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Abstract: The dynamic interaction between vehicle, roughness, and foundation is a fundamental
problem in road management and also a complex problem, with their coupled and nonlinear behavior.
Thus, in this study, the vehicle–pavement–foundation interaction model was formulated to incorporate
the mass inertia of the vehicle, stochastic roughness, and non-uniform and deformable foundation.
Herein, a quarter-car model was considered, a filtered white noise model was formulated to represent
the road roughness, and a two-layered foundation was employed to simulate the road structure.
To represent the non-uniform foundation, stiffness and damping coefficients were assumed to vary
either in a linear or in a quadratic manner. Subsequently, an augmented state-space representation was
formulated for the entire system. The time-varying equation governing the covariance of the response
was solved to examine the vehicle response, subject to various foundation properties. Finally, a linear
discriminant analysis method was employed for classifying the foundation types. The performance
of the classifier was validated by test sets, which contained 100 cases for each foundation type.
The results showed an accuracy of over 90%, indicating that the machine learning-based classification
of the foundation had the potential of using vehicle responses in road managements.

Keywords: machine learning-based classification; non-uniform foundation; stochastic analysis;
vehicle–pavement–foundation interaction

1. Introduction

Road infrastructure forms a basic component in transportation, providing connectivity between
local, regional and global value chains. Despite the impacts of road’s serviceability on the economy and
public safety, maintenance is inadequate, due to its extensive nature. For example, the Federal Highway
Administration reported that 26 percent of major urban roads in the U.S. are in a poor condition [1].
FHWA also reported that a capital of 182 billion dollars was spent in 2008 on improvements and
maintenance of federal highway, while they are still in shortage [1]. Thus, research that develops tools
and methods for assessing road conditions assume greater importance.

Typically, a pavement’s condition is assessed by measured information, such as ride comfort,
surface defects, and structural adequacy [2]. For example, the Pavement Condition Index (PCI),
developed by the U.S. Army Corps of Engineers rates the surface operational conditions including
rutting, potholes, crackings, etc. [3]. Recent advances in image processing and deep learning
technologies demonstrated that an automatic rating of PCI using a visual platform is available.
For example, the automated pavement management system equipped with visual inspecting tools were
developed to evaluate the pavement deteriorations and cracking [4,5]. Multimetric sensors including
wireless sensing modules are utilized as well to examine the surface condition [6,7], fatigue [8],
and certain anomalies on road structures [9]. However, unlike visible surface defects, structural
adequacy is associated with the load transfer capability of the subgrade layers.
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The falling weight deflectometer (FWD) is an essential non-destructive tool that is widely used for
evaluating the structural adequacy of the pavement [10]. In FWD, as the weight falls on the pavement
to be examined at some height, the response of the pavement, including deflection, is measured. Then,
the responses are related to the strain and elasticity of the pavement, to examine the adequacy of
the sublayer [11]. However, due to complexities in the testing method, which is usually performed
during post-processing of the collected data, and due to required technical expertise, significant time,
and costs, the network-level application is limited [12]. With the advancement of the wireless module’s
sensing and calculating capability, the inspection and monitoring fields are in the transition from
human-oriented inspection to machine-based inspection [13]. The following literature shows some
successful examples of monitoring foundation noise excitation [14], decentralized road networks [15],
which are known to be complicated, compared to other applications. Thus, so far, predicting the
capability of road structure with rather portable and automated devices are of interest, but a challenging
task, due to its complicated mechanisms.

Within a road structure, the main excitation source is a moving vehicle. To understand the
responses of the moving loads, various foundation types were examined, based on analytical models.
One of the simplest model was developed to examine vehicle response due to road roughness on a
non-deformable foundation. Roughness was first modeled as Gaussian random signals [13]. Then,
the models improved to contain a more realistic input, such as a stationary zero-mean process with
a certain power spectral density (PSD) [16–18]. Among various research works, Wedig derived a
closed-form expression of the covariance response of a vehicle model, by integrating the PSD of road
roughness [19]. These models examined the impact of road roughness on vehicle responses, while the
interactions due to pavement deflection were neglected.

