
sensors

Article

Measurement-Device-Independent Two-Party
Cryptography with Error Estimation

Zishuai Zhou 1,†, Qisheng Guang 1,†, Chaohui Gao 1, Dong Jiang 1,2 and Lijun Chen 1,*
1 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China;

mf1833107@smail.nju.edu.cn (Z.Z.); mg1733016@smail.nju.edu.cn (Q.G.);
dz1833008@smail.nju.edu.cn (C.G.); jiangd@nju.edu.cn (D.J.)

2 School of Internet, Anhui University, Hefei 230039, China
* Correspondence: chenlj@nju.edu.cn
† These authors contributed equally to this work.

Received: 26 September 2020; Accepted: 4 November 2020; Published: 7 November 2020 ����������
�������

Abstract: We present an innovative method for quantum two-party cryptography. Our protocol
introduces joint measurement and error estimation to improve the security of two-party cryptographic
protocols. Our protocol removes the assumption of the attacker’s limited power and catches the
attacking actions through highly estimated bit error rate. Our protocol is formally proved to be secure
against both eavesdroppers and dishonest communication parties. We also utilize our designed
protocol to construct two specific two-party cryptographic applications: Quantum bit commitment
and quantum password identification.
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1. Introduction

Two-party cryptographic protocol is a significant branch of modern cryptography. It can realize
communication between mutually distrustful parties [1–3]. However, the advent of a quantum
computer will pose a huge threat to cryptographic protocols that originally rely on computational
complexity. Fortunately, Bennett and Brassard proposed the first quantum cryptographic protocol in
1984, known as BB84 quantum key distribution (QKD) protocol [1]. BB84 protocol allows two mutually
trusted parties to generate identical secret keys for encryption. Quantum cryptography, laying its
foundation on quantum mechanics, can provide unconditional security in the communication process.
Therefore, studies over quantum cryptography have aroused worldwide attention.

While QKD has gained extensive concern nowadays, researchers also consider introducing
quantum technology into two-party cryptographic protocols. However, Lo and Mayers independently
demonstrated that unconditionally secure two-party cryptographic protocol does not exist without
restricting the attacker’s ability [4–7]. Therefore, a perfect two-party cryptographic protocol is more
difficult to be realized than key distribution. Even so, several solutions were proposed to seek more
secure quantum two-party cryptographic schemes, among which there are mainly three types. The first
solution introduces the relativity theory to restrain attacker’s behavior [3,8–10]. The second solution
weakens the demand for security. In other words, it gives up the pursuit of perfect security and allows
the attacker’s behavior to succeed with negligible probability. The most representative example is
the cheat-sensitive quantum bit commitment (CSQBC) protocol [11–14]. The third solution is limiting
the attacker’s power to current technologies. For example, in 2005, Damgård demonstrated secure
two-party cryptography under the assumption that the attacker’s capability of storing quantum states
was limited. In this so-called bounded storage model [15,16], the attacker is equipped with perfect
quantum storage, but the storage capacity is limited because of unaffordable cost. Later, Schaffner
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extended the model to the noisy storage model [2,17], where the attacker possesses quantum storage
with unlimited capacity, but the noise increases over time.

Although Konig manifested secure two-party cryptographic protocols are feasible under noisy
bounded model [2,17], we are still interested in designing two-party cryptographic protocols when
the attacker possesses perfect quantum storage inspired by He’s work [18]. We have discovered that
two-party cryptographic protocols, like bit commitment, oblivious transfer, in Ref. [2,11,17] do not
have the process of error estimation, which serves as a significant indicator of eavesdropping attack
in QKD. The reasons are obvious: For one thing, the communication parties do not trust each other
and for another, the information is asymmetric between parties during the communication process.

Inspired by the foundations of measurement-device-independent QKD (MDI-QKD) [19–21] and
phase-matching QKD (PM-QKD) [22,23], we make it possible to introduce error estimation into
two-party cryptographic protocols. In the QKD process, once there is an eavesdropper, the final
key error rate will exceed the upper limit. Therefore, in encrypted communication between the two
parties, if one party is dishonest, the information they previously negotiated will also have a higher
error rate, which is difficult in avoiding detection by another party. In MDI-QKD, the measurement
stage is independent of the final key. This de-emphasizes the assumptions for the attacker’s quantum
memory and enables us to discover the attacker by the increased quantum bit error rate during the
estimation process.

In this paper, we introduce joint measurement method in MDI-QKD and PM-QKD, and error
estimation into two-party cryptographic protocols, and raise our improved weak string erasure (WSE)
protocol and 1-2 random oblivious transfer (ROT) protocol. These two protocols are significant for
other TPC (two-party cryptographic protocols) applications. Compared with existing WSE and 1-2 ROT
protocol, our protocol does not make any assumption on the attacker’s devices. Instead, we restrict
the attacking behavior by the protocol itself, which offers greater security. In our protocol, the honest
party does not need quantum storage devices and the devices are compatible with mainstream
QKD platforms.

