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Abstract: The main source of delays in public transport systems (buses, trams, metros, railways) takes
place in their stations. For example, a public transport vehicle can travel at 60 km per hour between
stations, but its commercial speed (average en-route speed, including any intermediate delay) does
not reach more than half of that value. Therefore, the problem that public transport operators must
solve is how to reduce the delay in stations. From the perspective of transport engineering, there are
several ways to approach this issue, from the design of infrastructure and vehicles to passenger traffic
management. The tools normally available to traffic engineers are analytical models, microscopic
traffic simulation, and, ultimately, real-scale laboratory experiments. In any case, the data that are
required are number of passengers that get on and off from the vehicles, as well as the number of
passengers waiting on platforms. Traditionally, such data has been collected manually by field counts
or through videos that are then processed by hand. On the other hand, public transport networks,
specially metropolitan railways, have an extensive monitoring infrastructure based on standard video
cameras. Traditionally, these are observed manually or with very basic signal processing support,
so there is significant scope for improving data capture and for automating the analysis of site usage,
safety, and surveillance. This article shows a way of collecting and analyzing the data needed to
feed both traffic models and analyze laboratory experimentation, exploiting recent intelligent sensing
approaches. The paper presents a new public video dataset gathered using real-scale laboratory
recordings. Part of this dataset has been annotated by hand, marking up head locations to provide
a ground-truth on which to train and evaluate deep learning detection and tracking algorithms.
Tracking outputs are then used to count people getting on and off, achieving a mean accuracy of 92%
with less than 0.15% standard deviation on 322 mostly unseen dataset video sequences.

Keywords: camera sensor; people detection; multi-object tracking; people counting; deep learning;
people tracking

1. Introduction

There is a growing worrying tendency, particularly in emerging economies, for people to
favor private instead of public means of transport, as reported by Batty et al. [1] and Stead and
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Pojani [2]. Many governments are actively looking at ways to improve security, safety, and quality
of service to encourage public transport patronage, for example, in multimodal forms combined
with private transport, in Carrol et al. [3]. An important part of those efforts is to provide transport
infrastructure that is both comfortable to users and that provides fast transit times. Railway-based
systems (such as metros, trains, trams) have the advantage (over buses and other road-based transport
means) of having dedicated tracks where they can travel at the highest possible speeds that signaling
and network traffic would allow. Nevertheless, what limits their effective throughput are the points at
which passengers need to transfer from/to the vehicles. There are physical parameters that determine
the limits of people flow at these transfer points, hence the “dwell times”, i.e., the amount of time
that a vehicle needs to be stationary to allow people to board/alight. Examples of such factors are
door widths, space (horizontal and vertical “gaps”) between train and platform, payment procedures
(e.g., cash or cashless), position of handrails inside the train, floor materials, etc. Some of these
factors can be altered during transport operations while some need to be defined when vehicles are
manufactured and stations designed. What effect these factors have on passenger flows also depend
on cultural factors. Similar considerations exist for Bus Rapid Transit systems and conventional buses
that compete for road space with private traffic leading to lower speeds, as studied by Saleh and
Ziotkowski [4]. Dedicated bus lanes is a popular way to improve bus services, but they involve the
need to enforce against misuse by private vehicles, as discussed by Shalaby [5] and Agrawal et al. [6],
for which computer vision-based systems and other technologies have been deployed in many
countries, but there are still challenges especially in developing countries as exemplified in studies
by Nguyen et al. [7] and Malomo [8]. Therefore, to make public transport networks more attractive,
transport engineers would like to adjust physical factors (both at design and operational times)
to optimize quality of service and revenues. To do this, they need to understand, and ultimately model,
passenger behavior in relation to those factors. Although such studies are possible by direct observation
in operational conditions, not all possible alternatives can be investigated (e.g., in an existing metro
or bus system, doors or gaps cannot be easily modified). It is also difficult to construct realistic
computer-based simulation models if the underlying relationships between behavior and physical
environment are poorly known. This is where full-size models, using real people, can help for studying
their responses to changes in physical configurations. Although some may argue that it is not possible
to replicate operational conditions even with full-size models, because human participants might be
aware that they are in an experiment under observation, Fernandez et al. [9] have shown that after
an initial period of getting used to an experimental set-up, participants behave in similar ways as they
would do under normal conditions.

