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Abstract: While the combination of multi-antenna and relaying techniques has been extensively
studied for Long Term Evolution Advanced (LTE-A) and Internet of Things (IoT) applications, it is
expected to still play an important role in 5th Generation (5G) networks. However, the expected
benefits of these technologies cannot be achieved without a proper system design. In this paper,
we consider the problem of jointly optimizing terminal precoders/decoders and relay forwarding
matrices on the basis of the sum mean square error (MSE) criterion in multiple-input multiple-output
(MIMO) two-way relay systems, where two multi-antenna nodes mutually exchange information via
multi-antenna amplify-and-forward relays. This problem is nonconvex and a local optimal solution
is typically found by using iterative algorithms based on alternating optimization. We show how
the constrained minimization of the sum-MSE can be relaxed to obtain two separated subproblems
which, under mild conditions, admit a closed-form solution. Compared to iterative approaches,
the proposed design is more suited to be integrated in 5G networks, since it is computationally more
convenient and its performance exhibits a better scaling in the number of relays.

Keywords: amplify-and-forward (non-regenerative) relays; minimum-mean-square-error criterion;
multiple-input multiple-output (MIMO) systems; optimization; two-way relaying

1. Introduction

Cooperative multiple-input multiple-output (MIMO) communication techniques, wherein data
exchange between MIMO terminal nodes is assisted by one or multiple MIMO relays, have been
studied for Long Term Evolution Advanced (LTE-A) cellular systems [1–3], since they assure significant
performance gains in terms of coverage, reliability, and capacity. Relay technology has been also
considered for Internet of Things (IoT) applications, by allowing in particular the support of the
massive access for fog and social networking services [4–6]. One of the main changes when going
from LTE-A to 5th generation (5G) systems is the spectrum use at radically higher frequencies in the
millimeter-wave (mmWave) range [7]. However, mmWave signals are highly susceptible not only
to blockages from large-size structures, for example, buildings, but they are also severely attenuated
by the presence of small-size objects, for example, human bodies and foliage [8]. In this regard,
cooperative MIMO technology additionally represents a possible approach for circumventing the
unreliability of mmWave channels [9] in 5G networks.

In addition, 5G systems have stringent requirements in terms of spectral efficiency. Many relaying
protocols operate in half-duplex mode [10–13], where two time slots are required to perform a single
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transmission, due to the inability of the relays to receive and transmit at the same time. To overcome
the inherent halving of spectral efficiency, a possible remedy for 5G applications is to adopt two-way
relaying [14] (see Figure 1), which works as follows: (i) in the first slot, the two terminal nodes
simultaneously transmit their precoded signals to the relays; (ii) in the second slot, the relays precode
and forward the received signals to the terminals. Since each terminal knows its own transmitted
signal, the effects of self-interference can be subtracted from the received signal at the terminals,
and the data of interest can be decoded. On the other side of the coin, with respect to the one-way
relaying setting, the optimization of two-way cooperative networks is complicated by fact that terminal
precoders/decoders and relay forwarding matrices are coupled among themselves.

Figure 1. Model of the considered two-way relaying multiple-input multiple-output (MIMO)
5G network.

Design and performance analysis of two-way cooperative MIMO networks encompassing
multiple amplify-and-forward (AF) or non-regenerative relays has been considered in References [15–19].
Compared with the single-relay case [20], the multiple-relay scenario generally leads to more
challenging nonconvex constrained optimization problems, which are usually solved by burdensome
iterative procedures. In Reference [15], by adopting a weighted sum-mean-square-error (MSE)
or a sum-rate cost function, iterative gradient descent optimization algorithms are proposed,
with transmit-power constraints imposed at both the terminals and the relays. A similar scenario is
considered in Reference [16] and Reference [17]. In Reference [16], the original constrained minimum
sum-MSE nonconvex optimization problem is iteratively solved. Specifically, the algorithm of
Reference [16] starts by randomly choosing the terminal precoders and the relay forwarding matrices
satisfying the transmission power constraints at the source terminals and the relay nodes. In each
iteration, the terminal precoders, the relay forwarding matrices, and the decoders are alternatingly
updated in Reference [16] through solving convex subproblems: first, with given precoders and relay
forwarding matrices, the optimal decoders are obtained in closed-form by solving an unconstrained
convex problem; second, with fixed precoders and decoders, the relaying matrix of all the relays
are updated in closed-form one-by-one by freezing the relaying matrices of the other relays; finally,
given the decoders and relaying matrices, the precoders are updated by solving a convex quadratically
constrained quadratic programming problem. A different iterative optimization procedure is proposed
in Reference [17], based on the matrix conjugate gradient algorithm, which is shown to converge faster
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than conventional gradient descent methods. Finally, some recent papers [18,19] propose architectures
for two-way relaying based on relay/antenna selection strategies.

