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Abstract: A modified oedometer cell for measuring the applied stresses and elastic waves at the
top and bottom of the specimen is developed to evaluate the effect of the side friction on the stress
dependence of the elastic wave velocities. In the modified cell, two load cells are installed at the top
and bottom plates, respectively. To generate and detect the compressional and shear waves, a pair of
piezo disk elements and a pair of bender elements are mounted at both the top and bottom plates.
Experimental results show that the stresses measured at the bottom are smaller than those measured at
the top during the loading and vice versa during unloading, regardless of the densities and heights of
the specimens. Under nearly saturated conditions, the compressional wave velocities remain almost
constant for the entire stress state. With plotting stresses measured at top, the shear wave velocities
during unloading are greater than those during loading, whereas with plotting stresses measured at
bottom, the shear wave velocities during unloading are smaller than those during loading owing to
the side friction. The vertical effective stress may be simply determined from the average values of
the stresses measured at the top and bottom of the specimens.
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1. Introduction

The compression of soil is typically assumed to be one-dimensional when a vertical load is
applied to the soil covering a large area. To simulate the one-dimensional condition, a one-dimensional
compression test is widely conducted using an oedometric cell in the laboratory [1]. The time dependent
stress–strain relationship under the zero-lateral strain condition (i.e., K0 condition) provides various
deformation parameters of the soil.

Although many standards (e.g., ASTM D2435, BS 1377-part5, and DS/CEN ISO/TS 17892-5) suggest
that the minimum ratio of the specimen diameter to height (D/H) should be 2.5 to minimize the side
friction effect, specially designed large oedometers are often used for research purposes or for testing
materials including large-sized granular materials, organic soils, municipal solid waste, mine tailings,
and a mixture of soil and other materials [2–8]. When the elastic wave velocities are measured under
one-dimensional conditions, relatively low ratio of D/H oedometric cells are applied to ensure the
wave propagation length [9–13] because it is difficult to define the first arrival owing to the near field
effect [14]. A low ratio of D/H increases the side friction, and the friction causes a lower change in the
mean stress throughout the entire specimen than the change in stress at the top of the specimen.

In this study, series of experiments were conducted to explore the effect of the stress dependence
on the elastic wave velocities owing to the side friction in a zero-lateral strain cell. An oedometric cell
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was modified to measure the applied effective stresses by installing load cells at the top and bottom
of the specimen. Stress-dependent elastic wave characteristics and settlement were investigated by
measuring the applied stresses at different locations.

2. Material and Methods

2.1. Test Materials

Silica sand (Kyungin Inc., Incheon, Korea) was used in this study. The specific gravity Gs for the
sand (ASTM-D854) [15] was measured as 2.62. The extreme void ratios, emax and emin, were obtained as
emax = 0.82 (ASTM-D4253) [16] and emin = 0.56 (ASTM-D4254) [17]. The grain size distribution indicates
that the tested sand is classified as poorly graded sand, SP based on the Unified Soil Classification
System (ASTM-D421) [18] with a median grain size (D50) of 0.43 mm and a coefficient of uniformity
(Cu) of 1.35.

2.2. Zero-Lateral Strain Cell

A modified oedometric cell was used to measure the applied stresses at the top and bottom of
the specimen while simultaneously measuring the compressional wave velocity (VP) and shear wave
velocity (VS) under a zero-lateral strain condition, as shown in Figure 1. The cell has an inner diameter
of 74 mm and a height of 100 mm. The electrical strain gauges (SG) with a 1.0 mm gauge length
were attached to the load shaft to monitor the applied load at the top plate. A DC power supply
(Agilent E3620A, Santa Clara, CA, USA) and data logger (Agilent 34972A, Santa Clara, CA, USA) were
used to monitor the output voltage change of the strain gauge, which is amplified by a half-active
Wheatstone bridge with two dummy gauges. Furthermore, to monitor the load at the bottom of the
specimen, a load cell was installed beneath the center of the bottom plate. The gap between the wall
and bottom plate was filled with vacuum grease to prevent soil from jamming within the gap. The two
load cells were calibrated using the known applied stress, the results of which are shown in Figure 2.
A thin layer of a lubricant was applied inside the oedometric cell to minimize the side friction between
the specimen and cell.
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Figure 1. Schematic drawing of a modified oedometric cell with electronics. TL and BL denote the load
cells installed at the top and bottom plates, respectively. In addition, BE and PDE denote the bender
elements and piezo disk elements.
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Figure 2. Calibration of load cells. Solid and hollow markers denote the loading and unloading
steps, respectively.