A typical scenario is the design of metro carriages. There is always a trade-off between passenger
comfort and service efficiency, particularly during stop times at stations. In an extreme case, it might
be more “efficient” not to have any seats inside a train, but this would be unacceptable to most people.
In more practical cases, for many modern trains, such as those serving airports, comfort and safety is
important for those carrying heavy luggage and also for those with reduced mobility like the disabled
or the elderly. Therefore, how easily, quickly and safely may people board/alight from a train/bus is
an interesting matter to study, for example, to determine an appropriate door width and other physical
characteristics, to minimize dwell times. Such research increasingly uses video-based observation either
in operational conditions or, more likely, e.g., due to privacy concerns, using controlled experiments in
simulated environments. One limitation with this approach is that researchers have to spend many
hours of valuable time reviewing and annotating the video material, e.g., to count the numbers of
people boarding/alighting under the different conditions in their experiments, such as door widths,
step height, platform width, passenger mobility, gender, and so on.

Most public transport systems in the world have invested significantly on CCTV (Closed Circuit
Television) systems to improve security and safety. The same infrastructure can be used to make
measurements to improve quality of service, but the large amounts of video data can lead to human
overload and reduced effectiveness.
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CCTV systems have largely been designed for human observation. In the last two decades,
there have been significant improvements on the camera sensors, in terms of image quality
and resolution, and on the digital infrastructure to transmit and store video data. Nevertheless,
with the possible exception of Automatic Number Plate Recognition (ANPR) for speed control
(e.g., see Zidtkowski [10]) and to analyze passenger and freight movements, as discussed by
Hadavi et al. [11], the analysis of the video data of CCTV systems in public transport networks has
remained largely based on manual analysis, mostly because of the challenges posed by localizing
people, their motions, and, ultimately, their behavior in realistic scenarios. More recently, however,
there have been major scientific and technological improvements in computer vision, led by intelligent
sensors that use deep-learning methods and that can offer a way forward. Therefore, this paper
explores whether such methods can achieve reasonable results in the analysis of people boarding
and alighting from a public transport vehicle, thus allowing transport researchers to conduct a larger
number of experiments in shorter times.

In this work, real-scale laboratory experiments have been undertaken in the Pedestrian
Accessibility Movement Environment Laboratory (PAMELA) of University College London, to test
layouts of platforms and vehicles at full-size public transport vehicle. The original aspect of this work
is the real-scale laboratory experimentation as a research method, which aims to evaluate the responses
of passengers to different configurations which can then be implemented in vehicles and stations to
improve operations. Experimental variables are based on observations at public transport systems,
such as Transantiago (the Transport System of Santiago de Chile), London Underground, and the
public literature in the field.

The experiments involved ordinary people getting on and off a real-scale mock-up of a vehicle
that were studied to obtain people counts and the times taken to board/alight. Four variables were
studied, following earlier work by Fernandez et al. [9]: the fare collection method, the vertical gap,
vertical distance between the platform and the vehicle, and the width of the doors and the passenger
density inside the vehicle. Figure 1 shows the experimental set-up in which door width and vertical
gap was studied.

Figure 1. Pedestrian Accessibility Movement Environment Laboratory (PAMELA) configured as
a London Underground carriage to study effect of door width and vertical gap [12].

The main contributions in this paper are:

*  Anew video dataset of 348 sequences captured by a standard CCTV-type camera is made publicly
available. The dataset involves ordinary people boarding/alighting into/from a full-size model of
a metropolitan railway carriage under different settings of door widths, step heights and payment
method. Counts of people going in/out through the doors are provided for all videos. A small
subset of videos has been manually annotated locating and tracking each person’s head, to allow
training and testing people detectors.
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e With the publication of a dataset, a baseline is established here, as up to now it has not been
possible to compare different approaches that use proprietary data. It is hoped that other
researchers will now be able to replicate and improve upon these results.

®  Three deep learning object detectors (EspiNet, Faster-RCNN , and Yolov3) are evaluated, reaching
an F1 close to 90% for the best one. Please see Equation (1) (Section 2) below for a definition of F1.

e Three benchmark trackers Markov Decision Processes (MDP), SORT, and D-SORT) are evaluated,
demonstrating a competitive MOTA (Multi Object Tracking Accuracy) of around 80%. Please see
Equation (2) (Section 2) below for a definition of MOTA.

e Counts of people are computed for 322 video sequences, obtaining an F1 above 95%

The paper is organized as follows. Section 2 defines the main metrics used in this work. Section 3
highlights some relevant work on image analysis. Section 4 describes the new PAMELA-UANDES
dataset (The dataset can be found on http:/ /videodatasets.org/PAMELA-UANDES/). We think that
this is a useful and realistic set of data for people working in this area and for which, to the best
of our knowledge, there is no clear alternative and that it is hoped will help researchers to identify
the state-of-the-art in this field. Section 5 presents baseline results on people detection, tracking and
counting obtained using computer vision for this dataset so that future researchers can report improved
results. Finally, Sections 6 and 7 conclude the paper.