In this paper, we propose an optimization algorithm for two-way AF MIMO relaying 5G networks,
where terminal precoders/decoders and relay forwarding matrices are jointly derived under power
constraints on the transmitted/received power at the terminals. Rather than attempting to solve it
iteratively, we derive a relaxed version of the original minimum sum-MSE nonconvex optimization,
which allows one to decompose it in two separate problems that admit a closed-form, albeit suboptimal,
solution. We show by Monte Carlo trials that our closed-form approach performs comparably or
better than representative iterative approaches proposed in the literature for the same scenario with a
reduced computational complexity, especially for increasing values of the number of relays.

2. Network Model and Basic Assumptions

We consider the two-way MIMO 5G network configuration of Figure 1, where bidirectional
communication between two terminals, equipped with NT,1 and NT,2 antennas, respectively, is assisted
by NC half-duplex relays, each equipped with NR antennas. We assume that there is no direct link
between the two terminals, due to high path loss values or obstructions. Even though our approach
can be generalized, for simplicity, the considered physical layer is that of a single-carrier cooperative
system where all the channel links are quasi static and experience flat fading.

Let s1 ∈ CNS,1 and s2 ∈ CNS,2 denote the symbol vectors to be transmitted by terminal 1 and
2, respectively. In the first time slot, each terminal precodes its symbols with matrix Pi ∈ CNT,i×NS,i ,
for i ∈ {1, 2}, before transmitting it to the relays, which thus receive yk = ∑2

i=1 Hi,kPi si + wk,
for k ∈ {1, 2, . . . , NC}, where Hi,k ∈ CNR×NT,i is the first-hop channel matrix (from terminal i to relay
k), and wk ∈ CNR models additive noise at kth relay. By defining y , [yT

1 , yT
2 , . . . , yT

NC
]T ∈ CNC NR ,

the overall signal received by the relays can be compactly written as

y =
2

∑
i=1

HiPi si + w, (1)

where Hi , [HT
i,1, HT

i,2 . . . , HT
i,NC

]T ∈ CNC NR×NT,i gathers all first-hop channels and the vector

w , [wT
1 , wT

2 , . . . , wT
NC

]T ∈ CNC NR gathers all the noise samples.
In the second time slot, the kth relay forwards its received signal yk ∈ CNR , by using the relaying

matrix Fk ∈ CNR×NR , thus transmitting zk = Fk yk. The received signal at each terminal can be written,
for i ∈ {1, 2}, as

ri =
NC

∑
k=1

Gi,kFk yk + ni = Gi F y + ni, (2)

where Gi,k ∈ CNT,i×NR is the second-hop channel matrix (from relay k to terminal i), and the vector
ni ∈ CNT,i is additive noise at terminal i. Additionally, we have defined in (2) the extended matrices
Gi , [Gi,1, Gi,2 . . . , Gi,NC ] ∈ CNT,i×NC NR and F , diag(F1, F2, . . . , FNC) ∈ CNC NR×NC NR . Moreover,
by taking into account (1), the vector ri can also be directly written in terms of s1 and s2 as

ri =
2

∑
j=1

Ci,j sj + vi, (3)

where Ci,j , Gi F Hj Pj ∈ CNT,i×NS,j is the dual-hop matrix from terminal j to i, for i, j ∈ {1, 2},
and vector vi , Gi F w + ni ∈ CNT,i is the overall noise.

