solutions outperformed the reference scheduler schemes.
In comparison to other scheduling schemes that are fairness-considerate, the SNO-CRAVNET scheme
achieved a significantly higher overall average throughput gain. Similarly, the proposed time-sharing
SNO-CRAVNET allocation based on the reformulated convex optimization problem is shown to be
capable of achieving up to 99.987% for the average of the total theoretical capacity.

Keywords: Cognitive Radio; game theory; Internet of Vehicles; OFDMA; vehicular networks

1. Introduction

In the near future, most vehicles are expected to be equipped with wireless communication
technologies, such as On-Board Units (OBUs), and ultrasonic sensors to enable a variety of new services,
such as safety applications, improved traffic management, and enhanced infotainment services [1].
Therefore, the vehicular ad hoc network (VANET) has gained an increased importance, receiving a
great amount of attention from academia, auto-manufacturing industries, and government agencies.
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Wireless Access in Vehicular Environments (WAVEs) is a recently approved protocol suite for wireless
communication in vehicular networks, and it relies on IEEE 802.11p at the medium access control
(MAC) and physical (PHY) layers. Accordingly, the IEEE 1609.4 protocol stack has been approved by
an IEEE delegated Working Group (WG), in order to provide an efficient mechanism for multi-channel
operations in WAVEs, where the control channel (CCH) and service channels (SCHs) are periodically
synchronized at intervals [2].

All vehicles are expected to contend for channel access over the 75 MHz spectrum allocated by
the US Federal Communication Commission (FCC) in the 5.9 GHz spectrum band for the WAVE
system and use it for the exchange of safety and infotainment information. However, to realize the
full potential of Internet of Vehicles (IoVs), intelligent vehicles must be able to wirelessly exchange
communication with one another via vehicle-to-vehicle (V2V), vehicle-to-roadside infrastructure (V2I),
and vehicle-to-pedestrian handheld device (V2X) communications [2]. They can do this by taking
advantage of the wide range of wireless networks and spectra, such as cellular and Wi-Fi networks,
TV bands, and satellite networks, depending on their availability and the location of intelligent vehicles.
On the contrary, the anticipated increase in demand for diverse vehicular network-oriented applications
(safety- and non-safety-related services) would certainly result in a shortage of spectral resources for
IoV communication networks.

According to [2,3], the emerging Cognitive Radio (CR) technology has been envisaged as an
enabling concept with the potential to overcome the challenge of spectrum scarcity, which is the
result of the existing fashion of fixed spectrum allocation (FSA) policy [4]. Dynamic spectrum access
(DSA) or the spectrum sharing mechanism [5] has been adjudged a vital potential associated with CR
technology. Additionally, the existing allocation of the spectrum for certain radio technologies within
300 MHz–3 GHz (i.e., the prime frequency bands) is getting closer to the saturation point. Consequently,
spectrum allocation regulatory bodies such as the UK Office of Communications (Ofcom) or the US
FCC are considering more flexible spectrum management strategies, such as the secondary spectrum
access mechanism [2]. Therefore, the design and development of unique novel radio technologies such
as DSA or the spectrum sharing mechanism [5,6] are vital, in order to be able to conduct operations in
unlicensed bands.

Game theory is seen as a robust tool for achieving Pareto-optimality for distributed resource
scheduling, especially within wireless networks such as vehicular networks [7,8], as well as within
the CR network [9–12]. Furthermore, when efficient spectrum resource sharing is considered in
conjunction with fairness, it has been figured out that a cooperative game theoretical technique such as
the Nash bargaining solution (NBS) is more suitable for finding the optimal points in comparison to
non-cooperative games.

This paper’s emphasis is on the efficient allocation of spectrum resources with the assumption
that the intelligent detection of spectrum holes [2,13] is carried out in advance. The key aim is
to efficiently schedule the dynamically available spectrum resources with the satisfaction of QoS
requirements of the CR vehicular secondary users (CRV-SUs), while guaranteeing non-interference
of potential communications from the licensed primary users (PUs). Using DSA, CRV-SUs can
intelligently detect the presence of spectral white spaces (i.e., available spectrum holes) that are
temporarily left under-utilized by the licensed owner (i.e., the PUs), dynamically utilize the available
spectrum, and vacate in the instance of the licensed PUs. In this study, a cellular OFDMA-based
overlay CR-Assisted Vehicular NETwork scenario is considered, where licensed spectrum owners
permit CRV-SUs to access the unused spectral resources, providing the licensed PUs with a guarantee
of no performance degradation. Therefore, in an overlay fashion, CRV-SUs are not permitted to access
the sub-channels that are under current PU occupation and this ensures that there is no co-channel
interference between the PUs and CRV-SUs.

It is possible for both PUs and CRV-SUs to exist in side by side frequency bands in an overlay
fashion, possibly using different access technologies. Therefore, the signals transmitted by both
PUs and CRV-SUs are not orthogonal. Considering this, the non-orthogonality of the signals may
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lead to mutual interference amongst the PUs and CRV-SUs. Consequently, the measure of the
introduced interference of the PUs by the CRV-SUs is directly proportional to the amount of transmit
power allocation in the CRV-SUs’ sub-channels and the difference in the spectral distance that exists
between the PU’s band and the sub-channels. Therefore, spectral resource allocation under cellular
OFDMA-based overlay CR-Assisted Vehicular NETworks promises an efficient approach that is
capable of protecting the licensed PUs from harmful interference from the CRV-SUs and the potential to
satisfy the QoS requirements of CRV-SUs, especially for the communication of time-constrained safety
(or emergency) messages in IoVs. The choice of cellular OFDMA-based overlay CR-Assisted Vehicular
NETworks is in accordance with the current trends of developments with respect to future wireless
communication systems, such as IEEE 802.16-style networks, IEEE 802.11p networks, and universal
mobile telecommunication system (UMTS) long-term evolution (LTE). Moreover, multicarrier OFDMA
technology can lead to improvements of the spectral efficiency, as well as the robustness needed when
dealing with time-varying wireless multi-path interferences, which is likely the case with vehicular
networks [14]. Tables 1 and 2 present the key mathematical notations and acronyms used in this study
and their meaning, respectively.

Table 1. List of key mathematical notations.

Symbol Description

N Number of CR base stations
R Number of CRV-SUs in vehicular cluster formations
B Channel bandwidth
P

max
n Power threshold

BNn′
0 PU noise density

dCR−BS
n′ Distance between n′th PU and CR-BS
dnn′ Distance between nth CRV-SU and the n′th PU
βmin

PU Interference constraint to protect the PUs’ transmissions
υ Exponent of path attenuation

BN0 Noise density
PTot. Average transmit power available at the CR-BS
∼

Tm State transition of shared channel m
[Pmn] Transmit power allocation strategy
NC Number of orthogonal channels
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Transition rate matrix
|J| Cardinalty of set J

m( j, j′) Rate at which the CRV-SUs’ cluster formation changes from ` j to ` j′ location
τ Packet arrival rate
P Transition probability matrix
→
ω Steady state probability vector of PAP

[Cmn] Subcarrier allocation strategy
PA Transition probability matrix of the PAP
U0 Initial utility vector
0 Set of game theory strategies of the R CRV-SU players and utility vectors’ space

RNC Total possible channel assignments
[Rmn] Rate allocation strategy
B Minimum utility bound

tmn OFDM symbol transmitted by CRV-SU n over the m′th subcarrier
Gmn Complex circularly-symmetric Gaussian noise
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Table 2. List of acronyms.

Acronym Meaning

BER Bit error rate
CC Cognitive cell

CCH Control channel
CH Cluster head
CM Cluster member
CR Cognitive Radio

CRAVNs Cognitive Radio-assisted vehicular networks
CR-BS CR base station

CR-IoVs Cognitive Radio-enabled IoVs
CRV-SU Cognitive Radio vehicular secondary user

CS Cuckoo Search scheme
CSI Channel state information
DR Dependent Rounding-based scheme

DSA Dynamic spectrum access
FCC Federal Communication Commission
FSA Fixed spectrum allocation
GPS Global Positioning System
IEEE Institute of Electrical and Electronics Engineers
IoVs Internet of Vehicles
JFI Jain’s Fairness Index

KKT Karush–Kuhn–Tucker
LTE Long-term evolution

MAC Medium access control
MOCS/D Multi-objective Optimization based on Decomposition scheme
M-QAM Multi-level Quadrature Amplitude Modulation

NBS Nash bargaining solution
OBUs On-Board Units
Ofcom UK Office of Communications

OFDMA Orthogonal frequency division multiple access
PAP Packet arrival process
PAR Packet arrival rate
PDP Power delay profile
PHY Physical layers

PNE-S Pure Nash Equilibrium Search scheme
PU Primary user
QoS Quality of service

SCHs Service channels
SINR Signal-to-interference-and-noise ratio
SNB Symmetric Nash bargaining

SNBS Symmetric Nash bargaining solution
SNO-CRAVNET SNBS OFDMA-based overlay CR-Assisted Vehicular NETwork

TV Television
UMTS Universal mobile telecommunication system

V2I Vehicle-to-roadside infrastructure
V2V Vehicle-to-vehicle
V2X Vehicle-to-pedestrian’s handheld devices and others

VANET Vehicular ad-hoc network
WAVEs Wireless Access in Vehicular Environments

WG Working Group
wrt With respect to

In this paper, a novel Symmetric NBS OFDMA-based overlay CR-Assisted Vehicular NETwork
(SNO-CRAVNET) scheduling scheme is proposed for efficient joint transmit power and subcarrier
allocation for dynamic spectral resource access in cellular OFDMA-based overlay CR-Assisted Vehicular
NETworks in clusters. The joint optimal allocation strategy is determined in a simpler and faster
approach by the proposed scheduler, with the help of the obtained closed-form analytical solution,
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as opposed to previous studies, which have adopted iterative programming methods, such as the work
presented in [15–18]. Under the interweave-based CR-enabled IoV network systems, the spectrum
sensing accuracy remains an open issue due to prevailing sensing errors over wireless channels.
However, the scope of this study does not cover an investigation of the integration of spectrum
sensing in interweave-based CR-enabled IoV network systems. The merits of the proposed novel
SNO-CRAVNET scheme are confirmed through its comparison with existing approaches.

2. System Model

The co-existence of the cellular OFDMA-based overlay CR-Assisted Vehicular NETwork with the
PU network scenario as depicted in Figure 1 is considered in this paper. As demonstrated in Figure 1,
the network scenario is divided into cognitive cells (CCs) [2]. The CCs consist of N number of CR base
stations (CR-BS) and R number of CRV-SUs in vehicular cluster formations. The dynamically available
channel bandwidth (B) is evenly divided within a given CC intoNC number of orthogonal channels.
Specifically, the CR-BS in-charge of a CC receives data from CRV-SUs and efficiently performs spectral
resource scheduling. Therefore, to prevent harmful interference with the transmissions of the PUs,
the CR-BS controls the dynamically available resources. Figure 2 presents an illustration of the phases
of the research carried out in this study. The study is divided into four main phases: The system model;
proposed utility of SNO-CRAVNET and problem formulation; optimal resource scheduling strategies;
and performance evaluation. The system model is further sub-divided into sub-phases, such as
the vehicular cluster mobility model, activity of PUs, packet arrival process (PAP), SNO-CRAVNET
architecture, and interference constraints. Each of these research phases and sub-phases are detailed in
the following sections and sub-sections.
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2.1. Vehicular Cluster Mobility Model

The average life span of CRV-SUs’ cluster formation [1] is the total duration when all theRCRV-SUs
in a particular cluster (usually presumed to be exponentially distributed) maintain membership of the
same CC [19]. Therefore, the CRV-SUs’ cluster formation mobility can be modeled using a transition
rate (i.e., speed) matrix
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where jm = |J| denotes the number of locations in a service area, |J| represents the cardinality of set J,
and the element M( j, j′) represents the rate at which the CRV-SUs’ cluster formation changes from L j
to L j′ location. Different speeds of CRV-SUs’ cluster formation can be captured in different locations
by the matrix
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1 = 1, the steady state probability vector
→
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be obtained, where
→
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→

0 represent the vectors of ones and zeros, respectively.

2.2. Activity of PUs

Packet transmission from both CRV-SUs’ cluster members (CMs) to cluster heads (CHs) and from
the CHs to their respective destinations is based on the common channel shared with the licensed users.
Therefore, both the CRV-SUs’ CMs and the CHs must always watch the activity of the licensed users
prior to accessing and using the shared channel in a fashion that does not cause harmful interference of
the PUs’ activity. In a shared channel, the activity of the PUs is modeled through a two-state Markov
chain (see Equation (2)), such as the ON-OFF model, which corresponds to the busy and idle states,
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respectively. Consequently, a transition probability matrix is used to model the state transition of
shared channel m, as expressed below:

∼

Tm =


∼

Tm(0, 0)
∼

Tm(0, 1)
∼

Tm(1, 0)
∼

Tm(1, 1)

 ← idle
← busy

(2)

where 0 and 1 represent the idle and busy states, respectively. Therefore, the probability of the
shared wireless channel m being in an idle state Pidle

m can be obtained from the expression Pidle
m =

1−
∼

Tm(1, 1)/
(
(
∼

Tm(0, 1) −
∼

Tm(1, 1) + 1)
)
.

Conversely, the sensed state (i.e., idle or busy state) of the shared wireless channel m may differ
from the actual channel state because of shared channel sensing error. Therefore, the probability of
misdetection for the shared channel sensing, which is the probability that a shared wireless channel m
is sensed as idle when it is actually busy, is represented by Pmis

m , and the probability of false-alarm,
which is the probability that a shared wireless channel m is sensed as busy when it is actually idle,
is represented by P f alse

m [2]. Therefore, considering the inter-relation between the sensed and actual
shared wireless channel m states, the transition of the joint sensed and actual shared wireless channel
m state can be given as a matrix (see Equation (3)).