2. Metrics

Detection performance evaluation is carried out using a standard and well-known set of metrics,
such as those proposed by Yin et al. [13] and the VOCchallenge [14]. To determine what are true
positive, false positive, and false negative detections (TP, FP, FN), a Jaccard similarity coefficient
(also known as Intersection over Union-IoU) of 50% is used. So, a true positive occurs when a detection
object (D) has an IoU > 0.5 with a ground truth (GT) object, a false positive occurs when a detection
does not have an IoU > 0.5 with any GT object and a false negative occurs when a GT object does not
have a corresponding detection object. Then,
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Jaccard = IoU =
precision = P =

recall = R

where TP is the total number of true positives, FP the total number of false positives, and FN the total
number of false negatives. F1 is sometimes known as F-score or F-Measure; please see Rennie [15].
Mean average precision (mAP) is the mean of precision over the recall range, and it is also a common
metric used for detection and classification problems. All the measures defined in Equation (1) are in
the range (0...1).

An almost bewildering large number of tracking metrics have been proposed in the past.
Here, the MOT (Multiple Object Tracking) Challenge [16] benchmark definitions are used to obtain
different metrics. For simplicity, precision, recall, F1 and MOTA (Multi Object Tracking Accuracy)
defined in Bernardin, and Stiefelhagen [17] have been used. In the context of the MOT challenge,
precision, recall and F1 refer to object detection metrics, computed as in Equation (1), after tracking
and so they test the effect of tracking on object detection. MOTA is a measure that tries to combined
various errors that arise in tracking and is defined as,

MOTA =1 — Yol + fpe + mmer) )
Y8t
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where m;, fpr and mme; are the number of misses, false positives, and mismatches, divided by the total
number of ground truth annotations for time ¢, respectively. The higher the score the better the results.

3. Related Work

3.1. People Detection

The computer vision community has been attracted to the problem of people detection for many
decades. This is understandable as people’s daily lives are dominated by interactions with other
people and therefore there are numerous applications for computer-based people detection, such as
Human-Computer Interaction, Surveillance, Safety, Assisted Living, Photography, and, more recently,
Autonomous Driving. In the context of the problem addressed here, it is reasonable to think that to
measure the number of people getting on/off a Metro and their flows over time, it is necessary fist
to detect each individual accurately on each frame (or in regularly time-sampled frames) around the
exit/entry area and then to track them in space-time, so that any given individual is only counted once.
This has to be done even under crowded or semi-crowded conditions. It can be assumed that the camera
sensor is static, although the approach taken here can also work with moving cameras. Early work on
pedestrian detection in public places using static cameras, addressed the problem of possible changes
in lighting through a process of background estimation and removal by subtraction between the
estimated background and the incoming image. The approach of modeling background by a mixture
of Gaussians was first proposed by Stauffer and Grimson [18], later improved in Zivkovic [19], and has
been extensively used by many authors, e.g., Hu et al. [20]. In its original form, this method will
have problems when objects are static or semi-static (as they will be “absorbed” into the background
model and when they move they will leave a “ghost” behind). To address this problem, Li et al. [21]
propose to model small motions like people turning around or moving their heads. The probability
of motion occurrence is predicted from color changes between two consecutive frames, using MID
(Mosaic Image Difference) features. Nevertheless, using a background model has significant problems
under overcrowding or clutter as mixture models depend on the hypothesis that the background
pixels will be observed most of the time, i.e., they are applicable only on light traffic conditions.
An alternative approach is to infer people presence through explicit shape analysis. Early work on this
include that of Gavrila and Giebel [22] and Mundel et al. [23], but it is difficult to apply in cluttered
scenes. The wide variability of human shapes makes explicit modeling very difficult and researchers
turned their attention to machine learning (ML) methods. Traditionally, this has required (a) a corpus
of data on which to train and test a given ML method, (b) a definition of one or more features extracted
from images, and (c) a classifier working in the dimensional space of such features to separate different
classes of objects (e.g., people and not people). A seminal and highly cited work addressing these
three aspects is that of Dalal et al. [24] that created the INRIA Person dataset containing images mainly
taken in street environments and having 614 persons for training and 288 for testing. This work also
proposed a feature called Histogram of Oriented Gradients (HOG) that extracts edges and texture
features from image regions and that has been shown to be popular for object detection and recognition,
e.g., as in Zhu et al. [25], Déniz et al. [26], and Chen et al. [27]. Finally, the features obtained by (HOG)
are input to a Support Vector Machine classifier to separate people from non-people. This type of
approach (feature extraction, training, classification) became so predominant that it is not possible to
review it in the scope of this paper. The interested reader is referred to a comprehensive review by
Benenson et al. [28] of traditional pedestrian detection for more details.