We assume customarily [14,18] that each terminal can estimate and subtract the self-interference
deriving from its own symbols. To do this, terminal i has to first acquire the matrix Ci,i, which can
be obtained by resorting to standard training-based identification methods. Specifically, each data
transmission can be preceded by a training period, wherein the two terminals transmit orthogonal
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pilot sequences to the relays. In this case, by redefining ri with a slight abuse of notation as ri −Ci,i si,
for i ∈ {1, 2}, we write explicitly

ri = Ci,i si + vi = GiFHi Pi si + vi, (4)

where i = 2 when i = 1, whereas i = 1 when i = 2.
At terminal i, vector ri is subject to linear equalization through matrix Di ∈ CNS,i×NT,i ,

thus yielding a soft estimate ŝi , Di ri of the symbols si transmitted by terminal i, whose entries
are then subject to minimum-distance hard decision.

In the sequel, we consider the common assumptions: (a1) s1 and s2 are mutually independent
zero-mean circularly symmetric complex (ZMCSC) random vectors, with E[si sH

i ] = INS,i , for i ∈ {1, 2};
(a2) the entries of Hi and Gi are independent identically distributed ZMCSC Gaussian unit-variance
random variables, for i ∈ {1, 2}; (a3) the noise vectors w, n1 and n2 are mutually independent ZMCSC
Gaussian random vectors, statistically independent of {si, Hi, Gi}2

i=1, with E[wwH] = σ2
w INC NR and

E[ninH
i ] = σ2

n,i INT,i , for i ∈ {1, 2}.
Full channel-state information (CSI) is assumed to be available at both the terminals and

the relays. Particularly, we assume that: (i) {Hi}2
i=1 are known at the terminals and at the

relays; (ii) the kth second-hop channel matrices G1,k and G2,k are known only to the kth relay,
for k ∈ {1, 2, . . . , NC}; (iii) the dual-hop channel matrix {Ci,i} and the covariance matrix

Kvivi , E[vi vH
i ] = σ2

w Gi F FH GH
i + σ2

n,i INT,i (5)

of vi are known at the ith terminal, for i ∈ {1, 2}. It should be noted that, hereinafter, all the ensemble
averages are evaluated for fixed values of the first- and second-hop channel matrices.

3. The Proposed Closed-Form Design

With reference to model (4), the problem at hand is to find optimal values of {Pi}2
i=1,

F, and {Di}2
i=1 for recovering s1 and s2 according to a certain cost function and subject to suitable

power constraints at the terminals and relays.
A common performance measure of the accuracy in recovering the symbol vector si at terminal i

is the mean-square value of the error ei , ŝi − si: MSEi , E[‖ei‖2] = tr(Keiei ), where Keiei , E[eieH
i ]

is the error covariance matrix, which depends on (Pi, F, Di). As a global cost function for the
overall two-way transmission, we consider as in References [15–18] the sum-MSE, defined as
MSE({Pi}2

i=1, F, {Di}2
i=1) = MSE1 + MSE2. It is well-known that, for fixed values of {Pi}2

i=1 and
F, the matrices {Di}2

i=1 minimizing the sum-MSE are the Wiener filters

Di,mmse = CH
i,i(Ci,i CH

i,i + Kvivi )
−1 (6)

for i ∈ {1, 2}, thus yielding

MSE({Pi}2
i=1, F) , MSE({Pi}2

i=1, F, {Di,mmse}2
i=1)

=
2

∑
i=1

tr[(INS,i + CH
i,iK
−1
vivi

Ci,i)
−1] . (7)

It is noteworthy that the variables P1, P2, and F are coupled in (7) and, hence, the two terms
in (7) cannot be minimized independently. Herein, we relax the original problem so as to separate the
minimization of the two terms in (7).
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As a first step, we observe that minimizing (7) is complicated by the presence of K−1
vivi

,
which depends non-trivially on F. For such a reason, we consider instead minimization of the
following high signal-to-noise ratio (SNR) approximation:

MSE({Pi}2
i=1, F) ≈

2

∑
i=1

tr[(INS,i + σ−2
n,i CH

i,iCi,i)
−1], (8)

which turns out to be accurate when σ2
w � min(σ2

n,i, µmin), where µmin is the smallest eigenvalue of
Gi F FH GH

i . Suitable constraints must be set to avoid trivial solutions in minimizing (8). It is customary
to impose power constraints to limit the average transmit power at the terminals:

E[‖Pisi‖2] = tr(Pi PH
i ) ≤ PT,i > 0 (9)

for i ∈ {1, 2}. In order to limit F, we impose a constraint on the average power received at the
terminals in the second time slot, that is, with reference to (2), we attempt to limit, for i ∈ {1, 2},
the following quantities:

E[‖GiF y‖2] = tr(GiFKyyFHGH
i ), (10)

where Kyy , E[yyH] = ∑2
i=1 HiPiPH

i HH
i + σ2

wINC NR is the covariance matrix of y. It is noteworthy
that (10) is typically limited in those scenarios where a target performance has to be achieved and
per-node fairness is not of concern [10,12]. Moreover, the average power received at the terminals
is an important metric measuring the human exposure to radio frequency (RF) fields generated by
transmitters operating at mmWave frequencies [21] and, with respect to traditional per-relay transmit
power constraints, it is more easily related to regulatory specifications [22]. To simplify (10), we exploit
the following chain of inequalities:

tr(GiFKyyFHGH
i ) ≤ tr(GiFFHGH

i )tr(Kyy)

≤ tr(GiFFHGH
i )

[
2

∑
i=1

tr(HiHH
i )PT,i + σ2

wNCNR

]

. tr(GiFFHGH
i )NCNR

(
2

∑
i=1

NT,i PT,i + σ2
w

)
, (11)

where the last approximate inequality holds noting that, for fixed values of NT,i, by the law of large
numbers one has HH

i Hi/(NCNR)→ INT,i almost surely as NCNR gets large. Therefore, if we impose
tr(GiFFHGH

i ) ≤ P̃R,i > 0, we get the upper bound:

tr(GiFKyyFHGH
i ) . P̃R,i NCNR

(
2

∑
i=1

NT,iPT,i + σ2
w

)
︸ ︷︷ ︸

,PR,i

. (12)

Such a choice allows one to considerably simplify the system design. In summary, the optimization
problem to be solved can be expressed as

min
{Pi}2

i=1,F

2

∑
i=1

tr[(INS,i + σ−2
n,i CH

i,iCi,i)
−1]

s.to

{
tr(Pi PH

i ) ≤ PT,i

tr(GiFFHGH
i ) ≤ P̃R,i

i ∈ {1, 2} . (13)
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In order to find a closed-form solution of (13), we introduce the matrix Bi , GiF ∈ CNT,i×NC NR ,
with i ∈ {1, 2}, and rewrite (13) as follows

min
{Pi}2

i=1,{Bi}2
i=1

2

∑
i=1

tr[(INS,i + σ−2
n,i PH

i HH
i BH

i BiHiPi)
−1]

s.to

{
tr(Pi PH

i ) ≤ PT,i

tr(BiBH
i ) ≤ P̃R,i

i ∈ {1, 2} . (14)

Remarkably, the cost function is the sum of two terms: the former one depends only on the
variables {P1, B2}, whereas the latter one involves only the variables {P2, B1}. Therefore, (14) can
be decomposed in two problems involving {P1, B2} and {P2, B1} separately, which can be solved in
parallel in a closed-form manner. Indeed, capitalizing on such a decomposition, the solution of (14)
can be characterized by the following theorem.

Theorem 1. Assume that: (a4) Pi ∈ CNT,i×NS,i is full-column rank, that is, rank(Pi) = NS,i ≤ NT,i, i ∈
{1, 2}; (a5) BiHi ∈ CNT,i×NT,i is full-column rank, that is, rank(BiHi) = NT,i ≤ NT,i, for i ∈ {1, 2}. Moreover,
let Hi = Uh,iΛh,iVH

h,i denote the singular value decomposition (SVD) of Hi, where Uh,i ∈ CNC NR×NC NR

and Vh,i ∈ CNT,i×NT,i are the unitary matrices of left/right singular vectors, and Λh,i ∈ CNC NR×NT,i is the
rectangular diagonal matrix of the corresponding singular values arranged in increasing order. Then, the solution
of (14) has the following general form:

Pi = Vh,i,right Ωi (15)

Bi = Qi ∆iUH
h,i,right, (16)

where Vh,i,right contains the NS,i rightmost columns of Vh,i, Uh,i,right contains the NT,i rightmost columns of Uh,i,
the diagonal matrices Ωi ∈ RNS,i×NS,i and ∆i ∈ RNT,i×NT,i will be specified soon after, and Qi ∈ CNT,i×NT,i is
an arbitrary semi-unitary matrix, that is, QH

i Qi = INT,i .