To consider the deformable foundation, an Euler-Bernoulli beam resting on the viscoelastic
foundation was investigated. Hardy and Cebon (1993) developed a quarter-car model on a smooth
beam on a uniform Winkler foundation, to examine the vehicle–pavement–foundation interaction [20].
Similar approaches were adopted by other researchers and they used the models to understand the
impact of vehicle parameters (including speed) on foundation responses [18,21]. Kelvin foundation
under the Bernoulli beam was also adopted by authors in [22]. In their model, the interaction responses
were examined by coupling the solutions of two systems—(1) vehicle on rough road and (2) elastic
foundation subject to a single load. To eliminate the boundary condition effects, the frequency domain
analysis of the interaction problem was performed on an infinite length beam [23]. Instead of handling
infinite length, Kim et al. (2019) formulated the interaction system, based on a moving coordinate
system, and examined the second-order stationary response of the interaction problem [24]. In the
aforementioned studies, the foundation properties such as stiffness and density were assumed to be
uniform, while in reality, those quantities might vary along the length of the road.

The non-uniform foundation on a beam was investigated by several groups of researchers. Early
efforts focused on formulating a closed-form equation for varying foundation modulus, targeting
statistical analyses. The linearly varying solutions were presented by Franklin and Scott (1979) [25]
and higher-order variations were solved by the authors in [26,27]. The free vibration of the beams
on the non-uniform foundation was studied by the following authors [28–30]. The authors in [30]
compared the impact of nonlinear foundation on the deflection shapes and natural frequencies of the
beam. Then, dynamic responses of a beam on the variable Winkler foundation, subject to a moving
load, were studied by [31–33], and a moving mass was investigated by [34]. Although previous studies
captured the effect of variable foundation on the pavement system, due to computational complexities,
studies mostly neglected the inertial force effect from the moving vehicles.

In this study, the impact of the non-uniform foundation on vehicle responses was solved
by developing the vehicle–pavement–(non-uniform)-foundation interaction model. In the model,
the vehicle was represented with a moving-oscillator (a quarter-car). The pavement roughness was
described with a filtered white noise model. The rigid foundation was modeled to have a finite-length
Euler–Bernoulli beam on a deformable foundation. The top layer was modeled using the assumed



Sensors 2020, 20, 6263 3 of 17

modes method. The subgrade was modeled with a Winkler-type foundation, in which the stiffness
and damping properties varied along the length. The interaction model was then formulated in an
augmented state-space representation. To effectively examine the response of the vehicle, the covariance
of the response was then solved for the time-varying Lyapunov equation. Then, the equations were
solved for various pavement roughness and foundation cases, to construct the covariance responses.
Based on the estimated responses, six features that could distinguish the foundation types were selected
and employed on a classifier. Subsequently, noise-added responses were employed on a linear classifier
and demonstrated that the measured dynamics of a vehicle due to interaction could distinguish the
foundation types and variations with an accuracy of over 90%.

2. Model Formulation

2.1. Overview

The vehicle–pavement–foundation interaction model considered herein is shown in Figure 1.
The rigid pavement was modeled with an Euler–Bernoulli beam that had constant material properties.
Elastic modulus (E), the moment of inertia (I), thickness (tb), cross-sectional area (A), density (ρ),
and length (L). The vertical displacement of the beam due to interaction was defined as uB(x, t).
The elastic foundation was taken as a Winkler-type foundation with varying stiffness (kf(x)) and
viscous damping (cf(x)), along the length. The roughness of the pavement was modeled as a profile
ξ(x) and superimposed on top of the beam.
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Figure 1. Vehicle–pavement–foundation system.