However, in 2012 there was a milestone in object recognition with the advent of (a) a very large
dataset, ImageNet, of over 1 million examples of 1000 classes made possible by the increasing availability
of images on the internet, (b) the availability of very powerful but relatively cheap parallel computing,
Graphic Processing Units (GPUs), driven by the games and computer graphics industry, and (c) a revival
of neural networks in the form of Convolutional Neural Networks (CNN) that made it practical to
deploy neural networks with many “hidden” layers. This became known as “deep learning”, illustrated
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by the seminal paper of Krizhevsky et al. [29] and has since dominated the field of object localization and
recognition. The previous approaches were then called “hand-crafted” and deep learning has become
the most popular way to deal with pattern recognition problems, in particular, for object detection and
tracking (for an extensive survey; please see Brunetti et al. [30]). The main advantage of deep neural
networks is that, provided that there are large amounts of representative annotated data, such systems
learn to extract appropriate features (in a serial pipeline of feature extraction of increasing abstraction,
e.g., from edges to object outlines, saliency maps, etc.) that are effective to distinguish between different
classes on objects. Indeed, the final classification stage becomes less critical.

Recent advances on Deep Learning achieve object detection/classification in an image through
one of two main methods, as discussed by Soviany and Ionescu [31]. In the first class, there is a first
stage with a Region Proposal Network (RPN) to generate regions of interest. In a second stage those
regions are used for bounding box regression and object classification. These detectors are accurate
but slow. An alternative family of detectors are the so-called Single Stage (or Single Shot) Detectors
(SSDs) that approach object detection as a regression problem, analyzing the input image to learn class
probabilities and bounding box coordinates. These models are much faster, even real-time, but can
have issues with detecting small objects or with objects that appear too close in the image.

For example, recently, Zhang et al. [32] report a method based on Tiny Yolo, to detect people
entering /leaving a bus, training a model on the upper body parts of passengers. As in this work,
they had to train with specific data. However, they do not give exact performance metrics, and it is not
clear if their dataset is public, preventing verification. No counts are attempted. Guo et al. [33] propose
a model called MetroNet to detect people inside a metro carriage, focusing on processing speed with
low computational resources. Again, they had to create a dataset (SY-Net) with 1503 images on which
to compare MetroNet with Faster-RCNN, SSD, and Yolov3. They use miss rate (MR = 1 — recall) as
the main performance metric, reporting a best MR of around 46%. It is not clear if their dataset is
public. A passenger flow counting system for buses is reported by Hsu et al. [34] using an SSD detector
and particle filter tracker to then obtain counts. Although the results are good (F1 of around 94% for
people detection and almost 92% for counting), their data is proprietary and apparently not publicly
available. Liu et al. [35] report a method to measure passenger flows in metros using Yolov3 optimizing
its anchors and thus obtaining flow accuracies of 95%. In their case, the camera is mounted on the door
frame looking vertically down, which facilitates detection and counting. There is no indication that
their data is public.

To present a baseline for the new public dataset presented here, three detectors have been selected:
Faster-RCNN, EspiNet, and YOLO (single shot).

3.1.1. Faster R-CNN

Faster R-CNN (proposed by Ren et al. [36]; also see Wang et al. [37]) is a widely used region-based
architecture for object detection, that is often used as a benchmark to compare competitive approaches,
e.g., as reported for car detection by Benjdira et al. [38]. The method was inspired by earlier work by
Girshick et al. [39] and Fast R-CNN [40], combining features extracted from a fully convolutional network
and at the same time performing both region proposals and object detection. The model shares the
same convolutional layers for the RPN (Region Proposal Network) and the object detection network.
The feature map generated by the CNN network is traversed by a sliding window, which generates k (9)
potential bounding boxes with scores relating to the confidence on the detected object. These potential
bounding boxes are related the common aspect ratios of the objects and are called anchor boxes. Bounding
boxes and scores are generated by the RPN per position in the image for each anchor box.

3.1.2. EspiNet

EspiNet, proposed by Espinosa et al. [41,42], is a region-based detector model which is inspired
on Faster R-CNN. The difference lies in a reduced number of convolutional layers and so a reduced
number of parameters to learn (less that 2.3 million) compared to Faster R-CNN and other models.
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3.1.3. YOLO

You Only Look Once (YOLO), proposed by Redmon et al. [43], is a single stage detector, with a
convolutional network which extracts features, generating a feature map later flattened an analyzed
to regress parameters of bounding boxes and classes for the objects detected. More recent versions
of YOLO (Yolov3 also by Redmon and Ali [44], Yolov4 by Bochkovskiy et al. [45]) use multi-label
classification and logistic regression for objectness score, plus a feature pyramid to deal with varying
object sizes. YOLO has become very popular because it can work in real-time and many optimized
implementations exist, e.g., for embedded applications.