∼

Tm =



∼

Tm(0, 0)
(
1− P f alse

m

) ∼

Tm(0, 1)Pmis
m

∼

Tm(0, 0)P f alse
m

∼

Tm(0, 1)
(
1− Pmis

m

)
∼

Tm(1, 0)
(
1− P f alse

m

) ∼

Tm(1, 1)Pmis
m

∼

Tm(1, 0)P f alse
m

∼

Tm(1, 1)
(
1− Pmis

m

)
∼

Tm(0, 0)
(
1− P f alse

m

) ∼

Tm(0, 1)Pmis
m

∼

Tm(0, 0)P f alse
m

∼

Tm(0, 1)
(
1− Pmis

m

)
∼

Tm(1, 0)
(
1− P f alse

m

) ∼

Tm(1, 1)Pmis
m

∼

Tm(0, 0)P f alse
m

∼

Tm(1, 1)
(
1− Pmis

m

)


←

shared channel idle,
and sensed idle

←
shared channel busy,
but sensed idle

←
shared channel idle,
but sensed busy

←
shared channel busy,
and sensed busy

(3)

Let us assume that the steady state probability vector of the sensed and actual shared wireless

channel m state is denoted by
→

δ . Therefore, the element δ(i) for i = {1, 2, 3, 4} of
→

δ corresponds to

the joint sensed and actual shared wireless channel m state as defined in row i of
∼

Tm in Equation (3)

above. The steady state probability vector
→

δ can be obtained by solving
→

δ t(
→

1 ) = 1 and
→

δ t(T̂m) =
→

δ t.
Considering this, the transition of the sensed shared wireless channel m state can be modeled by
the matrix

Tm =

[
Tm(0, 0) Tm(0, 1)
Tm(1, 0) Tm(1, 1)

]
← shared channel sensed idle
← shared channel sensed busy,

(4)

such that the elements can be obtained as follows (see Equations (5)–(8)):

Tm(0, 0) =

{
δ(1)

(
∼

Tm(0,0)
(
1−P f alse

m

)
+
∼

Tm(0,1)Pmis
m

)
+δ(2)

(
∼

Tm(1,0)
(
1−P f alse

m

)
+
∼

Tm(1,1)Pmis
m

)}
{δ(1)+δ(2)}

(5)

Tm(0, 1) =

{
δ(1)

(
∼

Tm(0,0)P f alse
m +

∼

Tm(0,1)(1−Pmis
m )

)
+δ(2)

(
∼

Tm(1,0)P f alse
m +

∼

Tm(1,1)(1−Pmis
m )

)}
{δ(1)+δ(2)}

(6)

Tm(1, 0) =

{
δ(3)

(
∼

Tm(0,0)
(
1−P f alse

m

)
+
∼

Tm(0,1)Pmis
m

)
+δ(4)

(
∼

Tm(1,0)
(
1−P f alse

m

)
+
∼

Tm(1,1)Pmis
m

)}
{δ(3)+δ(4)}

(7)

Tm(1, 1) =

{
δ(3)

(
∼

Tm(0,0)P f alse
m +

∼

Tm(0,1)(1−Pmis
m )

)
+δ(4)

(
∼

Tm(1,0)P f alse
m +

∼

Tm(1,1)(1−Pmis
m )

)}
{δ(3)+δ(4)}

(8)

2.3. Packet Arrival Process (PAP)

A finite queue of size Q packets is used at each CRV-SU CM to buffer packets. The CRV-SU
CMs fetch packets from their finite queue for onward transmission to the CRV-SU CH. A batch
Markovian process (see Equation (9)) is used to model the PAP of CRV-SUs with Y phases. Specifically,
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PA is used to denote the transition probability matrix of the PAP, as shown in Equation (9) below,
for A ∈ {0, 1, 2, · · · , Am} arriving packets, with Am representing the maximum batch size:

PA =


PA(1, 1) · · · PA(1, Y)

...
...

PA(Y, 1) · · · PA(Y, Y)

 (9)

With respect to Equation (9) above, PA(y, y′) represents the probability that m data packets arrived
at the finite queue with the phase changing from y to y′. Correspondingly, the transition probability
matrix P is given by P = P0 + P1 + P2 + · · ·+ PAm . Let the steady state probability vector

→
ω of PAP be

denoted by
→
ω = [ω(1) · · ·ω(y) · · ·ω(Y)]t. Then, the steady state probability that the phase of PAP is y

is represented by the element ω(y) of the vector
→
ω. Therefore, by solving

→
ω

t
(
→

1 ) = 1 and
→
ω

t
(P) =

→
ω

t
,

this steady state probability vector
→
ω can be obtained. Accordingly, by weighting the probability of all

phases with ω(y), the packet arrival rate (PAR) is obtainable through the following expression:

τ =
Am∑

A=1

A(
→
ωtPA)

→

1 . (10)

2.4. SNO-CRAVNET Architecture

The model architecture and parameters of the SNO-CRAVNET scheme and a description of the
initial resource allocation strategies of the scheme are presented in this subsection. Let the identically
independent distributed (i.i.d.) subcarrier gain of CRV-SU n|n = 1, 2, · · · , L be represented by amn

on mth subcarrier, with m = 1, 2, · · · , NC. Let Gmn represent the complex circularly-symmetric
Gaussian noise, and Gmn ∼ CN

(
0, σ2

χ

)
, where σ2

χ = B(N0/NC), withN0 representing the noise density.
Then, let the OFDM symbol transmitted by CRV-SU n over the mth subcarrier be denoted as tmn,
so that the OFDM symbol received at the destination can be expressed as rmn = (amn × tmn) + Gmn.
In the SNO-CRAVNET scheme, matrix PNC×R

[
ONC×R

]
= [Pmn] denotes the transmit power allocation

strategy, with the individual matrix elements represented by the instantaneous transmit power of
CRV-SU n over channel m expressed as Pmn = E[|tmn|

2], where E[·] stands for the expected value
operator. Additionally, matrix NC×R

[
ONC×R

]
= [Rmn] represents the rate allocation strategy, with the

respective elements of the matrix denoted by the instant data-rate—Rmn(Pmn)—showing the total
number of bits actually loaded on the mth subcarrier that is allocated to the CRV-SU n. Furthermore,
the Multi-level Quadrature Amplitude Modulation (M-QAM) is used for the adjustment of the transmit
power level, in agreement with the combined subcarrier power gains and the total number of loaded bits.
Therefore, on each allocated CRV-SU n, the bit error rate (BER) according to Chung and Goldsmith [20]
can be expressed as BERmn ≈ 0.2× exp{−1.5× βmn/2[Rmn(Pmn)−1]

}, where βmn = Pmn|amn|
2/σ2

χ denotes
the signal-to-noise ratio (SNR). By assuming, in this model, that the channel state information
(CSI) [21,22] is known, we maximize the mutual information denoted asM(·) between the OFDM
symbol transmitted by CRV-SU n over the mth subcarrier and the OFDM symbol received at the
destination. Therefore, the maximum achievable channel capacity in a fading slot is represented as
M
C
mn(Pmn) = maxM(tmn : rmn|amn) = log2 (1 +Pmn|amn|

2ϕ), where ϕ = −1.5/
{
ln(5× BERmn) × σ2

χ

}
.

Considering this, transmissions can only be successful, if and only if, MCmn(Pmn) > Rmn(Pmn)

(i.e., the maximum achievable capacity is greater than the instantaneous specified data-rate). Contrarily,
whenMCmn(Pmn) = Rmn(Pmn), i.e., at the maximal point, according to Shannon’s theory, the feasible
transmissions’ maximum instantaneous data-rate can be expressed as

Rmn(Pmn) =
B
NC

log2 {1 + (Pmn|amn|
2ϕ)}, ∀m, n, (11)
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where B/NC represents the bandwidth of the respective dynamically available orthogonal subcarrier.
Furthermore, the adaptive modulator ensures that the values of Rmn(Pmn) are taken from set I =

{0, 1, 2, · · · , I}, with I denoting the feasible maximum amount of information over each dynamically
available orthogonal channel.

Additionally, in accordance with both the transmit power and rate allocation strategy, the channel
allocation strategy is denoted by matrix CNC×R

[
ONC×R

]
= [Cmn], where the channel allocation index

signified by the matrix elements is represented by Cmn ∈ {0, 1}. Therefore, Cmn = 1 means that the
dynamically available channel m is successfully allocated to CRV-SU n, and Cmn = 0 means that no
channel is allocated. Under SNO-CRAVNET architecture, two or more CRV-SUs cannot share a single
channel at the same time. Therefore, a crucial constraint for the available channel allocation strategy is

R∑
n=1

Cmn ≤ 1, ∀m, n. (12)

Since the conditions of the available channel are random, in this paper, the expected value operator
E[·] is used to indicate the random realization of CSI’s mean quantity (i.e., |amn|

2). Consequently,
from Equations (11) and (12), the average data-rate of CRV-SU n can be expressed as

Rn(Cmn, Pmn) = E

 NC∑
m=1

CmnRmn(Pmn)

, ∀n. (13)

Likewise, amongst all available channels and the CRV-SUs, the overall data-rate is given by

R(Cmn, Pmn) = E

 R∑
n=1

NC∑
m=1

CmnRmn(Pmn)

 (14)

Therefore, to guarantee that the transmit power allocated to the CRV-SUs occupying every
dynamically available orthogonal subcarrier does not exceed the target and is maintained below the
average transmit power PTot., available at the CR-BS, the condition for the transmit power allocation
strategy is expressed as

R∑
n=1

NC∑
m=1

CmnPmn ≤ PTot. (15)

2.5. Interference Constraints

The regulations employed in the system model of SNO-CRAVNET to control interference against
PUs’ transmission from CRV-SUs’ transmission are presented in this sub-section. In this model,
R′ PUs are considered in the network (i.e., the licensed users with ownership rights over the radio
spectrum). On the contrary, when the CRV-SUs exploit the identified available spectrum holes
for their own transmissions, they should do so in a fashion that ensures no harmful interference
with the PUs with ownership rights over the spectrum band. Therefore, to guarantee the absolute
avoidance of interference towards the PUs, CRV-SUs must strictly adhere to cognitive capabilities,
which include, first and foremost, reliably intelligently sensing for the availability of spectrum holes to
effectively confirm whether the channel is idle or currently occupied by a licensed owner. Secondly,
upon confirming the existence of spectrum holes, the CRV-SUs should intelligently change their radio
parameters for efficient exploitation of the identified spectrum holes, without causing interference to
any ongoing transmissions of the PUs.

In Section 2.4, it is stated that under the SNO-CRAVNET scheme, each communication channel can
only be allocated to a single CRV-SU at a time. Despite the allocation of one channel to one CRV-SU at a
time, the communication quality of the channel, to a large extent, also affects the communications of the



Sensors 2020, 20, 6402 10 of 28

CRV-SUs. Therefore, the communication quality of the channel must be maintained by ensuring that
the signal-to-interference-and-noise ratio (SINR) of the CRV-SU n is not lower than a predetermined
threshold value βmin

n . An acceptable QoS condition (Due to the orthogonality of the channels/subcarriers,
the resulting interference between CRV-SUs is ignored, as is shown in Equation (12)) is obtained and
expressed as

βmin
n ≤ E

 NC∑
m=1

CmnPmn|amn|
2

/σ2
χ. (16)

Therefore, Equation (16) can be expressed in a simplified form as

min
n ≤ E

 NC∑
m=1

CmnPmn|amn|
2

, ∀n, (17)

where
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= B(N0/NC) × βmin

n .
Additionally, to guarantee the protection of possible transmissions from licensed users (i.e., PUs)

of the spectrum band, at each n′(th) PU, with n′ = 1, 2, 3, · · · , R′, the received SNIR must be greater
than βmin

PU , where βmin
PU represents the predetermined threshold value applied to protect any ongoing

transmissions from PUs. Let the distance between the n′th PU and CR-BS be given as dCR−BS
n′ , so that

another interference constraint to protect the PUs’ transmission can be given as

βmin
PU ≤

(
dCR−BS

n′
)−υ
×P

PU
n′(

B×Nn′
0 + (dnn′)

−υ
×

(∑NC
m=1 CmnPmn

)) , (18)

where υ denotes the exponent of path attenuation and PPU
n′ is the n′th PU’s transmit power.

dnn′ represents the distance between nth CRV-SU and n′th PU, while Nn′
0 represents the noise

spectral density (i.e., noise density) of the n′th PU. With the help of Location-Based Systems (LBSs),
for instance, the Global Positioning System (GPS), both distances, dCR−BS

n′ and dnn′ can be easily
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified and
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the stipulated condition guarantees that the potential transmissions of the PU are fully protected
if and only if the CRV-SU n’s total transmit power is constrained over channel n by the predefined
threshold
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3. The Utility of SNO-CRAVNET and Problem Formulation

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is
presented in this section in the form of a convex optimization problem, with its associated players
represented by the R CRV-SUs. The design of the game bargaining scheme methodologies for
the CR-enabled IoV network system is proposed in this section. We assume that each R CRV-SU,
for instance, CRV-SU n, has an initial utility U0

n ≥ 0, which represents its acceptable minimum QoS
constraint with respect to the data-rate and the corresponding utility function fn. Under the symmetric
Nash bargaining (SNB) theory, each utility function fn is usually designated as a convex and closed
subset of FR = {0}, with FR and 0 denoting the set of game theory strategies of the R CRV-SU players
and utility vectors’ space, respectively. Let us assume that U0

n is conveniently achievable for all the
R CRV-SU players. Then, it follows that at least a feasible subspace 0 exists in 0, so that the utility
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vector, for instance, f (ω) =
{
f1, f2, f3, · · · , fR

}
, becomes equal or bigger in comparison to the initial

utility vector, such as, U0 =
{
U0

1, U0
2,U0

3, · · · , U0
R

}
. Therefore, the subset 00 as the element of 0 can

be expressed as 00 =
{
ω ∈ 0

∣∣∣ f (ω) ≥ U0
}
. Additionally, let us suppose that the set of utility that can

be achieved is denoted by
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of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
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d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 
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which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
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for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
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obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 
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obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
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represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
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achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 
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c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 
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CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 
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CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
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the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
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a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 
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Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 
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obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 
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of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
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guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 

, U0
)

guarantees fairness by maintaining the independence of irrelevant alternatives,
for instance, if the feasible set decreases and the solution keeps on being feasible, it follows that
the solution for the lesser achievable set remains the same point. It can be expressed as

Sensors 2020, 20, x FOR PEER REVIEW 10 of 27 

ongoing transmissions from PUs. Let the distance between the 𝑛ᇱ th PU and CR-BS be given as 𝑑௡ᇲ஼ோି஻ௌ, so that another interference constraint to protect the PUs’ transmission can be given as 𝛽௉௎௠௜௡ ≤ ൫𝑑௡ᇲ஼ோି஻ௌ൯ିజ × 𝒫௡ᇲ௉௎ቀ𝐵 × 𝒩଴௡ᇲ + (𝑑௡௡ᇲ)ିజ × ൫∑ 𝕔௠௡𝒫௠௡𝒩𝒞௠ୀଵ ൯ቁ,  (18) 

where 𝜐 denotes the exponent of path attenuation and 𝒫௡ᇲ௉௎ is the 𝑛ᇱth PU’s transmit power. 𝑑௡௡ᇲ 
represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 