The paper is organized as follows. Section 2 introduces the foundations of our research. Section 3,
and Section 4 discuss our proposed WSE and 1-2 ROT respectively, and demonstrate their security.
In Section 5, we probe into applications of two-party cryptographic protocols and propose two
important practices, quantum bit commitment and password-based identification. Finally, the paper
ends with a conclusion.

2. Preliminaries

This section will introduce several fundamental concepts to our research, including entropy
qualities, joint measurement, error estimation, and privacy amplification.

This paper follows the notations in Ref. [2], using [n] := {1, 2, ..., n} for the set of nature
number, and 2[n] := {S|S ⊆ [n]} is the set of all possible subsets of [n].

2.1. Entropy Qualities

Here, we present some crucial entropy qualities for our security proof. Bulleted lists look like this:

Definition 1 (Shannon entropy). P(X) is the probability distribution function of a random variable X.
The entropy H(X) is defined as:

H(X) = −∑
X

P(x)log2P(x).

As same as Ref. [2,19], we define guessing probability:

pguess(X|E) = max
Mx

∑
x

PX(x)Tr(Mxρx
E),
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where pguess(X|E) is the probability of guessing X when given register E, and its maximization is over
all positive operate-valued measurements (POVMs) {Mx} acting on register E. Then we can easily get
that the conditional min-entropy of X given E is:

Hmin(X|E) = −log2pguess(X|E),

and also the definition of conditional smooth min-entropy is:

Hmin
ε(X|Y) = max

E
Hmin(XE|Y),

where for any event E , we have:

pguess(XE|Y) = ∑
y

PY(y)max
x

PXE|Y(x|y).

Next, we discuss min-entropy-splitting lemma used in Ref. [2,17] for the security proof of 1-2 ROT
and WSE protocol.

Lemma 1 (Entropy splitting [2,17]). Let ε ≥ 0, and X1, X2, . . . , Xm and Z are random variables subjected
to Hε

min(XiXj|Z) ≥ α (i 6= j). There exists a random variable V ⊆ {1, . . . , m} such that for any independent
random variable W ⊆ {1, . . . , m} with Hmin(W) ≥ 1,

H2mε
min(XW |VWZ, V 6= W) ≥ α

2
− log2(m)− 1.

Lemma 2 (Min-entropy splitting [2,17]). Let ε ≥ 0, and X0, X1, and Z are random variables subjected to
Hε

min ≥ α. Then there exists a random variable D ∈ {0, 1}, such that:

Hε
min(XD|DZ) ≥ α

2
− 1.

Finally, we introduce quantum uncertainty relation as the core of security proof for our
redesigned protocol.

Theorem 1 (Quantum uncertainty relation [24]). Suppose Q is an arbitrary fixed n-qubit state, and θ is a
random basis (θ ∈R {0, 1}), and X ∈R {0, 1}n is a random variable for the outcome of measuring Q in basis
θn, then it has δ > 0, and the conditional smooth min-entropy has a lower bound such that:

Hε
min(X|θn) ≥ (

1
2
− 2δ)n.

Here,

ε = 2exp

(
−

( δ
4 )

2

32(2 + log2
4
δ )

2

)
.

2.2. Joint Measurement

Joint measurement and phase-matching are widely used in QKD, and we introduce them to our
two-party cryptographic protocol. Next, we explain these two methods.

Prior to 2012, most quantum cryptographic protocols, including QKD and many two-party
cryptography protocols, used single-state measurement. The earliest application of joint measurement
to quantum protocols is introduced by Hoi-Kwong Lo [19]. In Ref. [19], he presented the idea of
MDI-QKD using joint measurement. The measurement method is shown in Figure 1.
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.
Figure 1. The basic setup of a measurement-device-independent QKD (MDI-QKD) protocol is in
Ref. [19]. Alice and Bob use three devices to prepare their photons, and the third party will make a
joint measurement and announce measurement output.

In Figure 1, Alice and Bob will prepare a single quantum state and send it to the third party,
Charlie. Charlie will measure those quantum states in Bell basis. The state |φ−〉 = 1√

2
(|HV〉 − |VH〉)

is joint by a click in D1H and D2V or D1V and D2H , and |φ+〉 = 1√
2
(|HV〉+ |VH〉) is joint by a click in

D1H and D1V or D2H and D2V . Therefore, Alice and Bob can get the raw key based on measurement
outcomes and prepared basis, which is shown in Table 1.

Table 1. Alice or Bob flip their key based on the outcomes of measurement and announced prepared
basis [19].