3.2. Multiple Object Tracking

Object tracking in images is about estimating the trajectories of objects in the image plane as they
move around a scene; see, for example Yilmaz et al. [46] and Ojha and Sakhare [47]. It involves locating
each target in subsequent video frames after it has been localized by a detector. This approach is normally
referred to as tracking by detection. It may involve predicting each object’s position in subsequent
frames, matching objects between adjacent frames so as to obtain a history or trajectory for each object.
Some techniques are used to extract dynamic attributes, including appearance changes, positional speed,
direction of movement, and so on. Most tracking algorithms follow one simple principle: objects in two
adjacent frames are likely to be the same if a distance measurement between them is small. That distance
can be physical separation, appearance, speed, etc. The comparison between currently tracked objects and
new detections is sometimes known as data association, i.e., given a known set of objects being tracked at
time t and a new set of objects detected at time f 4- 1, how to associate the new objects to existing tracks
and how to deal with new objects and those that have left the scene. This process needs to take into
account both missing and multiple detections for a given object.

Point trackers, silhouette-based tracking, and kernel-based tracking are categories of tracking
(see survey by Yilmaz et al. [46]). While point trackers demand detection in every single frame,
contour- or kernel-based tracking requires the objects first appearance on scene. For vehicle tracking,
deep features are associated combining point tracking and object appearance as, for example, done by
Hou et al. [48] with D-SORT to track vehicles.

While single object tracking is already a complex task, Multiple object tracking (MOT) is even
more challenging, as it involves localizing and following multiple objects during the video sequence,
taking into account occlusion, entry, and exit of objects in the scene.

3.2.1. Kalman Filter Tracking

The Kalman Filter (KF) is a classical and still popular point tracker, because of its simplicity as
an on-line recursive process and a well-understood mathematical foundation. A detection process
identifies possible dynamic targets represented in its simplest form by a point in 2D or 3D space.
Such measurements are assumed to contain Gaussian noise. It is also assumed that objects have
an underlying physical model, e.g., a constant acceleration model, represented by state variables. The task
of the KF is to provide optimal state variables estimates, given the input measurements and past
estimations. For multiple objects, there is a separate data association process that matches detections to
predicted state values for the current video frame, typically using some distance measure (Euclidean,
Manbhattan, etc.). Although simple motion and noise models have been fairly successful when dealing
with rigid objects, such as vehicles, they are less successful for pedestrian monitoring, e.g., because of
sudden turns or occlusions. Clearly, the filter may suffer when detections are poor. Conversely, some poor
detection conditions may be overcome by the filter, e.g., a missing detection or an occlusion can be
“smoothed” out by temporarily replacing them with object predictions from past observations.
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3.2.2. Appearance-Based Tracking

One of the problems with point-based trackers, such as the KF, is that objects are represented
by simple state variables, such as position/speed. As clutter increases and movements become more
complicated, it is increasingly difficult to associate point detections with predicted object positions.
For non-rigid objects, such as pedestrians, the localization prediction is not always simple, as people
can have non-linear motion patterns (e.g., a sudden turn) which are difficult to model and so visual
appearance can be a useful cue. This is what is used directly by the Kernelized Correlation Filter
(KCF), e.g., Henriques et al. [49], under the assumption that each object has a distinguishable signature.
The well known Kanade-Lucas-Tomasi (KLT) tracker is an example of an approach that is based on
looking for objects localized in the previous frame(s). This type of tracker only requires objects to
be independently localized once and then, ideally, they are detected/followed by appearance alone.
This might not be trivial in the presence of occlusions. Bagherpour et al. [50] present an interesting
approach combining KLT and KEF, but used only on semi-frontal pedestrian images, where people
appearance tends to be more discriminative than in the case considered here of near overhead
images. Usually color, texture and shape features are used to recognize or re-identify a person (as in
Cong et al. [51], Coniglio et al. [52], and Kuo and Nevatia [53]), so that tracking has been able to borrow
methods originally devised for image retrieval and person re-identification. For example, Simonnet et
al. [54] used DTW (Dynamic Time Warping) to calculate a distance between two observations made
at different times and thus re-identify a person. Pedagadi et al. [55] proposed a method based on
a local Fisher discriminant analysis to address re-identification that could be used in a tracking context.
In KCF, the background is over-sampled to give more context information to the tracker. The idea is
explored here as discussed in the experimental portion of this paper, Section 5.