The cell houses a pair of piezo disk elements (PDE) and a pair of bender elements (BE) at the top
and bottom plates to generate and detect the compressional wave velocity VP and shear wave velocity
VS, respectively. Peripheral electronics consist of a signal generator (Agilent 33500B, Santa Clara, CA,
USA), a filter-amplifier (Krohn-Hite 3944), and an oscilloscope (Agilent DSO-X 3014A, Santa Clara, CA,
USA) for elastic wave measurement. The elastic wave velocity can be calculated using the tip-to-tip
distance between sensors Ltip-to-tip and first arrival time tarrival [14]:

VP or VS =
Ltip−to−tip

tarrival
(1)

2.3. Experimental Procedure

Sand specimens were prepared using a water-pluviation method and then vibrated to obtain
predetermined density conditions (i.e., initial relative density Dr = ~40% and ~80%) to explore the
effect of the specimen density with D/H = 1. Furthermore, two experimental cases were conducted for
Dr = ~40% with D/H = 1 and 2 to assess the effect of the diameter-to-height ratio (D/H), as summarized
in Table 1.

Table 1. Specimen conditions tested in this study.

No. Relative Density (%) Diameter-to-Height Ratio

1 80 1
2 40 1
3 40 2

The applied vertical stress was doubled during each loading and unloading step. The maximum
applied vertical stress was 640 kPa. The vertical settlements were continuously measured using
an LVDT with a precision of 0.001 mm. The elastic wave velocities were measured at each step.
Each loading step lasts until the vertical settlement converges to 0.001 mm/min.

3. Experimental Results and Discussions

3.1. Volume Change

The measured void ratio–stress responses are plotted in Figure 3. As shown in Figure 3,
similar trends are observed even for different densities and D/H. The void ratio gradually decreases
with increasing applied vertical stresses. As shown in Figure 3, the measured stresses at the bottom
show lower values than those measured at the top during the loading and vice versa during the
unloading because the friction acts in the opposite direction of the applied load [19]. Previous studies
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reported that the high stress loss that occurs from friction is found either in the lower plasticity
and/or over-consolidated clay (i.e., high stiffness specimen) because of higher interface friction [19,20].
Similarly, the specimen with a high Dr shows relatively high stress hysteresis at the given D/H ratio i.e.,
D/H = 1. The large stress variations measured at the top and bottom of a specimen with a low D/H ratio
are also monitored. The compression index Cc and recompression index Cr, which are calculated for
the average stresses, indicate that a lower compressibility is observed: (1) for a higher density specimen
under the same D/H; and (2) for a low D/H ratio specimen under the same Dr owing to side friction.
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Figure 3. Variation in void ratio along the applied stress: (a) Dr = 80% and D/H = 1; (b) Dr = 40% and
D/H = 1; and (c) Dr = 40% and D/H = 2. Note that Cc and Cr are calculated based on the average
stresses. Solid and hollow markers denote the loading and unloading steps, respectively.
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3.2. Elastic Wave Velocity

At low frequencies, which are of engineering interest and where soil particles are assumed
incompressible (i.e., in the case Gassmann’s equation is valid), VP can be expressed as a function of
shear modulus G, bulk modulus of the solid skeleton Kb, and total density ρ [21–23]:

VP =

(
4G/3 + Kb/(1− B)

ρ

)1/2

(2)

ρ = (1− n)ρs + nρ f (3)

where n is the porosity and B is the pore pressure coefficient. ρs and ρf indicate the densities of
grain and fluid, respectively. Figure 4 shows the compressional wave velocity VP for the specimen
of Dr = 80% and D/H = 1. As indicated in Figure 4, an almost constant value of VP (~1420 m/s) is
observed with stress. Note that the compressional wave velocity of pure water is approximately
1480 m/s. Yang [22] proposed that the values of B and VP can be determined as a function of degree of
saturation. When the Poisson’s ratio ν is assumed to be 0.3, the calculated value of B is 0.952 based
on the measured VP = 1420 m/s, which indicates that the specimen was nearly saturated. In nearly
saturated sand, the influence of the effective stress on VP is relatively small [24,25]. The experimental
results also imply that the measured VP is rarely affected by a change in the effective stress in nearly
saturated soils [22,26]. Note that similar results are observed for other experimental cases.
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Figure 4. Evolution of compressional wave velocity along applied stresses for Dr = 80% and D/H = 1.
Solid and hollow markers denote the loading and unloading steps, respectively.