Alice & Bob Basis Relay Output |φ−〉 Relay Output |φ+〉
+ Bit flip Bit flip
× Bit flip No bit flip

Another joint measurement method uses phase coding, which is generally used in the continuous
variable QKD. The representative protocols are PM-QKD [22] and TF-QKD [23]. The measurement
method is shown in Figure 2. Phase-matching QKD uses coherent state to send information. We define
that δa = |

√
µaei(φa+πka)〉 and δb = |√µbei(φb+πkb)〉, where φa, φb ∈ {0, π

2 } are the basis phase chosen
by Alice and Bob.

Figure 2. Mesurement setup used in phase-matching QKD (PM-QKD).
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According to Mach–Zehnder interference, the detector D1 clicks when the phase difference of δa

and δb is an even multiple of π, and the detector D2 clicks when the phase difference of δa and δb is an
odd multiple of π. When a phase difference of δa and δb is not a multiple of π, a random click occurs.
Bob will flip his key when detector D2 click because only |ka − kb| = 1 will cause the phase difference
to be an odd multiple of π.

2.3. Error Estimation

Error estimation is one of the most important methods to ensure security in quantum
cryptographic protocols. However, so far, in the two-party quantum encryption protocol, no method
to improve the security of the protocol by error estimation has been seen. This is due to the asymmetry
of the information in the two-party encryption protocols and the coupling between the measurement
results and final key. We find that joint measurement reduces this coupling and try to introduce
the error estimation method into the two-party encryption protocol. In this paper, because of the
asymmetry of the information, we use the random sampling method for error estimation.

In QKD, the operation process of the random sampling method can be described as follows:
Among the raw key (k0, . . . , kl−1)A and (k0, . . . , kl−1)B owned by Alice and Bob, randomly extract
a certain percentage p of the key at the corresponding positions and publishing these bits through
the classical channel with trusted authentication. The inconsistency rate of the sampling key can be
regarded as the code error rate of the raw key (since the extracted key has been published, it cannot
be used in subsequent processing steps and needs to be discarded). In the two-party quantum
cryptographic protocol, due to the asymmetry of information (for example, in the ROT protocol,
after performing base matching, Bob does not discard the key that failed to match, but performs key
separation according to his chosen c), Alice will perform random sampling from all keys, and require
that the preparation base and key of the sampling part be made public, and then calculate the code
error rate.

Assume that the error rate of the raw key owned by Alice and Bob is e and the key length is l,
compared with the Alice’s key, Bob’s raw key has el errors. The amount of randomly extracted key bits
is pl and satisfies el < pl, that is, e < p. Assume that there are m bit errors in the extracted pl keys,
then consider that the error rate of the raw key is:

e′ =
m
pl

.

In this paper, in order to ensure the security of the two-party encryption protocol, we put the error
estimation process before the base matching. Thus, we can get:

e′ =
num(xi 6= yi|θBi = θAi )

num(θBi = θAi )
.

2.4. Privacy Amplification

Generally speaking, we will use two-universal hash function for privacy amplification.
The definition of two-universal hash function is as follows:

Definition 2 (Two-universal hash function). Let F be a cluster of functions f : {0, 1}n → {0, 1}l (l ≤ n).
If for all x 6= y ∈R {0, 1}n, we have:

Pr f∈RF [ f (x) = f (y)] ≤ 2−l .

Then we say that F is two-universal.
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Using two-universal hash function for privacy amplification, we also have privacy amplification
theorem [2].

Firstly, we know the security of a key is defined with respect to its L1-distance from a perfect key
which is uniformly distributed and independent of the adversary’s state. Then the L1-distance from
uniform of ρXQ given Q is :

d(ρXQ|Q) := ||ρXQ − ρU ⊗ ρQ||

where ρU is the fully mixed state .

Theorem 2 (Privacy amplification [25]). Given a set of two-universal hash functions F : {0, 1}n ⊗R →
{0, 1}l , and a hash function F ∈R F , let ρXQ be a classical-quantum state, then for any ε ≥ 0. we have:

d[F(X)|F, Q] ≤ 2−
1
2 [H

ε
min(X|Q)−l]−1 + ε.

3. Weak String Erasure

In order to better demonstrate the application of joint measurement and error estimation
technology in two-party cryptographic protocols, we first discuss its enhancement to the security
performance of weak string erasure (WSE), which was originally proposed by Konig [2], and studied
as the basic protocol of other two-party cryptographic protocols.

3.1. Definition

Before introducing our redesigned WSE protocol, we first introduce its definition. WSE is a basic
two-party cryptographic protocol between Alice and Bob that can be used to construct other two-party
cryptographic protocols, such as bit commitment, oblivious transfer, etc. The ideal functionality of
WSE is shown in Figure 3 [2].

Figure 3. The ideal functionality of weak string erasure (WSE).

The process of WSE can be seen as a black box, with no inputs from Alice and Bob. As outputs,
Alice gets a randomly chosen bits string Xn and Bob obtains a randomly chosen subset of indices
I ⊆ [n] and the bits XI ∈ {0, 1}|I|. Next, we denote A and B as honest Alice and Bob, and A′ and B′

as dishonest Alice and Bob. ρ represents the joint state generated in the actual protocol operation,
and σ represents the state generated in the ideal protocol operation.