Other tracking methods that have shown promise elsewhere have been disappointing in this
case, including the rather slow TLD (Tracking Learning Detection) presented by Kalal et al. [56]
and the less accurate Struck proposed by Hare et al. [57] (poor accuracy). A notable exception is MDP
(Markov Decision Processes) tracker put forward by Xiang et al. [58], where tracking is modeled as
a Markov process that includes reinforcement learning to address the missing detections and data
association problems. It should be possible to use deep features within this tracker’s framework.
As mentioned earlier, deep learning is the currently most popular approach for object detection
and indeed researchers have proposed methods for tracking, including Wojke’s et al. D-SORT [59],
based earlier SORT (Simple Online Realtime Tracker) tracker by Bewley et al. [60], where deep features
are used for data association. The baselines presented here include the use of these three trackers.
There is a significant amount of reported work on multiple object tracking reviewed by Luo et al. [61],
including recent surveys on deep learning techniques by Ciaparrone et al. [62], Shuo et al. [63],
and Li et al. [64].

3.3. Challenges

It is clear that deep learning as shown significant success in object detection. There have been
many different architecture proposals and variants in the literature, such as CenterNet [65] (Duan et al.),
EfficientNet [66] (Tan et al.), RetinaNet [67] (used by Wang et al. for ship detection), Faster-RCNN
proposed by Ren et al. [36], SSD discussed by Soviany et al. [31] in comparison with other detectors,
Bochkovskiy’s YOLO [45], etc. For object detection, it is popular to test and compare such architectures
using the COCOdataset introduced by Lin et al. [68] that contains 80 object classes, including persons.
For example, Yolov4 pre-trained on the Coco dataset, obtains impressive results in previously unseen
images as shown in Figure 2. However, using the same model to detect people in the new dataset
produces poor results, as shown in Figure 3. On the top row (left), the pre-trained model fails to detect
any person. On the bottom row (left), the pre-trained model incorrectly outputs two bounding boxes
labeled as “Teddy Bear”. The images on the right have been obtained after training a Yolov3 model
specifically on this dataset. Although to the human eye the images are still of people, the change in view
angle has an adverse effect, whereby many people are not detected. This illustrates that many deep
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learning methods still have to rely on manual annotation of large amounts of data, even when detecting
the same class of objects, but with different views. Many of the popular datasets for people detection,
including Coco, mainly contain images of people captured on semi-frontal views standing/walking,
limiting their use. Research is still needed to solve this general problem of adapting to different view
in the same domain, let alone to different domains. In more general terms, these methods can only
capture the appearance of objects for a certain camera view but are still unable to learn underlying
properties of objects.

Figure 2. YOLO predictions for images with people, people detections shown in magenta (image source:
http:/ /pexels.com).

Figure 3. YOLO predictions. (Left) pre-trained on COCO; (Right) trained on this dataset.
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4. PAMELA-UANDES Dataset

The Pedestrian Accessibility Movement Environment Laboratory (PAMELA) [69] is a multi-sensor
facility at University College London (UCL) in the UK, designed for the assessment of pedestrian
movement in many application domains (transport, health, architecture, etc.). An interesting
characteristic of PAMELA is that it is possible to shape its environment (walls, walking surfaces,
lighting, sound) to suit the experiments. The walking area consists of individual 1.2 m? modules
making up a total of 80 m?. Some examples are shown in Figure 4.

Figure 4. Examples of PAMELA walking areas.

In terms of lighting, the facility provides control over a wide range of situations from simulation
of daylight to moonlight (Figure 5). Video recordings can be made simultaneously from various
angles (typically with 8 or more cameras). Note, however, that these cameras are not synchronized
nor calibrated.

Figure 5. Examples of different lighting conditions in PAMELA.

The video recordings for the dataset used in this work were obtained from a simulated scenario
of a London Underground train as first reported by Fernandez et al. [12], covering two door widths
(800 and 1600 mm), three step heights (0, 150, and 300 mm), and, in the case of boarding, whether
people used a card-based payment system (as per buses) or none (as per trains).

Given the angle of the camera (please see Figure 3), the working hypothesis is that head shapes
are discriminating enough, and once people are located they could be tracked from frame to frame to
lead to measurements of counts and flows.