⊂

Sensors 2020, 20, x FOR PEER REVIEW 10 of 27 

ongoing transmissions from PUs. Let the distance between the 𝑛ᇱ th PU and CR-BS be given as 𝑑௡ᇲ஼ோି஻ௌ, so that another interference constraint to protect the PUs’ transmission can be given as 𝛽௉௎௠௜௡ ≤ ൫𝑑௡ᇲ஼ோି஻ௌ൯ିజ × 𝒫௡ᇲ௉௎ቀ𝐵 × 𝒩଴௡ᇲ + (𝑑௡௡ᇲ)ିజ × ൫∑ 𝕔௠௡𝒫௠௡𝒩𝒞௠ୀଵ ൯ቁ,  (18) 

where 𝜐 denotes the exponent of path attenuation and 𝒫௡ᇲ௉௎ is the 𝑛ᇱth PU’s transmit power. 𝑑௡௡ᇲ 
represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 

,(

Sensors 2020, 20, x FOR PEER REVIEW 10 of 27 

ongoing transmissions from PUs. Let the distance between the 𝑛ᇱ th PU and CR-BS be given as 𝑑௡ᇲ஼ோି஻ௌ, so that another interference constraint to protect the PUs’ transmission can be given as 𝛽௉௎௠௜௡ ≤ ൫𝑑௡ᇲ஼ோି஻ௌ൯ିజ × 𝒫௡ᇲ௉௎ቀ𝐵 × 𝒩଴௡ᇲ + (𝑑௡௡ᇲ)ିజ × ൫∑ 𝕔௠௡𝒫௠௡𝒩𝒞௠ୀଵ ൯ቁ,  (18) 

where 𝜐 denotes the exponent of path attenuation and 𝒫௡ᇲ௉௎ is the 𝑛ᇱth PU’s transmit power. 𝑑௡௡ᇲ 
represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 

, U0
)
∈ B and

Sensors 2020, 20, x FOR PEER REVIEW 10 of 27 

ongoing transmissions from PUs. Let the distance between the 𝑛ᇱ th PU and CR-BS be given as 𝑑௡ᇲ஼ோି஻ௌ, so that another interference constraint to protect the PUs’ transmission can be given as 𝛽௉௎௠௜௡ ≤ ൫𝑑௡ᇲ஼ோି஻ௌ൯ିజ × 𝒫௡ᇲ௉௎ቀ𝐵 × 𝒩଴௡ᇲ + (𝑑௡௡ᇲ)ିజ × ൫∑ 𝕔௠௡𝒫௠௡𝒩𝒞௠ୀଵ ൯ቁ,  (18) 

where 𝜐 denotes the exponent of path attenuation and 𝒫௡ᇲ௉௎ is the 𝑛ᇱth PU’s transmit power. 𝑑௡௡ᇲ 
represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
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achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
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guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
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solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
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Without a loss of generality, the property of the SNO-CRAVNET is described using the
following theorem.

Theorem 1. It is assumed that the utility function defined by 0 is convex upper bounded. Therefore, 0 is convex
and equal to 0 ⊆ FR. Then, it is supposed that
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Theorem 1. It is assumed that the utility function defined by ℧ is convex upper bounded. Therefore, ℧ is 
convex and equal to ℧ ⊆ 𝔉ℝ. Then, it is supposed that Ɲ is the set of indices of ℝ CRV-SUs that are capable 
of achieving a strictly superior performance in comparison to their initial performance. Therefore, it follows that 
there exists a symmetric Nash bargaining point 𝜔, which confirms 𝑓௡(𝜔) ≥ 𝔘௡଴ , 𝑛 ∈ Ɲ and consists of a 
unique solution for the maximization problem expressed below: max ෑ(𝑓௡(𝜔) − 𝔘௡଴ )௡∈Ɲ , 𝜔 ∈ ℧଴. (20) 

Proof. Theorem 1’s Proof is similar to that of the SNBS feature provided in [24] (Proof omitted here 
because it is similar to the one in [24] and also due to space limitations). □ 

Irrespective of the fact that the logarithmic basis of the optimization objective in Equation (20) 
stands, it is observed that resource allocation mechanisms (i.e., allocation problems) which depend 
on Theorem 1 are not typically convex over given convex sets. In particular, with such allocation 
problems under certain constraints, the convexity and existence of the feasible set which can satisfy 
the objective and all the constraints have to be thoroughly investigated. For instance, with respect to 
the CR constraints on transmit power allocation policy, channel selection, stability (i.e., protection of 
PU’s communication), and SNIR, as shown in Equations (12), (15), (17) and (19), the throughput 
definition given by Equation (13) can be adopted as the optimization objective in Equation (20) above. 
Therefore, an initial SNO-CRAVNET problem can be expressed as follows: Find the joint optimal 
transmit power and subcarrier allocation strategies ℂ𝒩𝒞×ℝൣ𝕆𝒩𝒞×ℝ൧ and ℙ𝒩𝒞×ℝൣ𝕆𝒩𝒞×ℝ൧. 

maxℂ,ℙ 𝔼
⎝⎜⎜
⎛෍ ln ൮ቌ ෍ 𝕔௠௡ℛ௠௡(𝒫௠௡)𝒩𝒞

௠ୀଵ ቍ − 𝔘௡଴ ൲ℝ
௡ୀଵᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥƮ(𝕔೘೙,𝒫೘೙ ) ⎠⎟⎟

⎞ , (21) 

subject to 𝕔௠௡ ∈ ሼ0, 1ሽ, ∀m, 𝑛, (22) 

෍ 𝕔௠௡ ≤ 1ℝ
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𝒫௠௡ ≥ 0, ∀m, 𝑛, (24) 

෍ ෍ 𝕔௠௡𝒫௠௡ ≤𝒩𝒞
௠ୀଵ

ℝ
௡ୀଵ 𝒫்௢௧., ∀m, 𝑛, (25) 

𝔼 ቎ ෍ 𝕔௠௡𝒫௠௡|𝑎௠௡|ଶ𝒩𝒞
௠ୀଵ ቏ ≥ 𝒫௡௠௜௡, ∀𝑛, (26) 

෍ 𝕔௠௡𝒫௠௡ ≤ 𝒫௡௠௔௫𝒩𝒞
௠ୀଵ , ∀𝑛. (27) 

The problem shown in Equation (21) and in the constraints (22)–(27) is a mixed combinatorial 
problem because it includes both a discrete variable ሼ𝕔௠௡ሽ  and continuous variable ሼ𝒫௠௡ሽ . 
Generally, the conventional approach normally adopted to solve such a mixed combinatorial 
problem is usually applied by performing an exhaustive search method [25] over the ℝ CRV-SUs and 𝒩𝒞 number of dynamically available channels. Therefore, there are a total of ℝ𝒩𝒞  possible channel 
assignments. To guarantee that the individual requirement for each of the ℝ CRV-SUs is satisfied for 
each of the ℝ𝒩𝒞  possible channel assignments, the total transmit power 𝒫்௢௧ is allocated and, at the 
same time, summation of the SNO-CRAVNET data-rate of each of the ℝ CRV-SUs is equally 
maximized, accordingly. 

is the set of indices of R CRV-SUs that are capable of achieving
a strictly superior performance in comparison to their initial performance. Therefore, it follows that there exists a
symmetric Nash bargaining point ω, which confirms fn(ω) ≥ U0

n, n ∈
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Irrespective of the fact that the logarithmic basis of the optimization objective in Equation (20)
stands, it is observed that resource allocation mechanisms (i.e., allocation problems) which depend
on Theorem 1 are not typically convex over given convex sets. In particular, with such allocation
problems under certain constraints, the convexity and existence of the feasible set which can satisfy the
objective and all the constraints have to be thoroughly investigated. For instance, with respect to the
CR constraints on transmit power allocation policy, channel selection, stability (i.e., protection of PU’s
communication), and SNIR, as shown in Equations (12), (15), (17) and (19), the throughput definition
given by Equation (13) can be adopted as the optimization objective in Equation (20) above. Therefore,
an initial SNO-CRAVNET problem can be expressed as follows: Find the joint optimal transmit power
and subcarrier allocation strategies CNC×R
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T(Cmn,Pmn )


, (21)

subject to
Cmn ∈ {0, 1}, ∀m, n, (22)

R∑
n=1

Cmn ≤ 1, ∀m, n, (23)

Pmn ≥ 0, ∀m, n, (24)

R∑
n=1

NC∑
m=1

CmnPmn ≤ PTot., ∀m, n, (25)

E

 NC∑
m=1

CmnPmn|amn|
2

 ≥ Pmin
n , ∀n, (26)

NC∑
m=1

CmnPmn ≤ P
max
n , ∀n. (27)

The problem shown in Equation (21) and in the constraints (22)–(27) is a mixed combinatorial
problem because it includes both a discrete variable {Cmn} and continuous variable {Pmn}. Generally,
the conventional approach normally adopted to solve such a mixed combinatorial problem is usually
applied by performing an exhaustive search method [25] over the R CRV-SUs and NC number of
dynamically available channels. Therefore, there are a total of RNC possible channel assignments.
To guarantee that the individual requirement for each of the R CRV-SUs is satisfied for each of the
RNC possible channel assignments, the total transmit power PTot is allocated and, at the same time,
summation of the SNO-CRAVNET data-rate of each of theRCRV-SUs is equally maximized, accordingly.

Consequently, while all the constraints in Equations (22)–(27) are satisfied, the assignment of the
dynamically available channels, together with their corresponding total transmit power allocation
PTot. which leads to the biggest summation of the data-rate, becomes the overall optimal solution.
However, because of the high computational complexity of this method [25], together with the known
limited computation, bandwidth, and storage resources in vehicular communication networks [26,27],
extremely complex algorithms cannot be the best alternative for implementation in CR-enabled
vehicular networks.

To overcome this challenge, the mixed combinatorial problem seen in Equation (21) and in the
constraints shown in Equations (22)–(27) is methodically transformed to a convex optimization problem.
The key aim of this transformation of the mixed combinatorial problem into a convex optimization
problem is to make sure that the outcome of the transformation process must be a new problem that
can symmetrically embrace the property of the proposed SNO-CRAVNET under the regulations of the
emerging CR system. Furthermore, the new convex optimization problem must be defined over a
feasible set that maintains its convexity and, at the same time, ensures that all the involved constraints
are satisfied. The process of the transformation is as shown below. Firstly, as presented in Section 2.4,
the requirement Rmn(Pmn) ∈ I is relaxed into Rmn(Pmn) ∈ [0, I], so that Rmn(Pmn) can become a real
number between the interval [0, I]. From Equation (12), apart from the discrete {Cmn} variables, a set

of new real-valued
∼

Cmn variables between the interval [0, 1] is introduced, for instance,
∼

Cmn ∈ [0, 1].

In particular, in accordance with the study of Wong et al. [28],
∼

Cmn can be considered as a time-sharing
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factor of the mth subcarrier, which shows the period of time that subcarrier m is allocated to CRV-SU
n over every one of the transmission frames. Then, with the aid of the time-sharing transformation,

the objective T(
∼

Cmn, Pmn) can be defined as convex over
∼

Cmn, though it still remains non-convex over

(
∼

Cmn, Pmn). Secondly, with the help of the same time-sharing approach, Pmn is transformed into a

continuous variable
∼

Pmn = Pmn
∼

Cmn, ∀m, n, which yields
∼

Pmn ∈ [0, I·
∼

Cmn ]. Therefore, with
∼

Cmn and
∼

Pmn, the reformulated convex optimization problem can now easily be formulated: Find the optimal

joint channel and transmit power allocation strategies
∼

CNC×R
[
ONC×R

]
and

∼

PNC×R
[
ONC×R

]
.

max
C̃, P̃

E


R∑

n=1

ln


 NC∑

m=1

∼

CmnRmn

(
∼

Cmn,
∼

Pmn

)−U0
n

︸                                              ︷︷                                              ︸
T(
∼

Cmn,
∼

Pmn )


, (28)

subject to
∼

Cmn ∈ [0, 1], ∀m, n, (29)

R∑
n=1

∼

Cmn ≤ 1, ∀m, n, (30)

∼

Pmn ≥ 0, ∀m, n, (31)

R∑
n=1

NC∑
m=1

∼

Pmn ≤ PTot., (32)

E

 NC∑
m=1

∼

Pmn|amn|
2

 ≥ Pmin
n , ∀n, (33)

NC∑
m=1

∼

Pmn ≤ P
max
n , ∀n. (34)

Between Equations (29)–(34), the constraints presented in Equations (29) and (30) guarantee that,
at a given time-share, only one CRV-SU can be allocated a channel and must adhere to the properties
of Equation (12) (see Section 2.4). The constraint in Equation (31) guarantees that the allocated
transmit power must not be negative, while the constraint provided in Equation (32) maintains the
transmitted power, in order to ensure that the transmit power allocated to the CRV-SU n occupying
all the dynamically available orthogonal channels is maintained below the total transmit power PTot.

available at CR-BS, as defined in Equation (15). Lastly, as illustrated in Equations (17) and (19),
transmit power constraints for each R CRV-SU and PU are guaranteed by constraints presented in
Equations (33) and (34), respectively.

Proposition 1. In the above stated optimal joint subcarrier and transmit power allocation strategies, the problem
defined in Equation (28) and in the constraints presented in Equations (29)–(34) is a convex optimization problem.

Proof. Proposition 1’s Proof is shown in Appendix A. �

With regard to Proposition 1, it is established that the problem defined in Equation (28) and in
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore,
there exists a unique optimal solution that can be achieved within the polynomial time [25].
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Proposition 2. Let us assume that
∼

Pmn > 0. Then,
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(
∼

Cmn,
∼

Pmn), as shown in Equation (28), can stringently

increase for all
∼

Cmn , thereby satisfying
∼

CmnRmn(
∼

Cmn,
∼

Pmn) > U0
n.