The specific definition of WSE is as follows [2]:

Definition 3 (Weak string erasure [2]). A (n, λ, ε)-weak string erasure (WSE) scheme is a protocol between
Alice and Bob satisfying the following properties:

1. Correctness: If both parties are honest, then for any attack strategy of the third-party attacker, Alice always
gets a uniformly distributed string Xn ∈R {0, 1}nand Bob will get an index I ∈ [n] and XI ∈ {0, 1}|I|;

2. Security for Alice: If Alice is honest, then for any attack strategy of dishonest Bob, we have:

1
n

Hε
min(Xn|B′) ≥ λ.
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3. Security for Bob: If Bob is honest, then for any attack strategy of dishonest Alice, there exists α ≥ 0:

Hmin(I|A′) ≥ α.

3.2. Protocol

In the previous protocol, there is a no error estimation process because the measurement results
of the BB84 protocol are directly related to the final key. We redesign the WSE protocol by using the
independence of key and measurement results of the MDI-QKD and PM-QKD protocols, adding a
error estimation process to improve the security of the protocol.

The specific agreement is as follows:

1. Alice chooses a string xn ∈R {0, 1}n and bases the specifying string θn
A ∈R {+,×}n randomly.

She encodes each bit xi in the basis given by θAi (as HθAi |xi〉) and sends it to the third party Charlie;
2. Similarly to Alice, Bob chooses a string yn ∈R {0, 1}n and bases specifying string θn

B ∈R {+,×}n

randomly. He encodes each bit yi in the basis given by θBi (as HθBi |yi〉), and sends it to the third
party Charlie;

3. Charlie performs a Bell measurement, and announces the outcome;
4. Alice selects a subset of the measurement outcome as the error estimator (about m qubits)

and sends a subset of the measurement outcome Icheck to Bob. Bob sends θBcheck and a subset of
the measurement outcome ycheck (ycheck, θBcheck = {yi, θBi |i ∈ Icheck}) to Alice. Then, they initiate
error estimation process and compute:

Qu =
num(xi 6= yi|θBi = θAi )

num(θBi = θAi )
;

5. If Qu > er, the communication is terminated, otherwise, the process continues;
6. Alice sends the remaining bases θn−m

A to Bob and outputs the remaining string xn−m;
7. Bob computes I := {i ∈ [n]|i /∈ Icheck ∧ θAi = θBi} and outputs (I, z|I|) := (I, yI).

3.3. Security Proof of WSE

Before analyzing the security of WSE protocol, we need to explain the constraint of Bob’s storage
capacity under joint state measurement and error estimation. When we remove any assumption about
storage devices, we need other approaches to limit Bob’s ability to store quantum states sent by Alice.
Due to the constraints of the protocol process, we naturally think that Bob would cause the error rate
increasement of the final key when he stores the quantum state and the error estimation is used to
detect this attack. Next, we need to explain an important conception of the error correction upper
bound of any channel error correction code. From [26] we know that:

f =
1− R
h(e)

where f is the reconciliation efficiency which is given by the redundancy of disclosed information to
the theoretical limit necessary for successful error correction, R is the code rate of a given channel error
correction code, e is the error rate, and function h is the Shannon binary entropy. Then we can get the
error correction upper bound when f approaches 1, i.e., its Shannon limit:

er = lim
f→1

e = lim
f→1

h−1(
1− R

f
).

where h−1 is the inverse function of h.
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We consider when Bob stores the quantum state because the joint measurement cannot be
performed and the published detection results are random. The increasement of error rate is explained
the Lemma 3.

Lemma 3. Assume that Bob has a perfect and unlimited capacity of quantum memory. Our protocol has a
storage rate v , where v ≤ 2er.

Proof. In our protocol, the measurement outcomes are jointly measured by a third party in the bell
state and published before Alice sends the bases θA. Alice will ask Bob to publish partial information
for error estimation before sending bases θA. Now, we assume that Bob’s storage rate is v, which means
Bob will store vn quantum state in his memory. If Bob stores the quantum states, it means that he can
not measure these quantum states, because quantum mechanics tells us that the measurement will
cause the collapse of the quantum states and the loss of information. Therefore, Bob can publish a
random fake outcome, and we have error rate introduced by this:

Qu =
n(1− v)ec +

1
2 nv

n
≤ er,

and we have:
v ≤ 2er,

where ec is error rate that caused by channel noise.

In fact, with Lemma 3, we can easily convert our protocol into a WSE protocol under the
bounded-storage model. Therefore, we can use the proof methods and results in Ref. [2,17] to prove
the security of our protocol.