Part of the PAMELA-UANDES dataset has been manually annotated, using the ViPERtool [70],
so as to investigate computer vision algorithms to automate the process of analyzing such images.
Manual annotation is a major task as it took about 2 full person-months to annotate a relatively small
subset that consists of 15 video sequences: 8 of people alighting (referred to as “A” videos) and 7
of people boarding (referred to as “B” videos). They last between 1 and 2 min and have a spatial
resolution of 352 x 288 at 25 frames per second. The spatial resolution is set by the capturing process
that consisted of standard interlaced PAL frames, so 325 x 288 was chosen to avoid interlaced effects
and to maintain the width/height ratio.



Sensors 2020, 20, 6251 11 of 20

Videos A_d800mm_R1..4.mpg and B_No_d800mm_R1..4.mpg are used for training while
A_d800mm_R5..8. mpg and B_No_d800mm_R5..7. mpg are used for testing. Ground truth files are in
ViPER and CSV formats containing, for each pedestrian, a unique identifier, the bounding box around
their heads, and the frame numbers in which they appear.

5. Experiments

The PAMELA-UANDES dataset contains a total of 14,834 training images and 13,237 testing
images. In both cases, boarding and alighting cases are more or less similar in number. As seen on
the left of Figure 6, the original annotation consists of image coordinates of an ellipse defined by
an enclosing rectangle (tly,tl,,w,h), where tly, tl, are its top left x and y co-ordinates, and w, h are width
and height. Following the literature, e.g., Wolf et al. [71] and Dalal et al. [24], it is also hypothesized
here that expanding the ground truth bounding box to include part of the background context may help
detection. The new bounding box is computed as:

w h
(Cx, Cy) - (tlx + E,tly + E)

(we, he) = (w(1+ f),h(1+ f)), 3)
X c
gte = (tlx — %,tly — 2, we,he)

where (cy,cy) is the (unchanged) object’s centroid, f is the expansion factor (in the range 0..1), (w,,h,)
the new (expanded) width and height, and gt. is the expanded object’s bounding box. The effect is
illustrated on the right of Figure 6.

The models were trained from scratch, without using any pre-trained model (such as ImageNet)
for a fairer comparison. For the same reason, please note that anchors have not been optimized nor
data augmentation used. EspiNetV2 took 12 h to train (Windows), Faster R-CNN 18 h (Windows),
and Yolov3 14 h (Ubuntu). An Nvidia Titan XP GPU is used for training and testing. Detection
performance evaluation is carried out using the metrics defined by Equation (1) (Section 2).

Figure 6. Ground Truth modification. (Left) Original ground truth annotation. (Right) Expanded
bounding boxes.

5.1. Detection Results

The detection performances of the three models are evaluated and compared on the 13,238 unseen
examples more or less balanced between boarding and alighting examples. The results have been
computed using the MOT (Multi Object Tracking) Challenge Development Kit [72]. Results are shown
in Table 1 for expansion rates of 0%, 25%, and 50%. Bold figures indicate the best results in each
row. The mean and standard deviations are computed over the seven testing sequences. F1 and, to a
lesser extent, mean average precision mAP, are good indicators of detection capability. Note that in
a real application, F1 is a better indication of performance as it indicates the possible balance between
precision (and hence of false positives) and recall (indicative of false negatives), for a given detection
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confidence threshold. In the cases considered here, Yolov3 is likely to have a precision and recall
performance of around 89.5% (when setting an operational point that balances precision and recall).
It can be observed that Faster R-CNN and Yolov3 outperform EspinNetV2 in all tests by a margin
of around 13-20% in F1. Yolov3 is fairly stable across the different expansion rates and outperforms
Faster R-CNN in F1. Faster-RCNN and EspinetV2 show some improvement for a 50% expansion rate
(the similar behavior is expected as EspinetV2 is derived from Faster-RCNN). Finally, it should also be
noted that Yolov3 has inference (detection) times around five times faster than Faster-RCNN. Figure 7
shows a couple of examples of people detection.

Table 1. Detection results (all values in percentages, means over all video sequences, & indicate the
standard deviation o).

%Expansion Metrics EspiNetV2 Faster R-CNN Yolov3

Rec 73.0+53 86.9 + 4.8 842 +7.8
Prec 68.2 =£10.0 80.7 £3.1 96.2 £1.1

0 F1 702 £ 6.7 83.6 £ 3.6 89.6 £5.9
mAP 748 £59 87.3 £3.2 91.0 £ 4.1

Rec 67.8 £4.3 846+ 44 84.7£75

25 Prec 73377 84.7 £3.5 95.6 +£ 1.9
F1 702 £43 84.6 £ 3.3 89.7 £5.1

mAP 748 £39 87.6 £3.0 91.3 £4.1

Rec 69.6 + 4.9 88.7 + 4.7 844+ 69

50 Prec 759+ 64 88.6 £2.4 95.5 £ 0.6

F1 724 £39 88.6 £2.9 89.5 £ 4.1
mAP 76.7 £ 3.9 91.8 + 2.7 91.0 £ 34

Figure 7. Illustrative detections. (Left) Alighting (simpler case); (Right) boarding (more complex case).