Proof. Appendix A presents the Proof of Proposition 2. �

Proposition 2 certifies that the transformation of the objective in Equation (20), as well as in

Equation (21) to

Sensors 2020, 20, x FOR PEER REVIEW 10 of 27 

ongoing transmissions from PUs. Let the distance between the 𝑛ᇱ th PU and CR-BS be given as 𝑑௡ᇲ஼ோି஻ௌ, so that another interference constraint to protect the PUs’ transmission can be given as 𝛽௉௎௠௜௡ ≤ ൫𝑑௡ᇲ஼ோି஻ௌ൯ିజ × 𝒫௡ᇲ௉௎ቀ𝐵 × 𝒩଴௡ᇲ + (𝑑௡௡ᇲ)ିజ × ൫∑ 𝕔௠௡𝒫௠௡𝒩𝒞௠ୀଵ ൯ቁ,  (18) 

where 𝜐 denotes the exponent of path attenuation and 𝒫௡ᇲ௉௎ is the 𝑛ᇱth PU’s transmit power. 𝑑௡௡ᇲ 
represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 

(
∼

Cmn,
∼

Pmn) in Equation (28), can be achieved by exploiting the firmly increasing
property of the logarithm function.

Proposition 3. The utility function
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+

, (36)

wherew(·) represents the Lambertw -function. The definitions of both
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mn and Xmn are contained in Appendix B,
and the symbol (z)+ represents max (0, z).
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The optimal transmit power scheduling for CRV-SU n on every subcarrier m is obtained from
Theorem 3. In other words, the optimal transmit power that subcarrier m requires to be able to transmit
a given amount of information based on the licensed PU’s protection parameters, the associated

subcarrier’s conditions, and the characteristics of CRV-SU n is denoted by
∼

P

∗

mn.
Consequently, through a linear search of theNC subcarriers, efficient resource scheduling can be

performed, for instance, for m = 1 toNC, find the optimal CRV-SU n∗ = arg min
∼

C
∗

mn. Then, allocate the
corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs n∗s. Despite the

fact that the procedure derives
∼

C
∗

mns accounting for the subcarrier scheduling constraints presented
in Equations (29) and (30) under the symmetric NBS’s rule, the procedure indirectly considers the
transmit power constraints presented in Equations (31)–(34). Then, with high QoS heterogeneity
amongst the R CRV-SUs (i.e., concerning the subcarrier’s stringent QoS requirements and interference

conditions),
∼

C
∗

mn <
∼

C
∗

m′n does not necessarily indicate that
∼

P

∗

mn <
∼

P

∗

m′n, and vice versa, which leads
to transmit power inefficiency. Therefore, to overcome this, the following optimal transmit power
scheduling method is introduced, in order to increase the transmit power efficiency.

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as P∗
NC×R

[
ONC×R

]
=

[P∗mn] , where the corresponding matrix elements are determined via searching amongst the dynamically available
NC subcarriers. For m = 1 toNC,

n∗ = argmin
∼

P

∗

mn, P∗mn =


∼

P

∗

mn, if n = n∗

0, otherwise
(37)

where n∗ represents the optimal CRV-SU.

Proof. Appendix B presents the Proof of Theorem 4. �

Using Equation (37), matrix P∗
NC×R

[
ONC×R

]
is obtained, which indicates that the optimal transmit

power is allocated to the optimal CRV-SU n∗ on subcarrier m. Therefore, the optimal transmit power of
each CRV-SU can be determined throughP∗n =

∑NC
m=1P

∗
mn, ∀n. Likewise, accounting forP∗

NC×R

[
ONC×R

]
,

the optimal subcarrier allocation can be defined as shown here.

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by C∗
NC×R

[
ONC×R

]
= [C∗mn]

, where the individual matrix elements are determined by

C∗mn =

{
1, if n = n∗

0, otherwise
(38)
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Proof. Appendix B presents the Proof of Theorem 5. �

Accordingly, from Equation (38), the optimal subcarrier scheduling matrix C∗
NC×R

[
ONC×R

]
is

obtained. Consequently, by using Equations (35)–(38), the joint transmit power and subcarrier
allocation strategy for CRV-SU systems is determined as illustrated, with the aid of the pseudo-code,
in Algorithm 1.

Additionally, from the combination of Equations (11) and (36)–(38), the optimal rate scheduling

strategy ∗
NC×R

[
ONC×R

]
=

[
R
∗
mn

(
C∗mn,

∼

C
∗

mn,
∼

P

∗

mn

)]
is obtained, where the instantaneous optimal data-rate

as the individual matrix elements is determined by

R
∗
mn =

B
NC
·C∗mn· log2


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mn
)



. (39)

Therefore, from Equations (14) and (39), the overall optimal throughput of the SNO-CRAVNET

system amongst all the R CRV-SUs and subcarriers can be obtained, for instance,
∼

R

∗(
C∗mn,

∼

C
∗

mn,P∗mn

)
=

E
[∑R

n=1
∑NC

m=1 C
∗
mnR

∗
mn

(
C∗mn,

∼

C
∗

mn,P∗mn

)]
.

Furthermore, by substituting C∗mn and P∗mn in the transformed convex optimization problem
presented in Equations (28)–(34), it can be observed that an upper-bound of the maximum
SNO-CRAVNET overall system throughput defined as E

[
<
∗]

can be obtained, where<∗ represents
the reachable (i.e., maximum) SNO-CRAVNET overall system throughput of subcarrier n∗. On the
contrary, by substituting C∗mn and P∗mn in the original optimization problem presented in Equations
(21)–(27), a lower-bound of the reachable data-rate defined as E

[
<
∗
]

can be obtained. Without a loss of
generality, let<Tot. be the total reachable data-rate obtained by a combinatorial search of the original
optimization problem presented in Equations (21)–(27); then, E

[
<
∗]
≥ E

[
<

Tot.
]
≥ E

[
<
∗
]
. Therefore,

the difference that exists between the lower-bound E
[
<
∗
]

and the upper-bound E
[
<
∗]

of the maximum
SNO-CRAVNET overall system throughput indicates how far apart the proposed scheme is from
the actual optimal solution. Consequently, based on the experimental results shown in Section 5.2.1,
it is shown that, in the case of the proposed scheme, the gap that exists between the lower-bound
E
[
<
∗
]

and the upper-bound E
[
<
∗]

of the maximum SNO-CRAVNET overall system throughput is
insignificantly small, for instance, smaller than 0.016%.

Algorithm 1 Pseudo-code to find the joint optimal transmit power and subcarrier allocation solution

Procedure:
Input: Maximization of the expected optimal number of dynamically available subcarriers acquired in the mth slot.
Output: Obtained joint optimal transmit power and subcarrier allocation solution.
Initialization:

1: Set
∼

Pmn = PTot./(B.NC), ∀m, n

Step 1

2: Find
∼

C
∗

NC×R
[
ONC×R

]
=

[
∼

C
∗

mn

]
based on Equation (35)

3: Find
∼

P
∗

NC×R
[
ONC×R

]
=

[
∼

P

∗

mn

]
based on Equation (36)

Step 2

Based on the minimum
∼

P

∗

mn, perform resource scheduling:
4: For m = 1 toNC

5: n∗ = argmin
∼

P

∗

mn, P∗mn =


∼

P

∗

mn, if n = n∗

0, otherwise
6: End For

Step 3

7: Obtain
∼

P
∗

NC×R
[
ONC×R

]
and

∼

C
∗

NC×R
[
ONC×R

]
using Equations (37) and (38), respectively.
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5. Performance Evaluation

5.1. Simulation Settings

As depicted in Figure 1, the co-existence of the cellular OFDMA-based overlay CR-Assisted
Vehicular NETwork with the PU network scenario of seven CCs (i.e., J = {L1, L2, · · · , L7}) is
considered. In each of the seven CCs (i.e., locations), there are two shared wireless channels. As defined
in Equation (4), in the shared wireless channel m, the activity of PUs is modeled by Tm for m = 1, 2.
The simulation experiments use a system which consists of R = 10 CRV-SUs, R = 20 CRV-SUs, and
NC = 64, with a total power PTot. = 3 W. In each CRV-SU node, the duration of the time-slot is
20 ms and the queue size Q is 20 packets. The radius of the CCs is 5 km and the average packet
arrival rate follows a Poisson process, with τ = 0.5 packets per time-slot. The average speed of the
CRV-SUs is 50 km/h. The frequency selective fading subcarrier involves six independent Rayleigh
fading multipaths with an exponential power delay profile (PDP) of 100 ns. The transmit power for
each of the R CRV-SUs is constrained by the threshold Pmin

n = 0.5 W. The rest of the parameters used
in the simulations with their set values are shown in Table 3.

Table 3. Parameter settings.

Parameter Setting

SINR threshold, (βmin
n ) 5 dB

Noise density, (BN0) 0.1 dBm
Channel bandwidth, (B) 1.6 GHz
Power threshold, (Pmax

n ) 1.5 W
PU noise density, (BNn′

0 ) 0.1 dBm
Distance between n′th PU and CR-BS, (dCR−BS

n′ ) 12 m
Distance between nth CRV-SU and the n′th PU, (dnn′ ) 4 m

PU interference threshold, (βmin
PU ) 5 dB

Exponent of path attenuation, (υ) 2.5

5.2. Discussion of the Results

The performance evaluation of SNO-CRAVNET was carried out in comparison with existing
relevant scheduling schemes for CR-Assisted Vehicular NETwork systems. The relevant reference
schemes selected for the purpose of performance evaluation against SNO-CRAVNET were the
Dependent Rounding-based Scheme (DR) [30], Pure Nash Equilibrium Search scheme (PNE-S) [31],
and Cuckoo Search scheme (CS) with Multi-objective Optimization based on the Decomposition scheme
(MOCS/D) [32]. To ensure that consistency and fairness were maintained regarding the comparisons
of the proposed SNO-CRAVNET and reference schemes, derivation of the optimal strategies of
DR, PNE-S, and MOCS/D was achieved through optimization problems involving the constraints
of CR, as shown in Equations (7) and (9), and further system throughput optimization constraints
for the minimal CRV-SU’s utility requirement U0

n. For example, U0
n ≤ E

[∑NC
m=1 Rmn(C∗mn,P∗mn)

]
for

DR, while U0
n ≤ E

[∑NC
m=1 Rmn

(
C∗mn,

∼

C
∗

mn, P∗mn

)]
for PNE-S and MOCS/D. The cost functions which

correspond to each of the scenarios are shown below:

DR: maxE
[∑R

n=1
∑NC

m=1 Rmn(C∗mn,P∗mn)
]
, PNE-S: max min

1≤n≤R
E
[∑R

n=1
∑NC

m=1 Rmn(C∗mn,
∼

C
∗

mn,P∗mn)
]
,

and MOCS/D: maxE
[∑R

n=1
∑NC

m=1 Rmn(C∗mn,
∼

C
∗

mn,P∗mn)
]
.

5.2.1. System Throughput Evaluation

The performance of the proposed SNO-CRAVNET is depicted in Figure 3 through a comparison
of the reference schemes DR, PNE-S, and MOCS/D, using the overall achieved system throughput
measured against the overall supplied transmit power. The overall achieved average system throughput
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of each of the schemes, as expected, sharply increases with a corresponding increase in the total
supplied transmit power. As can been seen in Figure 3 overleaf, the slightly higher overall achieved
average system throughput of the PNE-S in comparison to the proposed SNO-CRAVNET is because
PNE-S does not take into account the resource allocation fairness among the CRV-SUs, as opposed to
SNO-CRAVNET, DR, and MOCS/D. On the other hand, although the performance of DR is nearly equal
to that of the proposed SNO-CRAVNET and a little above the performance of MOCS/D, Figure 3 clearly
shows that SNO-CRAVNET outperforms both. The same occurs in Figure 4, where the performance of
all the schemes is seen to increase accordingly with a further increase in the number of CRV-SUs from 7
to 14. As is the case in Figure 3, SNO-CRAVNET still outperforms both DR and MOCS/D. This could
be explained by the fact that DR requires additional transmit power in comparison to SNO-CRAVNET,
whereas MOCS/D fails to utilize the subcarrier resources opportunistically, thereby resulting in a lower
overall average system throughput performance, as can be seen in both Figures 3 and 4 below.
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5.2.2. Average Throughput Gain Evaluation

In Figure 5 below, the performance evaluation of SNO-CRAVNET in comparison to DR, PNE-S,
and MOCS/D using the overall achieved average throughput gain measured against the varying
number of CRV-SUs is presented. Supposing the scheduler allocated an<Allocated data-rate, the overall
achieved average throughput gain could be calculated as<Allocated −

∑R
n=1 U

0
n. As shown in Figure 5,

the PNE-S obtained a slightly higher overall average throughput gain because of its non-fairness
consideration among the R CRV-SUs. In the case of SNO-CRAVNET, PNE-S only had a relatively
marginal higher average throughput gain. For instance, when R = 6, the PNE Search scheme
achieved an average throughput gain of 0.48 bits/s/Hz, whereas the proposed SNO-CRAVNET achieved
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0.46 bits/s/Hz. Therefore, even though PNE-S does not consider fairness, it only outperformed the
proposed fairness-considerate SNO-CRAVNET by 0.02 bits/s/Hz. However, in comparison to other
scheduling schemes such as DR and MOCS/D that consider fairness, the proposed SNO-CRAVNET
recorded a significantly higher overall average throughput gain, as can be seen in Figure 5. For example,
when R = 14, SNO-CRAVNET achieved a value that was 0.5 bits/s/Hz and 1.6 bits/s/Hz higher than
that of DR and MOCS/D, respectively.
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5.2.3. Transmit Power Gain Evaluation

Figure 6 demonstrates the performance evaluation of the proposed SNO-CRAVNET against the
existing related schemes using the total transmit power gain measured against a varying number
of CRV-SUs. Based on the assumption that Pmin

n and Allocated are the minimum power required by
a CRV-SU and the minimum power required by a scheduler to guarantee the QoS requirements of
each R CRV-SU, the total transmit power gained is obtained as Allocated −

∑R
n=1P

min
n . Figure 6 shows

that SNO-CRAVNET achieves remarkably higher transmit power gain as the number of CRV-SUs
increases compared with DR and MOCS/D. For instance, when R = 8, SNO-CRAVNET achieved
0.01 W and 0.04 W of total transmit power gain more than DR and MOCS/D, respectively. Similarly,
when R = 14, SNO-CRAVNET achieved 0.02 W and 0.08 W of total transmit power gain more than DR
and MOCS/D, respectively.
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5.2.4. Jain’s Fairness Index (JFI) Evaluation