Lemma 4 (Security for Alice). Fix δ ∈ [0, 1
4 ], and let,

ε = 2exp

(
−

( δ
4 )

2

32(2 + log2
4
δ )

2

)
,

then for any attack strategy of dishonest Bob with any storage model F : B(Hin)→ B(Hout), we have:
Hε

min(Xn|B′)σ ≥ n( 1
2 − δ− v) > 0.

Proof. According to the conclusion in Ref. [2], we have:

1
n

Hε
min(Xn|B′)σ ≥ −

1
n

logPFsucc

((
1
2
− δ

)
n
)
≥ vγN

(
1
2 − δ

v

)
,

where we have:

γN (R) = max
α≥1

α− 1
α

{
R− log2d +

1
1− α

log2

[(
r +

1− r
d

)α

+ (d− 1)
(

1− r
r

)α]}
,

and in our protocol, we have parameters δ ∈ [0, 1
4 ], v = 2er,CN = 1, r = 1, and d = 2. So, we have:

γN (R) = max
α≥1

α− 1
α

(R− 1),
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then,

Hε
min(Xn|B′)δ ≥ nvγN

(
1
2 − δ

v

)

= nv max
α≥1

α− 1
α

(
1
2 − δ

v
− 1

)

≥ n
(

1
2
− δ− v

)
≥ 0.

Next, we will discuss the security for Bob. Proving the security for Bob is relatively simple
because Bob has no other leaked information besides his quantum state information during
the protocol.

Lemma 5 (Security for Bob). According to [2,27], for any attack of dishonest Alice with any storage model
F : B(Hin)→ B(Hout), then we have:

Hmin(yn|A′) ≥ −nlog2

(
1
2
+

1
2
√

2

)
,

4. 1-2 Random Oblivious Transfer

In this section, we further investigate 1-2 random oblivious transfer (ROT), which is also a basic
two-party cryptographic protocol as WSE. Similarly, we give its definition first and then propose our
protocol based on joint measurement and error estimation followed by its security proof.

4.1. Definition

As in Figure 4, like the WSE protocol, the 1-2 random oblivious transfer (ROT) protocol is also
a basic two-party cryptographic protocol and is a random version of the 1-2 oblivious transfer (OT).
Based on the 1-2 ROT protocol, we can easily implement the 1-2 OT protocol and the bit commitment
(BC) protocol. In the 1-2 ROT protocol, instead of inputting two information strings m0, m1 ∈ {0, 1}l ,
Alice obtains two random key strings S0, S1 ∈ {0, 1}l . At the same time, Bob obtains the random key
string Sc according to its input c. If we want to implement the 1-2 OT protocol, just after running the
1-2 ROT protocol, Alice encrypts the information strings m0 and m1 with the two strings of keys S0

and S1 obtained by ROT protocol. Bob can use Sc for decryption to obtain mc.

Figure 4. The ideal functionality of 1-2 random oblivious transfer (ROT). Bob has input c, Alice gets
S0, S1, and Bob gets outputs S′c, S′1−c with Sc = S′c and S1−c 6= S′1−c.

In the security definition of the 1-2 ROT protocol, Alice cannot obtain Bob’s input c, and Bob
cannot obtain another string of keys S1−c except Sc. The specific definition of security is as follows:

Definition 4. An ε - secure 1-2 ROT is a protocol between Alice and Bob, where Bob has input c ∈ {0, 1},
and Alice has no input, satisfying:
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1. Correctness: If Alice and Bob are honest, then for any distribution of Bob’s input c which is unknown to
Alice, Alice gets outputs S0, S1 ∈ {0, 1}l which are ε-close to randomness and independent of c, and Bob
obtains Y = Sc with probability ε;

2. Security for Alice: If Alice is honest, then for any cheating strategy of Bob resulting in his state ρB,
there exists a random variable D ∈ {0, 1}, and λ > 0 such that:

Hmin(S1−D|B′) ≥ λ,

and
d(S1−D|B′) ≤ ε;

3. Security for Bob: If Bob is honest and obtains output Y, then for any cheating strategy of Alice resulting in
her state ρA, there exists a random variable D ∈ {0, 1}, such that:

Hmin(D|A′) ≥ 1− ε,

and
Pr(Y = S′c) ≤ ε.

4.2. Protocol

We now give the specific 1-2 ROT protocol using error estimation as follows:

1. Preparation: Alice chooses xn ∈R {0, 1}n and θn
A ∈R {+,×}n, and Bob chooses yn ∈R {0, 1}n and

θn
B ∈R {+,×}n. Both parties send the encoding quantum state |x〉nθA

or |y〉nθB
to third party Charlie;

2. Measurement: Charlie measures |x〉nθA
and |y〉nθB

with Bell measurement, and announces
the outcome;

3. Error estimation: Alice chooses Icheck ∈R 2[n] and |Icheck| = m, and sends Icheck to Bob. Bob sends
ycheck, and θBCheck = {yi, θBi |i ∈ Icheck} to Alice. Then Alice calculates the error rate:

Qu =
num(xi 6= yi|θBi = θAi )

num(θBi = θAi )
.