The vehicle was represented with a quarter-car model, consisting of sprung mass (ms) and
unsprung mass (mu). Their vertical movement was defined as us and uu, while spring stiffness and
damping coefficients at suspension and tire were denoted with ks, kt, cs, and ct, respectively. The vehicle
was assumed to have constant velocity (V), as it traveled along the length. In the subsequent sections,
a model formulation of the interaction system was introduced. Note that some derivations such as a
state-space representation of the roughness were briefly discussed, while more detailed formulations
could be found in the related literature [24,35,36].
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2.2. Basic Equations

Employing the assumed modes method, the vertical deflection of the Euler–Bernoulli beam uB(x, t)
could be defined in a series of sine functions, assuming a simple support boundary condition:

φ(n) = sin
(

nπ(x + L)
L

)
, n = 1, 2, 3, . . .N (1)

where N is the total number of modes in the shape function. Then, the deflection of the beam could
be rewritten as uB(x, t) = NB(x)qB(t). NB(x) is a mode shape vector containing defined mode shapes
(φ(n)) and qB(t) is a time-dependent generalized displacement of the beam. The relationships for the
first- and second-time derivative are

.
uB(x, t) = NB(x)

.
qB(t) and

..
uB(η, t) = NB(x)

..
qB(t).

Then, defining the displacement vector as xc(t) =
[

qB(t) uu zs
]T

, the equations of motion for
the vehicle–pavement–foundation interaction system could be formulated as follows:

Mc
..
xc(t) + Cc

.
xc(t) + Kcxc(t) = −Pg + Pcξ(t) (2)

where

Mc =


[∫ L

0 ρANT
BNBdx

]
N×N

[0]N×1 [0]N×1

[0]1×N ms + mu ms

[0]1×N ms ms

 (3)

Cc =


cf(Vt)

∫ L
0 NT

BNBdx + ctNT
B(Vt)NB(Vt) −ctNT

B(Vt) [0]N×1
−ctNB(Vt) ct 0
[0]1×N 0 cs

 (4)

Kc =


∫ L

0 EIN”T
B N”

Bdx + kf(Vt)
∫ L

0 NT
BNBdx + ktNT

B(Vt)NB(Vt) −ktNT
B(Vt) [0]N×1

−ktNB(Vt) kt 0
[0]1×N 0 ks

 (5)

Pg =
[
[0]N×1, −(ms + mu)g, −msg

]T
(6)

Pc =


−ktNT

B(Vt) −ctNT
B(Vt)

kt ct

0 0

 (7)

ξ(t) =
[
ξ̂(t)

.
ξ̂(t)

]T
(8)

Note that NB(x) is short noted as NB, except for the case when evaluated at x = Vt. Additionally,
ξ̂(t) = ξ(x)

∣∣∣
x=Vt kf(Vt) = kf(x)

∣∣∣
x=Vt, cf(Vt) = cf(x)

∣∣∣
x=Vt and g is the gravity term.

Then, defining a state vector xT =
[

xc
.
xc

]T
and organizing Equation (2) in a state-space

representation, yields:

.
xT(t) = ATxT(t) + BTξ(t)=

[
[0]NT×NT

[I]NT×NT

−M−1
c Kc −M−1

c Cc

]
xT(t) +

[
[0]NT×2
M−1

c Pc

]
ξ(t) (9)

where NT is N + 2. The output vector yT(t) could be defined to contain arbitrary information about the
system. In this study, the vehicle responses including displacement and velocity of the unsprung and
sprung masses were considered as the output, i.e., yT(t) =

[
uu zs

.
uu

.
zs

]
. Then, the observation

and feedthrough matrices yield:

yT(t) = CTxT(t) + DTξ(t)=
[
[0]1×N 1 0 [0]1×N 1 0
[0]1×N 0 1 [0]1×N 0 1

]
xT(t) + [0]2NT

ξ(t) (10)
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2.3. Augmented Equations of Motion

This section further arranges the equations derived for the interaction problem in Equation (9)
to yield an augmented system in which the primary input is white noise. The white noise input
allows a much simpler calculation and the use of stochastic analyses, when compared with manually
inputting the roughness profile to the system. Authors in [35,36] constructed a state-space model for
the stochastic roughness, when it follows a specified PSD, (Sζζ(ω)). In their approach, the transfer
function (Hζw(ω)) was approximated using polynomial representation, as below:

Sζζ(ω) = H2
ζw(ω)S0 (11)

where S0 is the degree of unevenness and ω is radian per second.