Proof. See Appendix A.

Remark 1. (a4) implies that NS,i ≤ NT,i, i ∈ {1, 2}.

Remark 2. (a5) implies that Hi is full-column rank too, that is, rank(Hi) = NT,i and NT,1 = NT,2. Hence,
in the following we set NT , NT,1 = NT,2.

Under (a4) and (a5), the dual-hop channel matrices {Ci,i = BiHiPi}2
i=1 are full-column rank,

that is, rank(Ci,i) = NS,i ≤ NT,i, for i = 1, 2: this ensures perfect recovery of the source symbol vectors
{si}2

i=1 at the terminals in the absence of noise by means of linear equalizers. Although Theorem 1
holds for any value of NS,1 and NS,2, we will assume herein that NS,1 = NS,2 = NT, which allows the
terminals to transmit as many symbols as possible with an acceptable performance in practice.
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Theorem 1 allows one to rewrite the optimization problem (14) in a simpler scalar form:

min
{z1,`,w2,`}

NT
`=1

{z2,`,w1,`}
NT
`=1

2

∑
i=1

NT

∑
`=1

1
1 + σ−2

n,i λ2
`(Hi)zi,` wi,`

s.to



NT

∑
`=1

zi,` ≤ PT,i

NT

∑
`=1

wi,` ≤ P̃R,i

wi,`, zi,` > 0 ∀` ∈ {1, 2, . . . , NS,i}

i ∈ {1, 2}, (17)

with zi,` and wi,` representing the `th squared diagonal entry of Ωi and ∆i, respectively, whereas λ`(Hi)

denotes the `th nonzero singular value of Hi, for ` ∈ {1, 2, . . . , NT}. Similarly to (14), problem (17) can
be decomposed into two separate problems involving disjoint subsets of variables.

It can be shown, with straightforward manipulations, that the objective function in (17) is convex
if and only if

zi,` wi,` ≥
σ2

n,i

3λ2
`(Hi)

(18)

∀` ∈ {1, 2, . . . , NS,i}, with i ∈ {1, 2}. It is also seen that, based on (a2), one has λmin(Hi) � 1
in the large NCNR limit, with i ∈ {1, 2}. Thus, condition (18) boils down to zi,`, wi,` > 0, for all
` ∈ {1, 2, . . . , NS,i}, with i ∈ {1, 2}, which is already included in the constraints of (17). Therefore,
convex programming can be used to find a global minimum of (17).

To calculate the relaying matrices, let us partition solution (16) as Bi = [Bi,1, Bi,2, · · · , Bi,NC ],
with Bi,k ∈ CNT×NR , i ∈ {1, 2}. Defining G̃k , [GT

1,k, GT
2,k]

T ∈ C2NT×NR and B̃k , [BT
1,k, BT

2,k]
T ∈

C2NT×NR , and assuming that G̃k is full-row rank, that is, rank(G̃k) = 2NT ≤ NR, with k ∈
{1, 2, . . . , NC}, the kth relay can construct its own relaying matrix by solving the matrix equation
G̃kFk = B̃k, whose minimum-norm solution is given by

Fk = G̃†
k B̃k, (19)

where the superscript † denotes the Moore-Penrose inverse.

Algorithm 1: The proposed design algorithm.

Input quantities: {Hi, Gi, σ2
n,i,PT,i, P̃R,i}2

i=1

Output quantities: {Pi, Di,mmse }2
i=1 and {Fk}

NC
k=1

1. Choose arbitrary {Qi}2
i=1 such that QH

i Qi = INS,i .
2. Perform the SVD of {Hi}2

i=1. and collect the {NS,i}2
i=1 largest singular values and the

corresponding left/right singular vectors.
3. Solve the convex problem (17) in the disjoint subsets of variables {z1,`, w2,`}

NS,1
`=1 and

{z2,`, w1,`}
NS,2
`=1 separately.