If Qu > er, they stop communication, otherwise they continue where er is the error correction
upper bound;

4. Key division: Both parties discard the data that used in error estimation. Alice sends θn−m
A to Bob,

Bob divides the key according to θn−m
A , θn−m

B , where Ic = {i|θAi = θBi} and I1−c = {i|θAi 6= θBi}.
Bob sends I0, I1 to Alice;

5. Post processing: Alice chooses two hash function f0, f1 ∈R Fh, and calculates
syn(X|I0), syn(X|I1). Alice passes f0, f1, syn(X|I0), and syn(X|I1) to Bob. Bob corrects the
errors and outputs Sc = fc(Y|Ic). Alice outputs S0 = f0(X|I0) and S1 = f1(X|I1).

4.3. Security Proof of 1-2 ROT

According to the definition, we will prove the security of our proposed ROT protocol from the
perspective of correctness, security for Alice, and security for Bob successively.

For correctness, if both parties are honest, Bob can calculate I0, I1 according to c, and Sc, and Alice
can also get S0, S1. The focus is mainly on security for Alice and Bob.

Lemma 6 (Security for Alice). In 1-2 ROT protocol, n represents the number of bits transmitted during the
protocol. σB′Xn represents the state generated in the ideal protocol operation which consists of dishonest Bob and
the variable Xn of n transmitted bits. ρXnB′ represents the joint state generated in the actual protocol operation
which consists of dishonest Bob and the variable xn of n transmitted bits. If Alice is honest, n → ∞ and the
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trace distance between these two states ||σB′Xn − ρB′Xn || ≤ ε with ε = 2exp
(
− δ2

32(2+log2δ)2

)
. Then we fix

δ ∈ {0, 1
4}, we can get :

1) Hmin(S1−D|B′) ≥ ( 1
4 − δ− v)n− 1,

2) l ≤
(

1
4 − δ− 2er

)
n + 1− log2

1
ε2 .

Proof. With uncertainty relation theorem, we have:

Hε
min(Xn|Mθn

A) ≥
(

1
2
− 2δ

)
n,

where M is the outcome that announced by Charlie. According to entropy sampling theorem:

Hε
min(X1−D|DMθn

A) ≥
(

1
4
− δ

)
n− 1,

and in our protocol, according to Lemma 3, we have the storage rate v = 2er, then:

Hε
min(X1−D|DMθn

AQ(ρA)) ≥ Hε
min(X1−D|DMθn

A)− vn = (
1
4
− δ− v)n− 1

By using privacy amplification theorem:

d( f1−D(S1−D)|DθA fDρA MQ(ρA)) ≤ 2−
1
2 [(

1
4−δ−2er)−1−l]−1 + ε,

and let the above formula be less than 2ε, we can get:

l ≤
(

1
4
− δ− 2er

)
n + 1− log2

1
ε2 .

Lemma 7 (Security for Bob). In 1-2 ROT protocol, n represents the number of bits transmitted during the
protocol. σA′c represents the state generated in the ideal protocol operation which consists of dishonest Alice and
commit bit c. ρA′ ⊗ τ{0, 1} represents the joint state generated in the actual protocol operation which consists of
dishonest Alice and commit bit c that is uniformly distributed on {0, 1}. If Bob is honest, n→ ∞ and the trace
distance between these two states ||(σA′c)− ρA′ ⊗ τ{0, 1}|| ≤ ε , and there exits ε ≥ 0, then the conditional
entropy with respect to c and A′, we have:

(1) H(c|A′) ≥ 1− ε

Proof. According to the definition of ROT protocol, if Alice is dishonest, then her purpose is to get
c chosen by Bob. In our protocol, Bob’s information leakage to Alice are ρB, ycheck, θcheck, I0 and I1.
We have:

Pr(c|ycheckθcheck I0 I1ρB) = Pr(c|I0 I1ρB).

As Pr(c|I0 I1xnyn) = 1, we can argue that:

Pr(c|I0 I1ρB) = Pr(yn|I0 I1ρB) = max(Pr(yn|ρB),
1
2
),

and with the uncertainty relation theorem:

H(yn|ρB) = −nlog2(
1
2
+

1
2
√

2
),
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we can get:

Pr(yn|ρB) = 2−H(yn |ρB) =

(
1
2
+

1
2
√

2

)n
.

when n → ∞, Pr(c|I0 I1ρB) = max(Pr(yn|ρB), 1
2 ) = 1

2 , so we can get H(c|A′) = − ∑
k=0,1

p(c =

k|A′)log2 p(c = k|A′) = 1. Namely, exists ε ≥ 0, H(c|A′) ≥ 1− ε.