The velocity–stress relationship for the shear wave for any degree of saturation can be simply
expressed as a power function of the mean effective stress (σ′m) in the direction of the wave propagation
and in the direction of the particle motion [27–29] as follows:

VS = α

(
σ′m

1kPa

)β
(4)

where both α and β are experimentally determined. The α factor denotes the wave velocity at 1 kPa,
and the β exponent indicates the stress sensitivity of the wave velocity. Note that Equation (4) is
valid the stress-induced skeletal forces control the behavior of the media [30]. Figure 5 shows the
measured shear wave velocity vs. for various stresses measured at different locations. The measured
shear wave velocities for all specimens generally increase with increases in the vertical effective stress:
With plotting the effective stress measured at the top, the values of vs. calculated during unloading are
higher than those calculated during loading, whereas with plotting the effective stress monitored at the
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bottom, the values of vs. calculated during loading are higher than those calculated during unloading.
When the measured vs. is plotted with the average vertical effective stress calculated from the top and
bottom measurements, similar values of vs. are observed during the loading and unloading. Note that
similar trends are observed for other specimens. When a fixed wall oedometric cell is used, the vertical
effective stress applied at top of the specimen is not uniformly distributed but decreases with depth
owing to the upward wall friction. Although the reduction in the actual effective stress applied in the
whole specimen depends on the stress level, it was reported that the friction ratio of the wall friction to
the applied stress is almost constant with the applied stress after a yield point (e.g., preconsolidation
stress) [31,32]. Note that the friction ratio is approximately 10% of the applied stress [32]. As shown
in Equation (4), the stress dependence of vs. can be defined with the mean normal effective stress
on the polarization plane. To precisely establish the stress dependence of VS, the distribution of the
vertical and horizontal effective stresses when considering the stress reduction should be known when
a pair of bender elements is installed at the top and bottom of the specimen. The vertical effective
stress within the specimen consists of the self-weight of the specimen and the applied stress at top.
Lovisa and Sivakugan [33] reported that the applied stress governs the vertical effective stress within
the specimen for small diameters such as cells used in a laboratory with maintaining D/H = 1, and,
in general, it governs the vertical effective stress with the specimen when the applied stress is larger
than approximately 20 kPa. Some researchers have suggested the theoretical distribution of the vertical
effective stress corrected with the side friction of the cell [31,33]; however, the soil–wall resistance of the
cell should be measured to determine the exact distribution of the vertical effective stress. Therefore,
the vertical effective stress within the specimen when considering the side friction of the cell for a small
oedometric cell can be simply and approximately determined based on the average values calculated
based on the effective stresses measured at the top and bottom of the specimens. This is because both
values indicate the maximum and minimum effective stresses of the specimen, respectively, assuming
a linear distribution of the soil–cell interface resistance. Note that the horizontal effective stress can be
calculated based on the coefficient of the earth pressure at rest (K0), which was determined from using
the K0 equation as follows:

K0 = 1− sin Φ (5)

where Φ is the internal friction angle of the soil. It is well known that the K0 equation proposed by
Jaky [34] is commonly adopted to estimate the values of K0 in practice.
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4. Conclusions

The modified zero-lateral strain cell was used to measure the stress-dependent geophysical
properties and compressibility of the sand. The applied effective stresses were measured at the
top and bottom of the specimen to investigate the side friction effect on the elastic wave velocity.
The experimental results indicate that the measured compressional wave velocity (VP) is rarely affected
by a change in the effective stress in the nearly saturated soils. When a pair of bender elements is
installed at the top and bottom of the specimen, the stress reduction of the vertical effective stress by
the side friction of the cell can be considered for precisely estimating the stress dependence of the shear
wave velocity of the specimen. Although the distribution of soil–cell interface resistance is not linear
along the specimen height, the vertical effective stress within the specimen for a small oedometric cell
can be simply and approximately determined based on the average values calculated from the effective
stresses measured at the top and bottom of the specimens.
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