Then, Hζw(ω) is realized in a state-space model as below to have output vector yf =
[
ξ̂(t)

.
ξ̂(t)

]T
,

i.e.,
.
xf = Afxf(t) + Bfw(t) (12)

yf(t) = Cfxf(t) (13)

where xf is the state vector, Af, Bf, and Cf are system, input, and observation matrices, respectively.
The output vector is defined to contain the roughness and time derivative term of the roughness, i.e.,

yf(t) =
[
ξ̃(t)

.

ξ̃(t)
]T

. An example of designing a pavement filter using a second-order low-pass

filter and polynomial approximation approaches is discussed in detail [35].
Finally, by combining Equations (9), (10), (12), and (13), the augmented state vector was defined

as xa =
[

xT
T xT

f

]T
. Then,

.
xa = Aaxa + Baw(t)=

[
AT BT1Cf1 + BT2Cf2

0 Af

][
xT

xf

]
+

[
0
Bf

]
w(t) (14)

yT = Caxa =
[

CT DT1Cf1 + DT2Cf2

][ xT

xf

]
(15)

Note that BT1 and BT2 indicate the first and the second columns of BT, respectively. Similarly,
DT1 and DT2 correspond to the first and the second columns of DT. The equations do not contain
the feedthrough terms, implying that the system was strictly proper. In addition, Aa and Ca were
time-dependent matrices, due to the variable foundation coefficients, kf(Vt) and cf(Vt).

3. Stochastic Vehicle Response

The covariance of the augmented system, Γxa , could be determined through a linear differential
equation, when the input is a white noise process [37]:

.
Γxa(t) = Aa(t)Γxa + Γxa(t)A

T
a (t) + 2πS0BaBT

a (16)

where S0 is the level of the white noise indicating the level of roughness. Solving Equation (16) is
beneficial as it does not contain the principal matrix, in which an explicit format of the matrix is
generally unknown in time-varying systems.

In the case of uniform foundation, i.e., kf(x) = kf, cf(x) = cf with an infinite length beam,
the system becomes stationary. Then, assuming that the initial conditions could be described by a
random vector, xa(0) = xa0 the initial condition of Equation (16) Γxa(0) = Γ0 becomes:

Γ0 = E[(xa0 − µxa0)(ya0 − µxa0)
T] (17)
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where µxa0 and Γ0 indicates the mean and the covariance, respectively. If the initial conditions are all
deterministic, Γ0 = 0. Then, the covariance of the structure responses, Γy, is given by:

Γy = CaΓxaCT
a (18)

Further, with a zero-mean white noise being the input to the augmented system in Equation (14),
the stationary covariance responses could be obtained by the solution of

0 = AaΓxa + ΓxaAT
a + 2πBaS0BT

a (19)

which is known as the Lyapunov equation [38]. Note that the equation is linear in unknown covariances
and can only examine the moments of the responses under the stationary process.

However, the presented study consisted of a non-uniform foundation, in which the quantities
varied over the length of the beam. Thus, the basic assumptions made in Equation (20) was no longer
valid. Instead of directly integrating Equation (14), the general covariance response in Equation (16)
was solved for Γxa , for which the matrix components are described below:

Γxa =



Γqq Γqu Γqz Γq
.
q Γq

.
u Γq

.
z Γqf

Γuu Γuz Γu
.
q Γu

.
u Γu

.
z Γuf

Γzz Γz
.
q Γz

.
u Γz

.
z Γzf

Γ .
q

.
q Γ .

q
.
u Γ .

q
.
z Γ .

qf
− sym − Γ .

u
.
u Γ .

u
.
z Γ .

uf
Γ .

z
.
z Γ .

zf
Γff


(20)

where qB, uu, and zs are short noted as q, u, and z, respectively. Then, the symbolic covariance matrix,
for which the number of variables is Nvar = (Na × (Na + 1)/2) was plugged into Equation (15) to
construct Nvar distinct differential relationships.