5. Applications for Two Party Cryptography

In this section, we redesign two specific two-party cryptographic protocols using a joint
measurement method and briefly analyze their security. The first protocol is bit commitment which
is proposed by [1]. The second protocol is password-based identification, which allows us to use
passwords for authentication without revealing passwords.

5.1. Bit Commitment

In this subsection, we redesign bit commitment protocol using joint measurement and prove the
security of this protocol. Quantum bit commitment protocol is one of the earliest proposed quantum
two-party encryption protocols. The original version of quantum bit commitment is a variant of
quantum coin tossing proposed by Bennett and Brassard [1]. In fact, quantum bit commitment is easy
to adapt from 1-2 ROT protocol.

5.1.1. Definition and Protocol

Informally, a standard bit commitment scheme consists of two sub-protocols called commitment
protocol and revealing protocol. First, Alice and Bob execute the commitment protocol. Alice has
commit bit c ∈ {0, 1} as input, and Bob has no input. As a result of this protocol, Bob will get some
evidence about c. In the second phase, Alice and Bob execute the revealing protocol, where Alice
has an input for remaining evidence and commit bit c and Bob also has no input. At the end of this
protocol, Bob will output accept or reject according to Alice’s inputs from the commitment protocol
and revealing protocol.

If both parties are honest, Bob always accepts the bit c. If Alice is dishonest, however, Bob should
not output accept. If Bob is dishonest, he should not be able to gain any information about c before the
revealing protocol is executed. The definition of security in bit commitment protocol is as follows.

Definition 5 (Bit commitment [17]). An ε-secure bit commitment is a protocol between Alice and Bob,
where Alice has input c ∈ {0, 1}, and Bob has no input.

1. Correctness: If both parties are honest, then the ideal state δcans is defined as:

The distribution of commit bit c for Bob is uniform when Bob gets no information about distribution of c
besides the information leakage by this protocol, and Bob accepts the commitment:

δcans = τ{0,1} ⊗ |accept〉〈accept|.

2. Security for Alice (ε-hiding): If Alice is honest, then for any joint state ρcB′ created by the commit protocol,
Bob does not learn c. Here,

ρcB′ ≈ε τ{0,1} ⊗ ρB′ ,

and the entropy of c:
Hmin(c|B′) ≥ 1− ε.

3. Security for Bob (ε-Binding): If Bob is honest, then there exists an ideal cq-state δcA′V such that for all
operations for ρ′A, we have:

Pr[outputs = accept|A′] ≤ ε.
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We have rewritten the QBC agreement based on the contents of the ROT agreement as
shown below.

Bit commitment - commit phase: The input is commit bit c ∈ {0, 1} for Alice. The output are
Sc ∈ {0, 1}l to Alice, and S′0, S′1 ∈ {0, 1}l to Bob.

1. Preparation: Alice chooses xn ∈R {0, 1}n and θn
A ∈R {+,×}n furthermore, Bob chooses yn ∈R

{0, 1}n and θn
B ∈R {+,×}n. Both parties send the encoding quantum state |x〉nθA

or |y〉nθB
to the

third party Charlie;
2. Measurement: Charlie measures |x〉nθA

and |y〉nθB
with Bell basis, and announces the outcome;

3. Error estimation: Bob chooses Icheck ∈R 2[n] and |Icheck| = m, and sends Icheck to Alice. Alice sends
xcheck, θACheck = {xi, θAi |i ∈ Icheck} to Bob. Bob calculates the error rate Qu:

Qu =
num(xi 6= yi|θBi = θAi )

num(θBi = θAi )
.

If Qu > er, they stop communication, else they continue. Here er is error correction upper bound;
4. Key division: Both parties discard the bits that used in error estimation. Bob sends θn−m

B to Alice.
Alice divides the key according to θn−m

A , θn−m
B , where Ic = {i|θAi = θBi} and I1−c = {i|θAi 6= θBi},

and sends I0, I1 to Bob;
5. Post processing: Bob chooses two hash functions f0, f1 ∈R Fh, and calculates two syndromes

syn(X|I0), syn(X|I1). Bob sends f0, f1, syn(X|I0), syn(X|I1) to Alice. Alice corrects errors and
outputs Sc = fc(Y|Ic). Bob outputs S′0 = f0(X|I0), S′1 = f1(X|I1).

Bit commitment–revealing phase: The input is Sc for Alice. The outputs are c ∈ {0, 1} and
ans ∈ {accept, reject} to Bob.

1. Alice: Alice sends Sc and c to Bob;
2. Bob: If Sc = S′c, then Bob obtains c and ans = accept. Otherwise, he outputs ans = reject.

5.1.2. Security Analysis

The correctness of the protocol does not need to be proven because the protocol is designed
according to the definition of bit commitment protocol. Its ε-hiding is guaranteed by the security of the
ROT protocol.