The resource fairness provision was investigated, as depicted in Figure 7, through performance
evaluation using JFI measured against a varying number of CRV-SUs. According to [2,33], the JFI is
expressed as

JFI =

 R∑
n=1

(<n/U0
n)


2

/

R·
 R∑

n=1

(<n/U0
n)

2


, (40)

where<n denotes CRV-SU n’s rate allocation. Consequently, JFI = 1 indicates perfectly fair resource
allocation by the scheduler. Conversely, JFI reduces towards 0 with an increase in the CRV-SUs
rate’s disparity. In Figure 7, it can be seen that MOCS/D achieved perfectly fair resource allocation
(i.e., JFI = 1) due to non-opportunistic scheduling, but recorded a low overall average system
throughput performance, as can be observed in both Figures 3 and 4, and high transmit power
demands. In contrast, as expected, the fairness inconsiderate PNE-S is the most unfair amongst the
schemes and achieved the most imperfectly fair resource allocation (i.e., JFI = 0) when 2 ≤ R ≤ 14.
However, Figure 7 demonstrates that both SNO-CRAVNET and DR can achieve fair resource allocation.
Although it can be observed that their performances decrease with an increase in the number of
CRV-SUs, SNO-CRAVNET continuously outperformed DR in all cases, (i.e., 2 ≤ R ≤ 14). Accordingly,
DR is forced to allocate resources less fairly in comparison to SNO-CRAVNET due to resource starvation.
In general, SNO-CRAVNET shows a performance gain (nearly 5% improvement) over DR, as is evident
in Figure 7, in terms of the percentage of JFI achieved. Obviously, in the case of both SNO-CRAVNET
and DR, when the allocated transmit power is insufficient, the JFI value decreases.
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5.2.5. Accuracy of the Proposed Method

The accuracy of the proposed time-sharing approach is studied in Figures 8 and 9, which depict
comparisons of the derived optimal strategies through a combinatorial search within the original
optimization problem expressed in Equations (11) and (22)–(27) and the reformulated convex
optimization problem presented in Equations (13) and (29)–(34) as discussed in Section 3, respectively.
The comparisons were performed with respect to (wrt) the optimal supplied transmit power and
achievable optimal throughput of CRV-SU 1 (see Figure 8) and CRV-SU 2 (see Figure 9). Furthermore,
for other CRV-SUs, similar results were obtained. As clearly demonstrated in Figures 8 and 9,
the transmit power and the achievable optimal throughput values obtained in the case of CRV-SU 1
(see Figure 8) and CRV-SU 2 (see Figure 9) are nearly the same and the performance gaps in both cases
are infinitesimally trivial, such as 0.014%. Therefore, both Figures 8 and 9 show that the proposed
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time-sharing SNO-CRAVNET allocation based on Equations (13) and (29)–(34) is capable of achieving
up to an average of 99.987% for the total theoretical capacity.
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6. Conclusions

This paper has presented an efficient joint optimal subcarrier and transmit power allocation
framework with QoS guarantee to support enhanced packet transmission over a Cognitive
Radio-enabled IoV network system. The study proposed a novel SNBS-based wireless radio resource
scheduling scheme in an OFDMA CR-enabled IoV network system. The CRV-SUs form clusters,
leading to an improved CR-enabled IoV communication efficiency in a network system over the shared
wireless radio channels (i.e., the channels that belong to licensed PUs). Although the shared wireless
radio channels are primarily allocated to the PUs, the same channels can be opportunistically accessed
by the CRV-SUs on the condition that the SINR with the PUs is maintained below the threshold
level. Furthermore, a convex optimization problem was formulated by applying a time-sharing
technique. The formulated convex optimization problem involves constraints on CR technology
regulations, joint optimal subcarrier, and transmit power allocation. Then, the optimal subcarrier
and transmit power allocation strategies were derived via mathematical analysis. The developed
iteration-independent and low-complexity algorithm ensures easy convergence to Pareto optimality.
Theoretical analysis and simulation results show that the proposed SNO-CRAVNET outperformed the
reference scheduler schemes. In comparison to other scheduling schemes that are fairness-considerate,
the proposed SNO-CRAVNET recorded a significantly higher overall average throughput gain, as is
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shown in Figure 5. Similarly, the accuracy of the proposed time-sharing method wrt the optimal
transmit power and the achievable optimal throughput of CRV-SU 1 and CRV-SU 2 was investigated.
It is shown in Figure 6 that the proposed time-sharing SNO-CRAVNET allocation based on the
reformulated convex optimization problem is capable of achieving up to an average of 99.987% for
the total theoretical capacity. In the same vein, the proposed SNO-CRAVNET scheme outperformed
the other reference scheduling schemes in terms of fair resource allocation, which further emphasizes
that the open issue of joint optimal subcarrier and transmit power allocation with QoS guarantee for
enhanced data transmission over CR-IoVs was achieved.

An investigation of the integration of spectrum sensing in interweave-based CR-enabled
IoV network systems represents an interesting possible future research direction. Under the
interweave-based CR-enabled IoV network systems, the spectrum sensing accuracy remains an
open issue due to prevailing sensing errors over wireless channels. Additionally, as part of future work,
a hidden CRV-SU problem will be considered in deriving the transition probability matrix, in order to
further understand how the presence of hidden CRV-SUs may affect the transition probability matrix
and transmit power allocation.
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Appendix A

Proofs of Propositions 1, 2, and 3

Proof of Proposition 1. In Equation (28),
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of concave functions is likewise concave. Additionally, over a convex set, the convex optimization
problem expressed in Equations (28)–(34) is determined. Given that each constraint as shown in
Equations (29)–(34), according to its affinity determining a convex set, the set defined by each of the
constraints is convex, since the intersection of convex sets is convex according to [32]. The Proof of
Proposition 1 is completed by the above presented argument. �
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Proof of Proposition 2. Let the first order derivative of
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represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 
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where 𝜐 denotes the exponent of path attenuation and 𝒫௡ᇲ௉௎ is the 𝑛ᇱth PU’s transmit power. 𝑑௡௡ᇲ 
represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 
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represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
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which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 
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for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
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instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 
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> 0. Therefore, it follows thatH(y) is a strictly increasing

function, which can be determined throughH(y) > H(0) = 0. Therefore,
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all the dynamically available orthogonal channels is maintained below the total transmit power 𝒫்௢௧. 
available at CR-BS, as defined in Equation (15). Lastly, as illustrated in Equations (17) and (19), 
transmit power constraints for each ℝ CRV-SU and PU are guaranteed by constraints presented in 
Equations (33) and (34), respectively. 

Proposition 1. In the above stated optimal joint subcarrier and transmit power allocation strategies, the 
problem defined in Equation (28) and in the constraints presented in Equations (29)–(34) is a convex 
optimization problem. 

Proof. Proposition 1’s Proof is shown in Appendix A. □ 

With regard to Proposition 1, it is established that the problem defined in Equation (28) and in 
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore, 
there exists a unique optimal solution that can be achieved within the polynomial time [25]. 

Proposition 2. Let us assume that 𝒫෨௠௡ > 0. Then, Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, as shown in Equation (28), can stringently 
increase for all 𝕔෤௠௡, thereby satisfying 𝕔෤௠௡ℛ௠௡൫𝕔෤௠௡, 𝒫෨௠௡൯ > 𝔘௡଴ . 

Proof. Appendix A presents the Proof of Proposition 2. □ 

Proposition 2 certifies that the transformation of the objective in Equation (20), as well as in 
Equation (21) to Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ in Equation (28), can be achieved by exploiting the firmly increasing 
property of the logarithm function. 

Proposition 3. The utility function Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ proposed in Equation (28) is Nash bargaining theorem 
compliant and, at the same time, satisfies the proportional fairness metric. 

Proof. Appendix A presents the Proof of Proposition 3. □ 

In our case, Proposition 3 shows that, for the data-rate allocation, a unique Nash bargaining 
equilibrium can be obtained. Likewise, as a special case of the NBS fairness [29], proportional fairness 
can be achieved when 𝔘௡଴ = 0, ∀𝑛. 

4. Optimal Resource Scheduling Strategies 

The convex optimization problem’s optimal solution, which is presented in Equation (28) and in 
the constraints expressed in Equations (29)–(34), is derived in this section. Additionally, a simple and 
efficient strategy, which supports an iteration-independent joint transmit power and subcarrier 
scheduling, is proposed. The optimal subcarrier allocation 𝕔෤௠௡  with a consideration of the time-
sharing approach is a real number implying the fraction of time which subcarrier 𝑚 requires for the 
transmission of a given amount of information. Firstly, uniform transmit power scheduling, that is, 𝒫෨௠௡ = 𝒫்௢௧. (𝒩𝒞 ∙ 𝐵)⁄ , is performed for all the available subcarriers. Then, an equal amount of 
information is transferred over all the available subcarriers. Secondly, based on the study carried out 
by Hahne [29], the optimal time-sharing subcarrier scheduling strategy is obtained. 

Theorem 2. The SNO-CRAVNET optimal time-sharing subcarrier scheduling strategy is given as ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, and the individual matrix elements are expressed as ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), (35) 

where ₼௠∗ = ɸିଵ(1), ∀𝑚. 

Proof. Appendix B presents the Proof of Theorem 2. □ 
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ongoing transmissions from PUs. Let the distance between the 𝑛ᇱ th PU and CR-BS be given as 𝑑௡ᇲ஼ோି஻ௌ, so that another interference constraint to protect the PUs’ transmission can be given as 𝛽௉௎௠௜௡ ≤ ൫𝑑௡ᇲ஼ோି஻ௌ൯ିజ × 𝒫௡ᇲ௉௎ቀ𝐵 × 𝒩଴௡ᇲ + (𝑑௡௡ᇲ)ିజ × ൫∑ 𝕔௠௡𝒫௠௡𝒩𝒞௠ୀଵ ൯ቁ,  (18) 

where 𝜐 denotes the exponent of path attenuation and 𝒫௡ᇲ௉௎ is the 𝑛ᇱth PU’s transmit power. 𝑑௡௡ᇲ 
represents the distance between nth CRV-SU and 𝑛ᇱth PU, while 𝒩଴௡ᇲ represents the noise spectral 
density (i.e., noise density) of the 𝑛ᇱth PU. With the help of Location-Based Systems (LBSs), for 
instance, the Global Positioning System (GPS), both distances, 𝑑௡ᇲ஼ோି஻ௌ  and 𝑑௡௡ᇲ  can be easily 
obtained. In addition, information on the CRV-SU’s features can be obtained by the CR-BS through 
feedback channels. Therefore, without a loss of generality, Equation (18) can be further simplified 
and expressed as Ᵽ௡௠௔௫ ≥ ෍ 𝕔௠௡𝒫௠௡𝒩𝒞

௠ୀଵ , ∀𝑛, (19) 

where Ᵽ௡௠௔௫ = ቀ൫൫𝑑௡ᇲ஼ோି஻ௌ 𝑑௡௡ᇲൗ ൯ିజ × 𝒫௉௎ 𝛽௉௎௠௜௡⁄ ൯ − ൫𝐵 × 𝒩଴௡ᇲ (𝑑௡௡ᇲ)ିజൗ ൯ቁ . From Equation (19), the 
stipulated condition guarantees that the potential transmissions of the PU are fully protected if and 
only if the CRV-SU 𝑛 ’s total transmit power is constrained over channel 𝑛  by the predefined 
threshold Ᵽ௡௠௔௫. 

3. The Utility of SNO-CRAVNET and Problem Formulation 

The design methodology of the SNO-CRAVNET’s objectives with its SNO-CRAVNET game is 
presented in this section in the form of a convex optimization problem, with its associated players 
represented by the ℝ CRV-SUs. The design of the game bargaining scheme methodologies for the CR-
enabled IoV network system is proposed in this section. We assume that each ℝ CRV-SU, for instance, 
CRV-SU 𝑛, has an initial utility 𝔘௡଴ ≥ 0, which represents its acceptable minimum QoS constraint 
with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
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∼
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with respect to the data-rate and the corresponding utility function 𝑓௡. Under the symmetric Nash 
bargaining (SNB) theory, each utility function 𝑓௡ is usually designated as a convex and closed subset 
of 𝔉ℝ = ሼ℧ሽ, with 𝔉ℝ and ℧ denoting the set of game theory strategies of the ℝ CRV-SU players 
and utility vectors’ space, respectively. Let us assume that 𝔘௡଴  is conveniently achievable for all the 
ℝ CRV-SU players. Then, it follows that at least a feasible subspace ℧଴ exists in ℧, so that the utility 
vector, for instance, 𝑓(𝜔) = ሼ𝑓ଵ, 𝑓ଶ, 𝑓ଷ, ⋯ , 𝑓ℝሽ, becomes equal or bigger in comparison to the initial 
utility vector, such as, 𝔘଴ = ሼ𝔘ଵ଴, 𝔘ଶ଴, 𝔘ଷ଴, ⋯ , 𝔘ℝ଴ ሽ. Therefore, the subset ℧଴ as the element of ℧ can be 
expressed as ℧଴ = ሼ𝜔 ∈ ℧|𝑓(𝜔) ≥ 𝔘଴ሽ. Additionally, let us suppose that the set of utility that can be 
achieved is denoted by  Ʈ = ሼ𝑓(𝜔)|𝜔 ∈ ℧ሽ and the category of sets of utility policies that satisfies 𝔘଴, 
which is the minimum utility bound, is denoted as ℬ = ሾƮ, 𝔘଴|Ʈ ⊂ 𝔉ℝሿ. Therefore, in accordance with 
the Symmetric NBS theory (see [23]), there exists a unique solution, for instance, Տ௡௕௦|ℬ ⟶ 𝔉ℝ, which 
satisfies the following axioms: 

a) Տ௡௕௦(Ʈ, 𝔘଴) ensures a minimum utility guarantee, for instance, Տ௡௕௦(Ʈ, 𝔘଴) ∈ Ʈ଴ , where Ʈ଴ =ሼ𝔘 ∈ Ʈ|𝔘 ≥ 𝔘଴ሽ, ∀𝑛; 
b) Տ௡௕௦(Ʈ, 𝔘଴) is the Pareto optimal, which implies that other allocations Տ௡௕௦ᇱ (Ʈ, 𝔘଴) capable of 

guaranteeing a higher performance for all the ℝ CRV-SUs simultaneously do not exist, that is, Տ௡௕௦ᇱ (Ʈ, 𝔘଴) < Տ௡௕௦(Ʈ, 𝔘଴), ∃𝑛 and Տ௡௕௦ᇱ (Ʈ, 𝔘଴) ≤ Տ௡௕௦(Ʈ, 𝔘଴), ∀𝑛; 
c) Տ௡௕௦(Ʈ, 𝔘଴) guarantees symmetry, which implies that all the ℝ CRV-SUs have equal priorities, 

for instance, supposing that Ʈ is symmetric with regards to a sub-set 𝒬 ⊆ ሼ1, 2, 3, ⋯ , 𝑛, ⋯ , ℝሽ 
and 𝔘 ∈ Ʈ, 𝑛, 𝑛ᇱᇱ ∈ 𝒬 so that 𝔘௡଴ = 𝔘௡ᇲᇲ଴  implies that Տ௡௕௦(Ʈ, 𝔘଴)௡ = Տ௡௕௦(Ʈ, 𝔘଴)௡ᇲᇲ, 𝑛 ≠ 𝑛ᇱᇱ; 

d) Տ௡௕௦(Ʈ, 𝔘଴) guarantees fairness by maintaining the independence of irrelevant alternatives, for 
instance, if the feasible set decreases and the solution keeps on being feasible, it follows that the 
solution for the lesser achievable set remains the same point. It can be expressed as ɰ ⊂ Ʈ, (ɰ, 𝔘଴) ∈ ℬ and Տ௡௕௦(Ʈ, 𝔘଴) ∈ ℬ, then Տ௡௕௦(Ʈ, 𝔘଴) = Տ௡௕௦(ɰ, 𝔘଴), ∀𝑛. 