Finally, the desired time-varying covariance responses of the vehicle, ΓyT(t) =[
Γuu(t) Γzz(t) Γ .

u
.
u(t) Γ .

z
.
z(t)

]T
, was obtained by solving Equation (16) via the time-step

integration method embedded in Matlab®(e.g., ode45).

4. Illustrative Examples

This section demonstrates the proposed approach by examining the covariance response of a
vehicle on a non-uniform foundation. To first validate the solution procedure, steady-state covariance
responses were compared by slowing the speed of the vehicle. Then, covariance responses were
compared for various pavement scenarios. Finally, covariance response features were selected to
classify and examine the foundation properties.

4.1. Vehicle and Pavement Model Properties

The properties of the quarter-car model used in the numerical examples are drawn from [39,40]
and summarized in Table 1. Note that kt is sought using a calibration index to well approximate the
empirical model in [41], on a non-deformable rigid foundation with varying roughness [35].
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Table 1. Vehicle properties.

Symbol Components Value

ms Sprung mass 1460 kg

mu Unsprung mass 80 kg

cs Suspension Damping 8760 Ns/m

ct Tire Damping 700 Ns/m

ks Suspension Stiffness 29.44 kN/m

kt Tire Stiffness 2500 kN/m

V Velocity 20 km/h
(stated otherwise)

The transfer function to approximate the PSD of road roughness, as in Equation (11), is considered
as follows:

Sξξ(ω) = S0

(
Ω
Ω0

)−ν
(21)

where Ω is the spatial circular frequency (ω/V); Ω0 = 1 rad/m, ν is the waviness that is taken as 2.45,
to match the average roads in the U.S. [42]. Note that S0 is varied to match the International Roughness
Index (IRIs), which is a measure of road roughness on ride comfort [43]. A lower IRI value indicates a
smooth pavement, while a higher IRI implies a rough pavement. In this study, IRIs are varied from 1
to 5, and the corresponding S0’s are approximated at those integers, using the golden car approach
described in [35].

The typical pavement system was adopted herein, and the uniform properties of the
Euler–Bernoulli beam (top layer in Figure 1) are summarized in Table 2. The elasticity of the
top-layer used in the study represents the medium soil [44].

Table 2. Euler–Bernoulli beam property.

Symbol Components Value

h Thickness 200 mm

b Width 1.8 m

E Elastic modulus 8760 Ns/m

ρ Density 700 Ns/m

L Length 5 m

Finally, to accommodate different Winkler type foundations, spring and damping coefficients
were varied linearly or quadratically. Thus, the following equations were adopted for each case:

kf(x) = kf0 × zf(x)cf(x) = cf0 × zf(x) (22)

Linear: zf(x) = 1− αx, 0 ≤ x ≤ L/2zf(x) = (2α− 1) − 2x(α− 1)/L, L/2 ≤ x ≤ L (23)

Quadratic : zf(x) = 1 + 4x(α− 1)/L− (α− 1)4x2/L2, 0 ≤ x ≤ L (24)

where the reference parameters for stiffness (kf0) and damping (cf0) are 30 kPa/mm and 2.4× 107 N·s/m,
respectively. The reduction factor α ≤ 1 was selected such that the soil had the most reduced value
at the mid-span of the beam (L/2). In this study, α was varied from 0.5, 0.7, and 0.9, which implied
50%, 70%, and 90% of the reference parameters. An illustration of zf(x) for each α is shown in Figure 2.
Herein, the variation profiles are described with L and Q, for a linear and quadratic shape, respectively,
followed by two digits describing α. For example, a dashed-dot plot in Figure 2a (linear with α = 0.5)
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was denoted as ‘L50’. Similarly, ‘Q90’ indicates that zf(x) varies in a quadratic manner (see a solid line
in Figure 2b).
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4.2. Validation of the Solution Approach

In this section, the steady-state responses of the vehicle were compared with that of near-stationary
responses. The purpose of the presented study was to validate the time-varying covariance solutions
in Equation (16) by slowing the speed of the vehicle, and also to illustrate the difference in the response
due to various profiles of the subgrade and roughness, to be used in the following sections.