Lemma 8 (Security for Alice). n represents the number of bits transmitted during the protocol. Let n→ ∞,
we have:

(1) δcB′ ≈ε τ{0,1} ⊗ ρB′ ,
(2) Hmin(c|B′) ≥ 1− ε.

Proof. Our Commitment protocol is adopted from the 1-2 ROT, and according to Definition 5, we
have Hmin(c|B′) ≥ 1− ε.

Lemma 9 (Security for Bob). n represents the number of bits transmitted during the protocol. Fix δ ∈ [0, 1
4 ],

and exist ε→ 0, we have:
Pr(ans = accept|A′) ≤ ε.

Proof. According to Lemma 5,

Hmin(yn|A′) ≥ −nlog2

(
1
2
+

1
2
√

2

)
,

because

Pr(yn|A′) = 2−Hmin(yn|A′) ≤
(

1
2
+

1
2
√

2

)n
.
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we can easily get Pr(ans = accept)|A′) ≤ ε.

5.2. Password-Based Identification

In this subsection, we introduce the joint measurement method to password-based protocol
from [15].

Password-based identification (PID) so far is one of the most widely-used authentication methods.
In this protocol, the user and server share a series of keys and the user logs in the system server by
verifying the keys. Its security definition contains two points. The first is that users who do not know
the password cannot log into the system server successfully and cannot learn other users’ password
through this protocol. The second is that the dishonest server (eg. scam server) cannot learn the
password holds by honest users. For the convenience of description, in the following, we use Alice
instead of user and Bob instead of server. Formally, security is defined as follows.

Definition 6 ((n, λ, ε)-secure PID). An (n, λ, ε)-secure PID is a protocol between Alice and Bob, where Alice
and Bob has input password w ∈ {0, 1}l .

1. Correctness: If both parties are honest, Bob will always output "accept" at the end of the protocol;
2. Security for Alice: If Alice is honest, then for any cheating strategy of Bob resulting in his state ρB,

we have λ ≥ 0, and:
Hε

min(w|B′) ≥ λ;

3. Security for Bob: If Bob is honest, then for any cheating strategy of Alice resulting in her state ρA,
there exists ε ≥ 0, we have:

Pr(outputs = accept|A′) ≤ ε.

Next, we give our PID protocol. The input is w ∈ {0, 1}l for Alice and the output is
ans ∈ {accept, reject} for Bob.

1. Preparation: Alice chooses xn ∈R {0, 1}n and θn
A ∈R {+,×}n, and Bob also chooses yn ∈R {0, 1}n

and θn
B ∈R {+,×}n. Both parties send the encoding quantum state |x〉nθA

or |y〉nθB
to the third

party, Charlie;
2. Measurement: Charlie measures |x〉nθA

and |y〉nθB
with Bell measurement, and announces

the outcome;
3. Error estimation: Alice chooses Icheck ∈R 2[n] and |Icheck = m, and sends Icheck to Bob. Bob sends

ycheck, θBCheck = {yi, θBi |i ∈ Icheck} to Alice. Alice calculates the error rate Qu:

Qu =
num(xi 6= yi|θBi = θAi )

num(θBi = θAi )
.

If Qu > er, they stop communication, else they continue. Here, er is the error correction
upper bound;

4. Key shifting: Bob calculates a string κ ∈ {0, 1}n such that κ = c(w)⊕ θn
B( κi = 0 means basis is

+, anyone else). He sends the string κ to Alice, and they define the shifted code θ̂n
B = c(w)⊕ κ.

Alice sends θn
A and a hash function f ∈R F to Bob. Both computes Iw = {i|θAi = θ̂Bi};

5. Identification: Bob sends g ∈R G to Alice. Alice sends z = f (x|Iw)⊕ g(w) to Bob. Bob accepts if
and only if z = f (y|Iw)⊕ g(w).

We omit the proof part because the process is roughly similar to Ref. [17].

6. Conclusions

In this paper, we proposed several two-party cryptographic protocols based on joint measurement
and error estimation, including WSE, 1-2 ROT, and other protocols, and demonstrated their security.
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Compared with the protocol mentioned in [2,17,28,29], our protocols discarded the assumption that
the attacker’s storage device was defective, but instead employed a combination of joint measurement
and error estimation to limit the quantum storage of the attacker. Our protocols had no assumptions,
were more secure, and had wider applicability. The two basic two-party cryptographic protocols
mentioned in this paper could easily be extended to other two-party encryption protocols, such as 1-2
OT and quantum identification protocols.

We eliminated the assumption that the attack was bounded by the attacker’s technology,
and employed the technique of joint measurement and error estimation to improve two basic quantum
two-party cryptographic protocols. We demonstrated that our improved protocols offered stronger
security and is applicable to many specific quantum two-party cryptographic protocols such as BC
and PID.

Inspired by [30,31], we learned that quantum coherence plays an important role in quantum key
distribution and quantum random number generation, and this might also be used to improve our
work. Future work will also begin with this aspect.
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