Without a loss of generality, the property of the SNO-CRAVNET is described using the 
following theorem. 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function
cannot be improved by each movement in the line ofR−R∗ at the optimal data-rate vectorR∗. Therefore,
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proportionally fair resource allocation is guaranteed by the optimal solution. Proof of Proposition 3 is
completed. �
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡, 𝒫෨௠௡, 𝓀, ₼௡, 𝒻௡, 𝒷௡൯ == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ

௡ୀଵ = ෍ ⎩⎪⎨
⎪⎧ 1ቆ𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯𝜕ℂ෨௠௡∗ ቇ⎭⎪⎬

⎪⎫ℝ
௡ୀଵ < 0, ∀𝑛.  

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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all the dynamically available orthogonal channels is maintained below the total transmit power 𝒫்௢௧. 
available at CR-BS, as defined in Equation (15). Lastly, as illustrated in Equations (17) and (19), 
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With regard to Proposition 1, it is established that the problem defined in Equation (28) and in 
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore, 
there exists a unique optimal solution that can be achieved within the polynomial time [25]. 

Proposition 2. Let us assume that 𝒫෨௠௡ > 0. Then, Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, as shown in Equation (28), can stringently 
increase for all 𝕔෤௠௡, thereby satisfying 𝕔෤௠௡ℛ௠௡൫𝕔෤௠௡, 𝒫෨௠௡൯ > 𝔘௡଴ . 
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4. Optimal Resource Scheduling Strategies 
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where ₼௠∗ = ɸିଵ(1), ∀𝑚. 

Proof. Appendix B presents the Proof of Theorem 2. □ 
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Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
that is, ℛ = ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ rewritten as Ʈ(ℛ) =∏ ൛ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ − 𝔘௡଴ ൟℝ௡ୀଵ , where ሾ∙ሿℋ  represents the vector transpose. In Equation (28), the 
disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
minimized to Ʈ(ℛ) = ∏ ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ℝ௡ୀଵ . The objective function with regards to Proposition 2 can 
be expressed as lnሼƮ(ℛ)ሽ . Therefore, if 𝕔෤௠௡ , ℛ =ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ, and 𝒫෨௠௡ are the optimal channel, achievable data-
rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗

ℝ
௡ୀଵ (ℛ௡ − ℛ௡∗ ) = ෍ ℛ௡ − ℛ௡∗ℛ௡∗

ℝ
௡ୀଵ ≤ 0. (A2) 

In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡, 𝒫෨௠௡, 𝓀,  ₼௡, 𝒻 𝒷௡൯ == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ
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⎪⎫ℝ
௡ୀଵ < 0, ∀𝑛.  

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 

 R∑
n=1

NC∑
m=1

∼

Pmn −PTot

− NC∑
m=1

Sensors 2020, 20, x FOR PEER REVIEW 13 of 27 

all the dynamically available orthogonal channels is maintained below the total transmit power 𝒫்௢௧. 
available at CR-BS, as defined in Equation (15). Lastly, as illustrated in Equations (17) and (19), 
transmit power constraints for each ℝ CRV-SU and PU are guaranteed by constraints presented in 
Equations (33) and (34), respectively. 

Proposition 1. In the above stated optimal joint subcarrier and transmit power allocation strategies, the 
problem defined in Equation (28) and in the constraints presented in Equations (29)–(34) is a convex 
optimization problem. 

Proof. Proposition 1’s Proof is shown in Appendix A. □ 

With regard to Proposition 1, it is established that the problem defined in Equation (28) and in 
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore, 
there exists a unique optimal solution that can be achieved within the polynomial time [25]. 

Proposition 2. Let us assume that 𝒫෨௠௡ > 0. Then, Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, as shown in Equation (28), can stringently 
increase for all 𝕔෤௠௡, thereby satisfying 𝕔෤௠௡ℛ௠௡൫𝕔෤௠௡, 𝒫෨௠௡൯ > 𝔘௡଴ . 

Proof. Appendix A presents the Proof of Proposition 2. □ 

Proposition 2 certifies that the transformation of the objective in Equation (20), as well as in 
Equation (21) to Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ in Equation (28), can be achieved by exploiting the firmly increasing 
property of the logarithm function. 

Proposition 3. The utility function Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ proposed in Equation (28) is Nash bargaining theorem 
compliant and, at the same time, satisfies the proportional fairness metric. 

Proof. Appendix A presents the Proof of Proposition 3. □ 

In our case, Proposition 3 shows that, for the data-rate allocation, a unique Nash bargaining 
equilibrium can be obtained. Likewise, as a special case of the NBS fairness [29], proportional fairness 
can be achieved when 𝔘௡଴ = 0, ∀𝑛. 

4. Optimal Resource Scheduling Strategies 

The convex optimization problem’s optimal solution, which is presented in Equation (28) and in 
the constraints expressed in Equations (29)–(34), is derived in this section. Additionally, a simple and 
efficient strategy, which supports an iteration-independent joint transmit power and subcarrier 
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transmission of a given amount of information. Firstly, uniform transmit power scheduling, that is, 𝒫෨௠௡ = 𝒫்௢௧. (𝒩𝒞 ∙ 𝐵)⁄ , is performed for all the available subcarriers. Then, an equal amount of 
information is transferred over all the available subcarriers. Secondly, based on the study carried out 
by Hahne [29], the optimal time-sharing subcarrier scheduling strategy is obtained. 

Theorem 2. The SNO-CRAVNET optimal time-sharing subcarrier scheduling strategy is given as ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, and the individual matrix elements are expressed as ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), (35) 

where ₼௠∗ = ɸିଵ(1), ∀𝑚. 

Proof. Appendix B presents the Proof of Theorem 2. □ 
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Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
that is, ℛ = ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ rewritten as Ʈ(ℛ) =∏ ൛ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ − 𝔘௡଴ ൟℝ௡ୀଵ , where ሾ∙ሿℋ  represents the vector transpose. In Equation (28), the 
disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
minimized to Ʈ(ℛ) = ∏ ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ℝ௡ୀଵ . The objective function with regards to Proposition 2 can 
be expressed as lnሼƮ(ℛ)ሽ . Therefore, if 𝕔෤௠௡ , ℛ =ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ, and 𝒫෨௠௡ are the optimal channel, achievable data-
rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗

ℝ
௡ୀଵ (ℛ௡ − ℛ௡∗ ) = ෍ ℛ௡ − ℛ௡∗ℛ௡∗

ℝ
௡ୀଵ ≤ 0. (A2) 

In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡, 𝒫෨௠௡, 𝓀,  ₼௡, 𝒻 𝒷௡൯ == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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Ᵽ௡௠௔௫ Transmit power constraint to protect potential transmissions of PU 𝑟௠௡ OFDM symbol received at the destination 

Table 2. List of acronyms. 

Acronym Meaning 
BER Bit error rate 
CC Cognitive cell 

CCH Control channel 
CH Cluster head 
CM Cluster member 
CR Cognitive Radio 

CRAVNs Cognitive Radio-assisted vehicular networks 
CR-BS CR base station 

CR-IoVs Cognitive Radio-enabled IoVs 
CRV-SU Cognitive Radio vehicular secondary user 

CS Cuckoo Search scheme 
CSI Channel state information 
DR Dependent Rounding-based scheme 

DSA Dynamic spectrum access 
FCC Federal Communication Commission 
FSA Fixed spectrum allocation 
GPS Global Positioning System 
IEEE Institute of Electrical and Electronics Engineers 
IoVs Internet of Vehicles 
JFI Jain’s Fairness Index 

KKT Karush–Kuhn–Tucker 
LTE Long-term evolution 

MAC Medium access control 
MOCS/D Multi-objective Optimization based on Decomposition scheme 
M-QAM Multi-level Quadrature Amplitude Modulation 

NBS Nash bargaining solution 
OBUs On-Board Units 
Ofcom UK Office of Communications 

OFDMA Orthogonal frequency division multiple access 
PAP Packet arrival process 
PAR Packet arrival rate 
PDP Power delay profile 
PHY Physical layers 

PNE-S Pure Nash Equilibrium Search scheme 
PU Primary user 
QoS Quality of service 

SCHs Service channels 
SINR Signal-to-interference-and-noise ratio 
SNB Symmetric Nash bargaining 

SNBS Symmetric Nash bargaining solution 
SNO-CRAVNET SNBS OFDMA-based overlay CR-Assisted Vehicular NETwork 

TV Television 
UMTS Universal mobile telecommunication system 

V2I Vehicle-to-roadside infrastructure 
V2V Vehicle-to-vehicle 
V2X Vehicle-to-pedestrian’s handheld devices and others 

VANET Vehicular ad-hoc network 
WAVEs Wireless Access in Vehicular Environments 

WG Working Group 
wrt With respect to 
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rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ
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௡ୀଵ < 0, ∀𝑛.  

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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all the dynamically available orthogonal channels is maintained below the total transmit power 𝒫்௢௧. 
available at CR-BS, as defined in Equation (15). Lastly, as illustrated in Equations (17) and (19), 
transmit power constraints for each ℝ CRV-SU and PU are guaranteed by constraints presented in 
Equations (33) and (34), respectively. 

Proposition 1. In the above stated optimal joint subcarrier and transmit power allocation strategies, the 
problem defined in Equation (28) and in the constraints presented in Equations (29)–(34) is a convex 
optimization problem. 

Proof. Proposition 1’s Proof is shown in Appendix A. □ 

With regard to Proposition 1, it is established that the problem defined in Equation (28) and in 
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore, 
there exists a unique optimal solution that can be achieved within the polynomial time [25]. 
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Proof. Appendix A presents the Proof of Proposition 2. □ 

Proposition 2 certifies that the transformation of the objective in Equation (20), as well as in 
Equation (21) to Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ in Equation (28), can be achieved by exploiting the firmly increasing 
property of the logarithm function. 

Proposition 3. The utility function Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ proposed in Equation (28) is Nash bargaining theorem 
compliant and, at the same time, satisfies the proportional fairness metric. 

Proof. Appendix A presents the Proof of Proposition 3. □ 

In our case, Proposition 3 shows that, for the data-rate allocation, a unique Nash bargaining 
equilibrium can be obtained. Likewise, as a special case of the NBS fairness [29], proportional fairness 
can be achieved when 𝔘௡଴ = 0, ∀𝑛. 

4. Optimal Resource Scheduling Strategies 

The convex optimization problem’s optimal solution, which is presented in Equation (28) and in 
the constraints expressed in Equations (29)–(34), is derived in this section. Additionally, a simple and 
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information is transferred over all the available subcarriers. Secondly, based on the study carried out 
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Theorem 2. The SNO-CRAVNET optimal time-sharing subcarrier scheduling strategy is given as ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, and the individual matrix elements are expressed as ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), (35) 

where ₼௠∗ = ɸିଵ(1), ∀𝑚. 

Proof. Appendix B presents the Proof of Theorem 2. □ 
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Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
that is, ℛ = ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ rewritten as Ʈ(ℛ) =∏ ൛ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ − 𝔘௡଴ ൟℝ௡ୀଵ , where ሾ∙ሿℋ  represents the vector transpose. In Equation (28), the 
disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
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rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡, 𝒫෨௠௡, 𝓀,  ₼௡, 𝒻 𝒷௡൯ == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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transmit power constraints for each ℝ CRV-SU and PU are guaranteed by constraints presented in 
Equations (33) and (34), respectively. 

Proposition 1. In the above stated optimal joint subcarrier and transmit power allocation strategies, the 
problem defined in Equation (28) and in the constraints presented in Equations (29)–(34) is a convex 
optimization problem. 

Proof. Proposition 1’s Proof is shown in Appendix A. □ 

With regard to Proposition 1, it is established that the problem defined in Equation (28) and in 
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore, 
there exists a unique optimal solution that can be achieved within the polynomial time [25]. 

Proposition 2. Let us assume that 𝒫෨௠௡ > 0. Then, Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, as shown in Equation (28), can stringently 
increase for all 𝕔෤௠௡, thereby satisfying 𝕔෤௠௡ℛ௠௡൫𝕔෤௠௡, 𝒫෨௠௡൯ > 𝔘௡଴ . 

Proof. Appendix A presents the Proof of Proposition 2. □ 

Proposition 2 certifies that the transformation of the objective in Equation (20), as well as in 
Equation (21) to Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ in Equation (28), can be achieved by exploiting the firmly increasing 
property of the logarithm function. 

Proposition 3. The utility function Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ proposed in Equation (28) is Nash bargaining theorem 
compliant and, at the same time, satisfies the proportional fairness metric. 

Proof. Appendix A presents the Proof of Proposition 3. □ 

In our case, Proposition 3 shows that, for the data-rate allocation, a unique Nash bargaining 
equilibrium can be obtained. Likewise, as a special case of the NBS fairness [29], proportional fairness 
can be achieved when 𝔘௡଴ = 0, ∀𝑛. 