Figure 3 shows ΓyT(t) in comparison with steady-state responses. Here, the speed of the vehicle
was slowed to 0.5 m/s (1.8 km/h). The total number of modes used in the Euler–Bernoulli beam
was 10 sine modes and a roughness of IRI = 3 m/km was used. Regarding subgrade, the uniform
foundation was represented by zf(x) = 1 in Equation (19), while α = 0.5 was used for linearly and
quadratically varying foundations. Steady-state responses were calculated by fixing the location
of the vehicle at the mid-span and solving Equation (16) with

.
Γxa(t) = 0, where the responses

were as small as Γuuuu = 1.39 × 10−5 [m/s]2; Γzszs = 1.40 × 10−5 [m/s]2; Γ .
uu

.
uu

= 1.42 × 10−5 [m/s]2;

Γ .
zs

.
zs

= 0.189 × 10−5 [m/s]2. Note that the impact of foundation property change in the case of a
stationary process was negligible, as reported by [24]. However, non-stationary covariance responses
showed large humps within the first 2 s, due to the dynamic effect of boundary conditions. Peaks on
velocity covariance responses were much higher than the displacement responses, rapidly converging
to stationary responses.
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Furthermore, the responses were examined on various road roughness. To compare the results
efficiently, Figure 4a plots Γuuuu with linearly varying foundation, as the IRIs varied from 1 to 5 m/km.
A time-step integration method, ode45 was used as the vehicle crossed over the length with vehicle
speed (V = 20 km/h). As could be seen, the effect of surface roughness on the nonstationary covariance
responses were negligible. To better visualize the difference in the responses, the differences were
plotted in Figure 4b, in percentage. The difference was estimated for each IRI (ΓIRIi ), with respect to the
response at IRI = 1 km/m (ΓIRI1 ), as below:

∆ΓIRI =

(
ΓIRIi − ΓIRI1

ΓIRI1

)
∗ 100 [%](i = 1, 2, . . . , 5) (25)

∆ΓIRI tended to diverge as the vehicle moved along the beam, indicating that dynamic responses
were accumulated. However, within the domain, the maximum difference was less than 0.025% which
was negligible, compared to the governing dynamic responses. Although the impact of change in IRI
might increase as the beam length gets longer and the speed of the vehicle increases, the result indicated
that the responses were governed more by the non-uniform features of the foundation. This fact
emphasized the importance of conducting nonstationary response analyses because the stationary
response analyses could not capture such differences, as reported by [24].

Based on the study, non-stationary responses under various subgrades converged to steady-state
responses with time, while velocity covariance responses showed a faster rate. Additionally,
the subgrade variation types affected the vehicle responses while road roughness had a negligible
impact. Therefore, in the subsequent sections, road roughness was fixed to IRI = 3 m/km, to examine
Γuuuu(t) on various α’s.
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4.3. Time-Varying Covariance Responses

Figure 5 shows the time-varying covariance responses, Γuuuu(t), as the vehicle runs over the
pavement with different types of foundation properties. The simulations were carried out on the
basis of combinations of two variables—(1) foundation profile, implying how the subgrade properties
change, i.e., either in a linear or in a quadratic manner, and (2) α, which varied from 0.5, 0.7, to 0.9.
Then, the variable time-step was used for the integration and then downsampled to present 100 data
points within the duration. After the resampling procedure, one could consider that the responses on
the vehicle were measured at about 110 Hz. The chosen sampling rate was low enough to be easily
realized, yet could capture the key features of the responses. The response shown in Figure 5 are
deterministic, as the foundation variation profiles, α, and the speed of the vehicle are known. However,
deterministic identification based on Figure 5 was unrealistic, because the measured signals tended to
be contaminated with noises.
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Now, noises were randomly selected to have a signal to noise level (SNR) between 25–50 dB.
Note that the noises were added to the raw signals and then resampling was performed to represent
the signal noises. Here, only the measured noises were considered because the zero-mean noises in the
responses did not affect the covariance responses. For example, Figure 6 illustrates the covariance
response with noises added on linearly varying foundation with α = 50. SNR of Figure 6a is about
45 dB and Figure 6b is about 50 dB.
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From the outcome of this subsection, the following conclusions could be made:

• Variations in profiles and α differed the maximum response and rate of convergence, while a
general shape of the responses was preserved.

• A larger maximum value was obtained in quadratically varying profiles, compared to the linear
case when the same αwas used.
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• Within the same profile, a larger α tended to increase the rate of convergence. However,
the responses exhibit highly nonlinear relationships between the variables, making the prediction
of subgrade’s property change difficult.

• Although the vehicle responses were somewhat deterministic, once the foundation and vehicle
parameters were determined, the analytical approach in the prediction was not realistic, due to
the noises in the measured signal.

Thus, to resolve the issue, a machine-learning based classification of subgrades based on Γuuuu(t)
is discussed in the subsequent section.

5. Machine-Learning Based Classification

Machine-learning techniques are recognized in the civil engineering field as a promising component
for monitoring and inspecting [13]. Machine-learning tools can provide pattern recognition strategies,
when a deterministic model is difficult to be identified [45]. With their highlighted importance and
computational advances, the Matlab software incorporated the Statics and Machine Learning toolbox
containing considerable machine-learning techniques [46,47].

Among classifiers provided in the Classification Learner App in Matlab R2019b, one of the
traditional classifier, linear discriminant analysis (LDA) is implemented for identifying the changes
in the foundation properties from vehicle responses. The LDA method assumes that the data are
distributed in Gaussian and that each attribute has the same variance. Then, the Bayes’ theorem is
applied to estimate the posterior probability that the observation belongs to a certain class. Then,
the costs are evaluated from the maximal difference between the computed sample covariance and the
empirical covariance matrix. In LDA, the cost function is linear with respect to the observation [46,48].
With these assumptions, the LDA model attempts to express one dependent variable in terms of a
linear combination of other features or measurements [46]. Thus, to enhance the classification accuracy,
features in the covariance responses must be selected carefully.

Based on the previously presented results, the following six features were selected—(1) maximum
amplitude, A1; (2) time corresponding to A1, T1; (3) minimum tangent occurring between 0.2 s and
0.8 s, A2; (4) time corresponding to A2, T2; (5) slope of the linear regression between 0.2 s and 0.8 s,
A3; and (6) y-intercept of the regression found in (5), A4. Then, to incorporate the measured noise
in covariance responses, RMS noises were added in Γuuuu(t). The extracted features showed some
relationships among them. Figure 7 illustrates the distribution of features over the range of A1. As can
be seen, some features, such as A2 and A4, show a higher correlation with A1, while other features are
more scattered over the range of A1. In addition, L70, L90, and Q90 seem to overlap with each other
(as in Figure 7a–e, making it hard to differentiate with classification models that are based on decision
trees, etc.
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Figure 7. The distribution features over the range of A1 (Maximum Amplitude); (a) Relationship
between A1-T1 (Maximum Time); (b) Relationship between A1–A2 (Maximum Tangent); (c) Relationship
between A1-T2 (Time at Maximum Tangent); (d) Relationship between A1–A3 (Linear regression slope);
and (e) Relationship between A1-A4 (Linear regression y-intercept).

Subsequently, the collected datasets were trained using LDA. The average success rate for using
an LDA classifier was over 94%, with at most 10% noise. Table 3 is a confusion matrix when 77 training
data were used. The table shows that the foundation was mostly classified, while 18% of the L50 case
was misclassified as Q70, and vice versa. Note that LDA showed the highest accuracy when compared
with other classification tools; the linear support vector machine showed 82% accuracy, ensemble
provided 84% accuracies, while other methods showed over 40% errors.
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Table 3. Confusion matrix for foundation property test.