4. From the solution of step 3, build the matrices {Ωi, ∆i}2
i=1.

5. Build the matrices {Pi, Bi}2
i=1 according to (15) and (16).

6. Calculate {Fk}
NC
k=1 according to (19).

7. Calculate {Di,mmse}2
i=1 according to (6).

With reference to the step-by-step description of the proposed design algorithm reported at the
top of this page, the following comments are in order. The convex optimization in step 3 can be
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efficiently carried out using standard techniques, such as the interior-point method. We observe that
the worst-case theoretical complexity of the interior-point method is proportional to

√
NT. Hence, for a

realistic setting of the system parameters, the computational complexity of the proposed algorithm,
is dominated by the SVD computation (in step 2), which is of order O(NC NR N2

T) and, thus, it linearly
grows with the number NC of relays. It is noteworthy that, even though the alternating algorithm
proposed in Reference [16] allows to solve a nonconvex problem by solving convex subproblems,
it is more complex than calculating the solution of (17); moreover, it requires proper initialization to
monotonically converge to (at least) a local optimum.

4. Simulation Results

In this section, to assess the performance of the considered design, we present the results of Monte
Carlo computer simulations, aimed at evaluating the average (with respect to channel realizations)
bit-error-rate (BER) of the proposed cooperative two-way MIMO system. We consider a network
encompassing two terminals equipped with NT = 2 antennas, and transmitting QPSK symbols
with NS,1 = NS,2 = 2. The NC relays are equipped with NR = 4 antennas. We also assume that
PT,1 = PT,2 = Pk = P , for all k ∈ {1, 2, . . . , NC}, where Pk represents the average transmitted power
at the kth relay, and set σ2

w = σ2
n,1 = σ2

n,2 = 1. Consequently, the energy per bit to noise power spectral
density ratio Eb/N0 is a measure of the per-antenna link quality of both the first- and second-hop
transmissions. The BER is evaluated by carrying out 103 independent Monte Carlo trials, with each
run using independent sets of channel realizations and noise, and an independent record of 106

source symbols.
We compare the performances of our design (labeled as “Proposed”) to those of the iterative

technique proposed in Reference [16], which has been shown [16] in its turn to outperform other
iterative techniques, such as the gradient-descent technique of Reference [15]. It is worthwhile to note
that both the strategies under comparison require the same amount of CSI. Furthermore, since the
method of Reference [16] imposes different power constraints on the design of the relaying matrices,
our solutions for {Fk}

NC
k=1 are properly scaled so as to ensure that the average power transmitted by

each relay is the same for both methods.
In Figures 2–4, we report the BER for different values of the number NC ∈ {2, 3, 4} of relays.

Results in Figure 2 for NC = 2 show that the proposed closed-form design, based on the solution of the
relaxed problem (14), exhibits performances comparable with the iterative solution of Reference [16] in
the considered range of Eb/N0 values only when the latter employs more than 5 iterations. Specifically,
when the method of Reference [16] employs 10 iterations, a crossover can be observed in Figure 2
between the BER curve of the proposed algorithm and that of Reference [16]. This behavior is due to
the fact that the rate of convergence of Reference [16] strongly depends on the SNR.

Figures 3 and 4 show that, as the number of relays increases, the proposed method clearly
outperforms the method of Reference [16] even when the latter employs 10 iterations. Performance
improvement of Reference [16] is negligible after 10 iterations.

In a nutshell, although the alternating iterative procedure [16] attempts to solve the nonconvex
original two-way constrained minimum sum-MSE problem, its convergence behaviors are affected
in practice by both the operative SNR and number of relays: in the low-SNR region and/or when
the number of relays is sufficiently large, convergence to a local minimizer is not guaranteed in a
reasonable number of iterations for all possible initializations. This is the price to pay for swapping
a difficult joint optimization with a sequence of easier problems involving subsets of the variables.
On the other hand, the proposed optimization strategy gives up the idea of solving the original
nonconvex problem, by resorting to suitable relaxations of both the cost function and the relaying
power constraint. This allows us to jointly optimize all the variables, without using burdensome
iterative algorithms.
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Figure 2. Bit-error-rate (BER) versus Eb/N0 of the proposed design versus the iterative method of
Reference [16] (NC = 2).
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Figure 3. BER versus Eb/N0 of the proposed design versus the iterative method of Reference [16]
(NC = 3).
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Figure 4. BER versus Eb/N0 of the proposed design versus the iterative method of Reference [16]
(NC = 4).