4. Optimal Resource Scheduling Strategies 

The convex optimization problem’s optimal solution, which is presented in Equation (28) and in 
the constraints expressed in Equations (29)–(34), is derived in this section. Additionally, a simple and 
efficient strategy, which supports an iteration-independent joint transmit power and subcarrier 
scheduling, is proposed. The optimal subcarrier allocation 𝕔෤௠௡  with a consideration of the time-
sharing approach is a real number implying the fraction of time which subcarrier 𝑚 requires for the 
transmission of a given amount of information. Firstly, uniform transmit power scheduling, that is, 𝒫෨௠௡ = 𝒫்௢௧. (𝒩𝒞 ∙ 𝐵)⁄ , is performed for all the available subcarriers. Then, an equal amount of 
information is transferred over all the available subcarriers. Secondly, based on the study carried out 
by Hahne [29], the optimal time-sharing subcarrier scheduling strategy is obtained. 

Theorem 2. The SNO-CRAVNET optimal time-sharing subcarrier scheduling strategy is given as ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, and the individual matrix elements are expressed as ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), (35) 

where ₼௠∗ = ɸିଵ(1), ∀𝑚. 

Proof. Appendix B presents the Proof of Theorem 2. □ 
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Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
that is, ℛ = ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ rewritten as Ʈ(ℛ) =∏ ൛ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ − 𝔘௡଴ ൟℝ௡ୀଵ , where ሾ∙ሿℋ  represents the vector transpose. In Equation (28), the 
disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
minimized to Ʈ(ℛ) = ∏ ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ℝ௡ୀଵ . The objective function with regards to Proposition 2 can 
be expressed as lnሼƮ(ℛ)ሽ . Therefore, if 𝕔෤௠௡ , ℛ =ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ, and 𝒫෨௠௡ are the optimal channel, achievable data-
rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗

ℝ
௡ୀଵ (ℛ௡ − ℛ௡∗ ) = ෍ ℛ௡ − ℛ௡∗ℛ௡∗
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡, 𝒫෨௠௡, 𝓀, ₼௡, 𝒻௡, 𝒷௡൯ == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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⎪⎫ℝ
௡ୀଵ < 0, ∀𝑛.  

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 

n)=(
∼

C
∗

mn,
∼

P

∗

mn,

Sensors 2020, 20, x FOR PEER REVIEW 13 of 27 

all the dynamically available orthogonal channels is maintained below the total transmit power 𝒫்௢௧. 
available at CR-BS, as defined in Equation (15). Lastly, as illustrated in Equations (17) and (19), 
transmit power constraints for each ℝ CRV-SU and PU are guaranteed by constraints presented in 
Equations (33) and (34), respectively. 

Proposition 1. In the above stated optimal joint subcarrier and transmit power allocation strategies, the 
problem defined in Equation (28) and in the constraints presented in Equations (29)–(34) is a convex 
optimization problem. 

Proof. Proposition 1’s Proof is shown in Appendix A. □ 

With regard to Proposition 1, it is established that the problem defined in Equation (28) and in 
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore, 
there exists a unique optimal solution that can be achieved within the polynomial time [25]. 

Proposition 2. Let us assume that 𝒫෨௠௡ > 0. Then, Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, as shown in Equation (28), can stringently 
increase for all 𝕔෤௠௡, thereby satisfying 𝕔෤௠௡ℛ௠௡൫𝕔෤௠௡, 𝒫෨௠௡൯ > 𝔘௡଴ . 

Proof. Appendix A presents the Proof of Proposition 2. □ 

Proposition 2 certifies that the transformation of the objective in Equation (20), as well as in 
Equation (21) to Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ in Equation (28), can be achieved by exploiting the firmly increasing 
property of the logarithm function. 

Proposition 3. The utility function Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ proposed in Equation (28) is Nash bargaining theorem 
compliant and, at the same time, satisfies the proportional fairness metric. 

Proof. Appendix A presents the Proof of Proposition 3. □ 

In our case, Proposition 3 shows that, for the data-rate allocation, a unique Nash bargaining 
equilibrium can be obtained. Likewise, as a special case of the NBS fairness [29], proportional fairness 
can be achieved when 𝔘௡଴ = 0, ∀𝑛. 

4. Optimal Resource Scheduling Strategies 

The convex optimization problem’s optimal solution, which is presented in Equation (28) and in 
the constraints expressed in Equations (29)–(34), is derived in this section. Additionally, a simple and 
efficient strategy, which supports an iteration-independent joint transmit power and subcarrier 
scheduling, is proposed. The optimal subcarrier allocation 𝕔෤௠௡  with a consideration of the time-
sharing approach is a real number implying the fraction of time which subcarrier 𝑚 requires for the 
transmission of a given amount of information. Firstly, uniform transmit power scheduling, that is, 𝒫෨௠௡ = 𝒫்௢௧. (𝒩𝒞 ∙ 𝐵)⁄ , is performed for all the available subcarriers. Then, an equal amount of 
information is transferred over all the available subcarriers. Secondly, based on the study carried out 
by Hahne [29], the optimal time-sharing subcarrier scheduling strategy is obtained. 

Theorem 2. The SNO-CRAVNET optimal time-sharing subcarrier scheduling strategy is given as ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, and the individual matrix elements are expressed as ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), (35) 

where ₼௠∗ = ɸିଵ(1), ∀𝑚. 

Proof. Appendix B presents the Proof of Theorem 2. □ 

∗

n,

Sensors 2020, 20, x FOR PEER REVIEW 23 of 27 

Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
that is, ℛ = ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ rewritten as Ʈ(ℛ) =∏ ൛ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ − 𝔘௡଴ ൟℝ௡ୀଵ , where ሾ∙ሿℋ  represents the vector transpose. In Equation (28), the 
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rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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ℝ

௡ୀଵ = ෍ ⎩⎪⎨
⎪⎧ 1ቆ𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯𝜕ℂ෨௠௡∗ ቇ⎭⎪⎬

⎪⎫ℝ
௡ୀଵ < 0, ∀𝑛. 

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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property of the logarithm function. 
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sharing approach is a real number implying the fraction of time which subcarrier 𝑚 requires for the 
transmission of a given amount of information. Firstly, uniform transmit power scheduling, that is, 𝒫෨௠௡ = 𝒫்௢௧. (𝒩𝒞 ∙ 𝐵)⁄ , is performed for all the available subcarriers. Then, an equal amount of 
information is transferred over all the available subcarriers. Secondly, based on the study carried out 
by Hahne [29], the optimal time-sharing subcarrier scheduling strategy is obtained. 

Theorem 2. The SNO-CRAVNET optimal time-sharing subcarrier scheduling strategy is given as ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, and the individual matrix elements are expressed as ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), (35) 

where ₼௠∗ = ɸିଵ(1), ∀𝑚. 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ
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௡ୀଵ < 0, ∀𝑛.  

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
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condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ
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௡ୀଵ < 0, ∀𝑛. 

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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all the dynamically available orthogonal channels is maintained below the total transmit power 𝒫்௢௧. 
available at CR-BS, as defined in Equation (15). Lastly, as illustrated in Equations (17) and (19), 
transmit power constraints for each ℝ CRV-SU and PU are guaranteed by constraints presented in 
Equations (33) and (34), respectively. 

Proposition 1. In the above stated optimal joint subcarrier and transmit power allocation strategies, the 
problem defined in Equation (28) and in the constraints presented in Equations (29)–(34) is a convex 
optimization problem. 

Proof. Proposition 1’s Proof is shown in Appendix A. □ 

With regard to Proposition 1, it is established that the problem defined in Equation (28) and in 
the constraints presented in Equations (29)–(34) is clearly convex over a given convex set. Therefore, 
there exists a unique optimal solution that can be achieved within the polynomial time [25]. 

Proposition 2. Let us assume that 𝒫෨௠௡ > 0. Then, Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, as shown in Equation (28), can stringently 
increase for all 𝕔෤௠௡, thereby satisfying 𝕔෤௠௡ℛ௠௡൫𝕔෤௠௡, 𝒫෨௠௡൯ > 𝔘௡଴ . 

Proof. Appendix A presents the Proof of Proposition 2. □ 

Proposition 2 certifies that the transformation of the objective in Equation (20), as well as in 
Equation (21) to Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ in Equation (28), can be achieved by exploiting the firmly increasing 
property of the logarithm function. 

Proposition 3. The utility function Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯ proposed in Equation (28) is Nash bargaining theorem 
compliant and, at the same time, satisfies the proportional fairness metric. 

Proof. Appendix A presents the Proof of Proposition 3. □ 

In our case, Proposition 3 shows that, for the data-rate allocation, a unique Nash bargaining 
equilibrium can be obtained. Likewise, as a special case of the NBS fairness [29], proportional fairness 
can be achieved when 𝔘௡଴ = 0, ∀𝑛. 

4. Optimal Resource Scheduling Strategies 

The convex optimization problem’s optimal solution, which is presented in Equation (28) and in 
the constraints expressed in Equations (29)–(34), is derived in this section. Additionally, a simple and 
efficient strategy, which supports an iteration-independent joint transmit power and subcarrier 
scheduling, is proposed. The optimal subcarrier allocation 𝕔෤௠௡  with a consideration of the time-
sharing approach is a real number implying the fraction of time which subcarrier 𝑚 requires for the 
transmission of a given amount of information. Firstly, uniform transmit power scheduling, that is, 𝒫෨௠௡ = 𝒫்௢௧. (𝒩𝒞 ∙ 𝐵)⁄ , is performed for all the available subcarriers. Then, an equal amount of 
information is transferred over all the available subcarriers. Secondly, based on the study carried out 
by Hahne [29], the optimal time-sharing subcarrier scheduling strategy is obtained. 

Theorem 2. The SNO-CRAVNET optimal time-sharing subcarrier scheduling strategy is given as ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, and the individual matrix elements are expressed as ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), (35) 

where ₼௠∗ = ɸିଵ(1), ∀𝑚. 

Proof. Appendix B presents the Proof of Theorem 2. □ 
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Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
that is, ℛ = ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ rewritten as Ʈ(ℛ) =∏ ൛ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ − 𝔘௡଴ ൟℝ௡ୀଵ , where ሾ∙ሿℋ  represents the vector transpose. In Equation (28), the 
disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
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rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗
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௡ୀଵ ≤ 0. (A2) 

In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡, 𝒫෨௠௡, 𝓀, ₼௡, 𝒻௡, 𝒷௡൯ == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
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that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
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Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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be expressed as lnሼƮ(ℛ)ሽ . Therefore, if 𝕔෤௠௡ , ℛ =ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ, and 𝒫෨௠௡ are the optimal channel, achievable data-
rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗

ℝ
௡ୀଵ (ℛ௡ − ℛ௡∗ ) = ෍ ℛ௡ − ℛ௡∗ℛ௡∗
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௡ୀଵ ≤ 0. (A2) 

In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡,  𝒫෨௠௡, 𝓀,  ₼௡,  𝒻 𝒷൯  == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ
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⎪⎧ 1ቆ𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯𝜕ℂ෨௠௡∗ ቇ⎭⎪⎬
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௡ୀଵ < 0, ∀𝑛. 

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
that is, ℛ = ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ rewritten as Ʈ(ℛ) =∏ ൛ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ − 𝔘௡଴ ൟℝ௡ୀଵ , where ሾ∙ሿℋ  represents the vector transpose. In Equation (28), the 
disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
minimized to Ʈ(ℛ) = ∏ ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ℝ௡ୀଵ . The objective function with regards to Proposition 2 can 
be expressed as lnሼƮ(ℛ)ሽ . Therefore, if 𝕔෤௠௡ , ℛ =ൣℛଵ൫𝕔෤௠ଵ, 𝒫෨௠ଵ൯, ℛଶ൫𝕔෤௠ଶ, 𝒫෨௠ଶ൯, ⋯ , ℛℝ൫𝕔෤௠ℝ, 𝒫෨௠ℝ൯൧ℋ, and 𝒫෨௠௡ are the optimal channel, achievable data-
rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗

ℝ
௡ୀଵ (ℛ௡ − ℛ௡∗ ) = ෍ ℛ௡ − ℛ௡∗ℛ௡∗

ℝ
௡ୀଵ ≤ 0. (A2) 

In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡, 𝒫෨௠௡, 𝓀, ₼௡, 𝒻௡, 𝒷௡൯ == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞
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Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛  

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
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௡ୀଵ < 0, ∀𝑛.  

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 
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Proof of Proposition 3. The utility function can be expressed with regards to the data-rate vector, 
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disagreement points of Ʈ൫𝕔෤௠௡, 𝒫෨௠௡൯, for equilibrium analysis, are set to 𝔘௡଴ = 0. Therefore, Ʈ(ℛ) is 
minimized to Ʈ(ℛ) = ∏ ℛ௡൫𝕔෤௠௡, 𝒫෨௠௡൯ℝ௡ୀଵ . The objective function with regards to Proposition 2 can 
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rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗
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In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
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Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ

௡ୀଵ = ෍ ⎩⎪⎨
⎪⎧ 1ቆ𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯𝜕ℂ෨௠௡∗ ቇ⎭⎪⎬

⎪⎫ℝ
௡ୀଵ < 0, ∀𝑛. 