Actual
Properties

Assessed Properties

L50 L70 L90 Q50 Q70 Q90

L50 0.82 0.00 0.00 0.00 0.18 0.00

L70 0.00 1.00 0.00 0.00 0.00 0.00

L90 0.00 0.00 1.00 0.00 0.00 0.00

Q50 0.00 0.00 0.00 1.00 0.00 0.00

Q70 0.18 0.00 0.00 0.00 0.82 0.00

Q90 0.00 0.00 0.00 0.00 0.00 1.00

Now validation tests were conducted to verify the performance of the developed LDA model.
For each case of the foundation, 100 test sets with 1~10% RMS noises added on the responses were
generated. The accuracy of the classifier was plotted as a bar chart shown in Figure 8. As could be
expected from the confusion matrix, Q70 showed the lowest accuracy, 83%, followed by L50. Overall
accuracy was about 94.5% This result supports that by adopting LDA model, the vehicle responses
could classify the change in the foundation properties with good accuracies.
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6. Conclusions

This paper presented a machine-learning-based classification of non-uniform foundation properties
using vehicle responses. The dynamics response of the quarter-car model on the stochastic deformable
pavement with a finite length was evaluated. A filtered white noise was used to represent the stochastic
pavement roughness. The deformable subgrade was modeled by an Euler–Bernoulli beam on a
Winkler-type foundation. The non-uniform characteristics were represented with varying stiffness and
damping coefficients of the subgrade. Then, the vehicle–pavement–foundation interaction model was
combined to yield an augmented state-space representation, which had white noise as the primary
input to the system. In this study, the model could accommodate any time of foundation that was
describable with a longitudinal axis, although only the impacts of linear and quadratic variations
were discussed. A time-varying Lyapunov equation governing the covariance of the responses was
solved to effectively obtain the response of the vehicle. From the steady-state Lyapunov solution,
the solution approaches were validated. Then, various values of the subgrade’s properties, along with
surface roughness were compared. The parametric study showed that the stiffness produced some
difference in the response profile, while the roughness produced negligible change. This fact opposed
the uniform foundation case, indicating the importance of considering the non-uniform foundation.
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Then, a set of simulations for measuring noise were performed and used for feature extraction for a
classifier. Using an application embedded in Matlab®, linear discriminant analysis was employed
to show an average accuracy of 94%. Finally, a total of 600 test sets were generated to demonstrate
that the estimated foundation properties were mostly correct. Based on the outcome of this study,
the contribution of the presented work and the specific conclusions are summarized as follows:

• The introduced vehicle–pavement–foundation model and nonstationary solution approach allow
the investigation of the impact of nonuniform foundation characteristics on vehicle responses.

• Due to the non-stationary stochastic solution approach described, which examined the
second-order statistics of the process, efficient estimation was available, where the response
was determinate and unaffected by the zero-mean noises.

• The proposed approach could efficiently handle various types of vehicles, roughness,
and nonlinearity of foundations.

• Based on the theoretical evaluation, a machine-learning-based classification of non-uniform
foundation properties was demonstrated, which included irremovable measured noises.

• In addition to the physical realization of the presented results, future research must ensure to
provide high accuracy of identification when the location of the weakened foundation is unknown,
and should consider the lateral movement at the left support.

• Overall, based on the outcome of the study, the vehicle responses could be used in conjunction
with machine-learning technologies for classifying the properties and types of the subgrade.

In conclusion, the presented work demonstrated the potentials of monitoring the subgrade
anomalies from an inspecting vehicle that is only equipped with a set of accelerometers. Unlike the
current approach of a subgrade survey that is only limited to suspicious spots, the successful realization
of the presented methodology might allow a complete survey and the construction of a database for
road management.
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