5. Discussion and Directions for Future Work

We tackled the joint sum-MSE design of terminal precoders/decoders and relay forwarding
matrices for two-way AF MIMO 5G systems. We showed that a relaxed version of such a problem can
be separated into two simpler ones, which can be solved in parallel by admitting closed-form solutions.
The proposed technique exhibits a performance gain over the iterative method of Reference [16],
exhibiting a better scaling with the number of relays and a reduced computational complexity.

In this paper, we assumed the availability of full-CSI at both terminals and the relays. In this
respect, an interesting research subject consists of considering the use of partial CSI to extend network
lifetime and reduce the complexity burden. Moreover, since channel estimation errors occur in practical
situations, an additional research issue is to develop robust optimization designs.
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Appendix A. Proof of Theorem 1

We focus on the optimization (14) with indexes i = 1 and i = 2, that is, we consider

min
P1,B2

tr[(INS,1 + σ−2
n,2 PH

1 HH
1 BH

2 B2H1P1)
−1]

s.to

{
tr(P1 PH

1 ) ≤ PT,1

tr(B2BH
2 ) ≤ P̃R,2

. (A1)
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We note that under (a4) and (a5), one has rank(B2H1P1) = NS,1 ≤ NT,1. Let UaΛaUH
a be the

eigenvalue decomposition (EVD) of A , HH
1 BH

2 B2H1 ∈ CNT,1×NT,1 , where the diagonal matrix Λa ∈
RNT,1×NT,1 and the unitary matrix Ua ∈ CNT,1×NT,1 collect the eigenvalues, arranged in increasing order,
and the eigenvectors of A, respectively. The objective function in (A1) is a Schur-concave function
of the diagonal elements of (INS,1 + σ−2

n,2 PH
1 AP1)

−1. In this case, it can be shown [23] that there is an
optimal P1 such that PH

1 AP1 is diagonal, whose diagonal elements are assumed to be arranged in
increasing order, and such an optimal matrix, which also minimizes tr(P1PH

1 ), is given by

P1 = Ua,rightΩ1, (A2)

where Ua,right ∈ CNT,1×NS,1 contains the NS,1 ≤ NT,1 rightmost columns from Ua, and Ω1 ∈ CNS,1×NS,1

is a diagonal matrix. Let Q2 ∈ CNT,2×NT,1 be an arbitrary semi-unitary matrix, that is, QH
2 Q2 = INT,1 ,

it follows from the EVD of the matrix A that B2H1 = Q2Λ1/2
a UH

a . Noting that rank(H1) = NT,1,
by substituting the ordered SVD of H1 = Uh,1Λh,1VH

h,1 in this equation, after some algebraic
manipulations, one has that the minimum-norm solution [24] of the matrix equation B2Uh,1Λh,1 =

Q2Λ1/2
a UH

a Vh,1 is
B2 = Q2Λ1/2

a ŨaΛ−1
h,1,rightUh,1,right, (A3)

where Uh,1,right collects the NT,1 rightmost columns of Uh,1, whereas Ũa , UH
a Vh,1 ∈ CNT,1×NT,1 and

the diagonal a Λh,1,right ∈ RNT,1×NT,1 gathers the NT,1 nonzero singular values of H1 in increasing
order. The aim is now to further determine (A3) by properly choosing Ũa such that tr(B2BH

2 ) =

tr[(ŨaΛ−2
h,1,rightŨa)Λa] has the smallest value. It is readily seen that tr(B2BH

2 ) is invariant to the choice

of Q2. By observing that ŨH
a Ũa = INT,1 and using a known trace inequality, one has

tr[(ŨaΛ−2
h,1,rightŨa)Λa] ≥

NT,1

∑
`=1

λ−2
h,1,`λa,`, (A4)

where λh,1,` and λa,` denote the `th diagonal entry of Λh,1,right and Λa, respectively. The equality
in (A4) holds when

Ũa = UH
a Vh,1 = INT,1 . (A5)

Substituting (A5) in (A3), after some algebraic manipulations, one obtains B2 = Q2 ∆2UH
h,1,right,

with ∆2 , Λ1/2
a Λ−1

h,1,right ∈ RNT,1×NT,1 . Solution (15) comes from substituting in (A2) the
minimum-norm solution [24] of (A5), that is, Ua = Vh,1,right.
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