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 

∗
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rate, and transmit power allocation, respectively, then it follows that, at ℛ = ℛ∗ , the following 
condition stands: ෍ 𝜕 lnሼƮ(ℛ)ሽ𝜕ℛ௡ ⃒ℛ೙ିℛ೙∗

ℝ
௡ୀଵ (ℛ௡ − ℛ௡∗ ) = ෍ ℛ௡ − ℛ௡∗ℛ௡∗

ℝ
௡ୀଵ ≤ 0. (A2) 

In Equation (A2), the condition ensures proportional fairness [34], since the objective function 
cannot be improved by each movement in the line of ℛ − ℛ∗ at the optimal data-rate vector ℛ∗. 
Therefore, proportionally fair resource allocation is guaranteed by the optimal solution. Proof of 
Proposition 3 is completed. □ ℓ෨൫𝕔෤௠௡,  𝒫෨௠௡, 𝓀,  ₼௡,  𝒻 𝒷൯  == ቐ෍ ln ቐ ෍ ቆ𝕔෤௠௡ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡|𝑎௠௡|ଶφ𝕔෤௠௡ ቇቇ − 𝔘௡଴𝒩𝒞

௠ୀଵ ቑℝ
௡ୀଵ− 𝓀 ቌ෍ ෍ 𝒫෨௠௡ − 𝒫்௢௧𝒩𝒞

௠ୀଵ
ℝ

௡ୀଵ ቍ − ෍ ₼௡ ൭෍ 𝕔෤௠௡ − 1ℝ
௡ୀଵ ൱𝒩𝒞

௠ୀଵ+ 𝒻௡ ቌ ෍ 𝒫෨௠௡|𝑎௠௡|ଶ −𝒩𝒞
௠ୀଵ Ᵽ௡௠௜௡ቍ + 𝒷௡ ቌⱣ௡௠௔௫ − ෍ 𝒫෨௠௡𝒩𝒞

௠ୀଵ ቍቑ 

(A3) 

Appendix B 

Proofs of Theorems 2, 3, 4, and 5 

The convex optimization problem’s Lagrangian function ℓ෨ as expressed in Equations (28)–(34) 
is defined as shown in Equation (A3) above, where 𝓀 ≥ 0, ₼௡ ≥ 0, 𝒻௡ ≥ 0, and 𝒷௡ ≥ 0 denote the 
four constraints’ (i.e., Equation (30) and (32)–(34)) Lagrangian multipliers, respectively. By applying 
the Karush–Kuhn–Tucker (KKT) conditions according to [35], the optimal subcarrier allocation index ℂ෨௠௡∗  is obtained through the differentiation of ℓ෨ over 𝕔෤௠௡ in Equation (A3) above, so that, డℓ෨డ𝕔෤೘೙ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0 ⇒ ƛ௠௡൫ℂ෨௠௡∗ ൯ = ₼௠∗ , ∀m, 𝑛

Through the differentiation of ƛ௠௡൫ℂ෨௠௡∗ ൯ wrt ℂ෨௠௡∗ , it is shown that 𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯ 𝜕ℂ෨௠௡∗ < 0⁄ , ∀ ℂ෨௠௡௠௜௡ < ℂ෨௠௡∗ . This further shows that ƛ௠௡൫ℂ෨௠௡∗ ൯ is strictly non-increasing, while its inverse function, 
that is, ƛ௠௡ିଵ ൫ℂ෨௠௡∗ ൯, exists for ℂ෨௠௡∗ > 0. Furthermore, by differentiating Equation (A3) wrt ₼௠∗  yields ∑ ℂ෨௠௡∗ − 1 = 0ℝ௡ୀଵ . Note that ƛ௠௡ିଵ (₼௠∗ ) = ℂ෨௠௡∗  and ∑ ℂ෨௠௡∗ = 1ℝ௡ୀଵ  result in ∑ ƛ௠௡ିଵ (₼௠∗ ) = 1ℝ௡ୀଵ , ∀𝑛. 

Proposition A1. Let ɸ(₼௠∗ ) = ∑ ƛ௠௡ିଵ (₼௠∗ )ℝ௡ୀଵ . Then, there exists an inverse function for ɸ(₼௠∗ ). 

Proof. Recall that ∂ƛ୫୬൫ℂ෨୫୬∗ ൯ ∂ℂ෨୫୬∗ < 0⁄ . Then, it follows that 𝜕ɸ(₼௠∗ )𝜕₼௠∗ = ෍ 𝜕ƛ௠௡ିଵ (₼௠∗ )𝜕₼௠∗
ℝ

௡ୀଵ = ෍ ⎩⎪⎨
⎪⎧ 1ቆ𝜕ƛ௠௡൫ℂ෨௠௡∗ ൯𝜕ℂ෨௠௡∗ ቇ⎭⎪⎬

⎪⎫ℝ
௡ୀଵ < 0, ∀𝑛. 

Therefore, ɸ(₼௠∗ )  is an entirely strictly non-increasing function. Proof of Proposition 4 is 
completed. The optimum Lagrangian multiplier, ₼௠∗ , is obtained from Proposition 4, which is given 
in Equation (A4) below: ₼௠∗ = ɸିଵ(1), ∀𝑛. (A4) 

∗

n
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 

mn = 2
{

U0
n

∼

C
∗

mn(B/NC)
}

,
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The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 
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constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
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where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 

mn ≥ 1. (A9)

Therefore, Equation (A6) can be further simplified as shown below:

∼

C
∗

mn
B
NC

log2

(
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 

mn
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
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Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 
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where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 

mn)
}

. (A12)

By applying the properties of the Lambert-
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 

function [38,39], Equation (A12) yields
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 

= e{
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 

mn)
)

))}, (A13)

where
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 

(·) represents the Lambert-
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 

function. Then, substituting
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 

with
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 

mn
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 
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Therefore, the globally optimum solution of ℂ෨௠௡∗  is obtained from Equation (A4) via the 
expression ℂ෨௠௡∗ = ƛ௠௡ିଵ (₼௠∗ ), ∀𝑚, 𝑛. (A5) 

The Proof of Theorem 2 is completed. □ 

Applying the KKT conditions and differentiating ℓ෨ wrt 𝒫෨௠௡ in Equation (A3) yields 𝒫෨௠௡∗  (i.e., 
the optimal transmit power allocation index). Therefore, 𝜕ℓ෨𝜕𝒫෨௠௡ ⃒൫𝕔෤೘೙,𝒫෨೘೙,₼೙,𝓀,𝒻೙,𝒷೙൯ୀ൫ℂ෨೘೙∗ ,𝒫෨೘೙∗ ,₼೙∗ ,𝓀∗,𝒻೙∗ ,𝒷೙∗ ൯ = 0⇒ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇ ቊቆℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ቆ1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ ቇቇ − 𝔘௡଴ ቋ= 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗). (A6) 

Equation (A6) is noted as a transcendental algebraic equation wrt the optimal transmit power 
allocation index 𝒫෨௠௡∗ . This type of equation is usually solved by related studies through recursive 
numerical methods. However, recursive numerical methods are known to be computationally 
intensive [36,37]. Hence, an analytical solution of 𝒫෨௠௡∗  is provided in Equation (A6) ,  as shown 
below. Let ᶀ௠௡ = 1 + 𝒫෨௠௡∗ |𝑎௠௡|ଶφℂ෨௠௡∗ , (A7) 𝔛௠௡ = 𝐵|𝑎௠௡|ଶφ𝒩𝒞 ln 2(𝓀∗ − 𝒻௡∗|𝑎௠௡|ଶ + 𝒷௡∗), (A8) 

and Þ௠௡ = 2ቊ 𝔘೙బℂ෨೘೙∗ (஻ 𝒩𝒞⁄ )ቋ, Þ௠௡ ≥ 1. (A9) 

Therefore, Equation (A6) can be further simplified as shown below: ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰ᶀ೘೙ = 𝔛௠௡. (A10) 

Proof. Both sides of Equation (A10) multiplied by ଵÞ೘೙ yields 

ℂ෨௠௡∗ 𝐵𝒩𝒞 logଶ ൬ᶀ௠௡Þ௠௡൰൬ᶀ೘೙Þ೘೙൰ = 𝔛௠௡Þ௠௡. (A11) 

Now, let ᵹ = ᶀ೘೙Þ೘೙. Then, Equation (A11) becomes ᵹᵹ = 2ቊ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (஻Þ೘೙)ቋ. (A12) 

By applying the properties of the Lambert-Ⱳ function [38,39], Equation (A12) yields 

ᵹ = 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ, (A13) 

where Ⱳ(∙) represents the Lambert-Ⱳ function. Then, substituting ᵹ with ᶀ೘೙Þ೘೙ in Equation (A13) 

gives 

ᶀ௠௡ = Þ௠௡ ∙ 𝑒ቐⱲቌ୪୬ቌଶቆ 𝒩𝒞𝔛೘೙ℂ෨೘೙∗ (ಳÞ೘೙)ቇቍቍቑ. (A14) 

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation 𝒫෨௠௡∗  of 
the proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is 
completed. □ 

Proof. The optimal transmit power allocation 𝒫෨௠௡∗  as contained in Equation (36) signifies the exact 
measure of the optimal transmit power on subcarrier 𝑚 of all the CRV-SU 𝑛. Therefore, if 𝒫෨௠௡ᇲ∗ <𝒫෨௠௡∗ , then the CRV-SU 𝑛 requires more transmit power 𝒫෨௠௡∗  compared to CRV-SU 𝑛ᇱ, so as to be 
able to transmit the same amount of message on subcarrier 𝑛 . Hence, the CRV-SU that will be 
selected is the one that requires the minimum transmit power. To achieve this, a linear search is 
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Based on Equation (35), the matrix ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ = ൣℂ෨௠௡∗ ൧, which illustrates the time-sharing 
scheduling of each subcarrier for all the ℝ CRV-SUs, is determined. Additionally, this further helps 
in determining the quality of each subcarrier, that is, based on Equation (35), if it is observed that ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗ , this indicates that even though both subcarriers were allocated an equal amount of 
transmit power, subcarrier 𝑚  requires less time than subcarrier 𝑚ᇱ  for the transfer of an equal 
amount of information by the same CRV-SU 𝑛. Therefore, subcarrier 𝑚 is in better conditions, i.e., 
has a higher quality in comparison to subcarrier 𝑚ᇱ. Furthermore, accounting for ℂ෨𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the 
optimal transmit power scheduling strategy is defined as shown here. 

Theorem 3. The SNO-CRAVNET optimal transmit power scheduling strategy is given by ℙ෩𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ൣ𝒫෨௠௡∗ ൧ and the individual matrix elements are given by 𝒫෨௠௡∗ = ℂ෨௠௡∗|𝑎௠௡|ଶφ ቐÞ௠௡ ∙ exp ቌ𝔴 ൭ln ൭2ቆ 𝔛೘೙∙𝒩𝒞஻∙ℂ෨೘೙∗ ∙Þ೘೙ቇ൱൱ቍ − 1ቑା, (36) 

where 𝔴(∙) represents the Lambert 𝔴-function. The definitions of both Þ௠௡  and 𝔛௠௡  are contained in 
Appendix B, and the symbol (𝑧)ା represents 𝑚𝑎𝑥 (0, 𝑧). 

Proof. Appendix B presents the Proof of Theorem 3. □ 

The optimal transmit power scheduling for CRV-SU 𝑛 on every subcarrier 𝑚 is obtained from 
Theorem 3. In other words, the optimal transmit power that subcarrier 𝑚 requires to be able to 
transmit a given amount of information based on the licensed PU’s protection parameters, the 
associated subcarrier’s conditions, and the characteristics of CRV-SU 𝑛 is denoted by 𝒫෨௠௡∗ . 

Consequently, through a linear search of the 𝒩𝒞 subcarriers, efficient resource scheduling can 
be performed, for instance, for 𝑚 = 1 to 𝒩𝒞 , find the optimal CRV-SU 𝑛∗ = arg min ℂ෨௠௡∗ . Then, 
allocate the corresponding transmit power as defined in Equation (36) to all the selected CRV-SUs 𝑛∗ s. Despite the fact that the procedure derives ℂ෨௠௡∗ s accounting for the subcarrier scheduling 
constraints presented in Equations (29) and (30) under the symmetric NBS’s rule, the procedure 
indirectly considers the transmit power constraints presented in Equations (31)–(34). Then, with high 
QoS heterogeneity amongst the ℝ CRV-SUs (i.e., concerning the subcarrier’s stringent QoS 
requirements and interference conditions), ℂ෨௠௡∗ < ℂ෨௠ᇲ௡∗  does not necessarily indicate that 𝒫෨௠௡∗ <𝒫෨௠ᇲ௡∗ , and vice versa, which leads to transmit power inefficiency. Therefore, to overcome this, the 
following optimal transmit power scheduling method is introduced, in order to increase the transmit 
power efficiency. 

Theorem 4. The SNO-CRAVNET optimal transmit power scheduling strategy is given as ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾ𝒫௠௡∗ ሿ , where the corresponding matrix elements are determined via searching amongst the dynamically 
available 𝒩𝒞 subcarriers. For 𝑚 = 1 to 𝒩𝒞, 𝑛∗ = arg min 𝒫෨௠௡∗ , 𝒫௠௡∗ = ൜𝒫෨௠௡∗ , if 𝑛 = 𝑛∗0, otherwise  (37) 

where 𝑛∗ represents the optimal CRV-SU. 

Proof. Appendix B presents the Proof of Theorem 4. □ 

Using Equation (37), matrix ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧  is obtained, which indicates that the optimal 
transmit power is allocated to the optimal CRV-SU 𝑛∗  on subcarrier 𝑚 . Therefore, the optimal 
transmit power of each CRV-SU can be determined through 𝒫௡∗ = ∑ 𝒫௠௡∗𝒩𝒞௠ୀଵ , ∀𝑛 . Likewise, 
accounting for ℙ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧, the optimal subcarrier allocation can be defined as shown here. 

Theorem 5. The SNO-CRAVNET optimal subcarrier allocation strategy is given by ℂ𝒩𝒞×ℝ∗ ൣ𝕆𝒩𝒞×ℝ൧ =ሾℂ௠௡∗ ሿ, where the individual matrix elements are determined by 

mn)
)

))}. (A14)



Sensors 2020, 20, 6402 26 of 28

Therefore, by relating Equations (A7) and (A14), the optimal transmit power allocation
∼

P

∗

mn of the
proposed novel SNO-CRAVNET is determined to in Equation (36). Proof of Theorem 3 is completed. �

Proof. The optimal transmit power allocation
∼

P

∗

mn as contained in Equation (36) signifies the exact

measure of the optimal transmit power on subcarrier m of all the CRV-SU n. Therefore, if
∼

P

∗

mn′ <
∼

P

∗

mn,

then the CRV-SU n requires more transmit power
∼

P

∗

mn compared to CRV-SU n′, so as to be able to
transmit the same amount of message on subcarrier n. Hence, the CRV-SU that will be selected is
the one that requires the minimum transmit power. To achieve this, a linear search is performed
amongst the dynamically available NC subcarriers of the optimum CRV-SU n∗, which is given by

n∗ = arg min
∼

P

∗

mn. Proof of Theorem 4 is completed. �

Proof. Furthermore, based on Equation (37), the binary representation of Equation (35) gives the
proposed novel SNO-CRAVNET optimal subcarrier scheduling strategy C∗

NC×R

[
ONC×R

]
= [C∗mn];

for instance, C∗mn = 0 when n , n∗, and C∗mn = 1 when n = n∗. Proof of Theorem 5 is completed. �
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