5.2. Tracking Results

Tracking results from MDP, SORT, and D-SORT trackers have been compared, using the three
different detectors and expansion rates. Figure 8 shows a couple of typical tracking examples,
while Tables 2—4 show tracking metrics obtained with MDP, SORT, and D-SORT, respectively. In each
table bold figures indicate the best results for each row. As per the detection experiments, better results
are obtained by Faster-RCNN and Yolov3.



Sensors 2020, 20, 6251 13 of 20

Figure 8. Illustrative tracking example. (Left) A simple case; (Right) a more complex case. The numbers
and colors correspond to unique person identifiers, the trailing tails show their trajectories.

Table 2. Tracking results: Markov Decision Processes (MDP) (all values in percentages, means over all

video sequences, + indicate the standard deviation o).

% Expansion Metrics  EspiNetV2  Faster R-CNN Yolov3

Rec 79.58 £ 5.64 89.53 £5.04  81.98 +£4.75

0 Prec 62.79 +£11.77  85.71+£3.22  85.65 £ 6.50
MOTA  28.85+24.65 7443+7.29 6771 £9.38

F1 69.78 £+ 8.39 87.55+3.74  83.65 £4.51

Rec 73.07 £5.31 85.98 = 4.87  84.68 £ 5.65

25 Prec 68.23 +£9.59 84.47 +£3.73  89.46 £ 4.31
MOTA 3678 +1525  69.86 +6.84  74.41 £7.90

F1 70.26 + 6.06 85.14 £3.49  86.92 +4.23

Rec 75.61 £5.28 89.20 £5.26 8294 +£573

50 Prec 72.34 +7.83 87.70 £2.51  88.32 £ 6.43
MOTA  4536+1193 7649 +£5.88  71.47 £9.37

F1 73.71 £ 4.96 88.37 £3.22 8539 +£4.74

Table 3. Tracking results: SORT (all values in percentages, means over all video sequences, & indicate

the standard deviation 0).

% Expansion Metrics EspiNetV2  Faster R-CNN Yolov3

Rec 6341 £ 643 8523 £5.69  78.02+£10.43

0 Prec 87.84+£544 9287 £2.87 98.60 & 0.57
MOTA 5379+871 78.04+7.15 76.81 £10.71

F1 7353 £5.64  88.82 £ 4.03 86.80 & 6.79

Rec 6025 £4.52  83.35+4.95 79.25 £9.70

25 Prec 89.89 £4.33  92.08 £ 3.02 98.06 + 1.12
MOTA 5282+£531  7587+589  77.65+ 10.06

F1 7204 +359  87.42 +3.34 87.40 & 6.38

Rec 60.96 £535  86.27 £+ 5.24 79.18 £+ 8.87

50 Prec 90.84 +4.04 9492 +1.34 97.36 & 0.67
MOTA 5416+6.14  81.38 £ 5.06 76.93 £ 8.56

F1 72.84 £4.27  90.30 £ 3.05 87.09 & 5.55
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Table 4. Tracking results: D-SORT (all values in percentages, means over all video sequences,
=+ indicate the standard deviation ¢).

% Expansion Metrics  EspiNetV2  Faster R-CNN Yolov3

Rec 7421 £ 6.11 87.97 £ 5.55 83.22 £9.04
Prec 78.00 £ 8.75 88.33 £3.52 97.06 = 1.18

0 MOTA 5192 +12.86 7571 £7.88 80.34 £ 9.81
F1 75.87 £ 6.10 88.10 + 4.14 89.42 £5.76

Rec 69.34 £ 4.98 83.48 £ 5.45 83.50 = 8.41

25 Prec 80.74 £ 6.60 86.87 £ 4.01 96.37 + 1.87
MOTA  51.83 +8.04 70.55 £7.81 80.54 £+ 9.60

F1 7444 +£4.12 85.07 £4.15 89.57 £ 5.66

Rec 70.84 £ 5.38 88.15 £ 5.33 83.49 £ 8.11

50 Prec 82.58 £ 5.98 91.73 £2.01 96.09 £ 0.59

MOTA  55.00 +7.75 79.94 + 5.44 79.77 £ 8.01
F1 76.10 = 4.14 89.83 £ 3.13 89.16 £+ 4.93

In terms of the MOTA metric, best results (81.38) are obtained with SORT /Faster-RCNN /50%
followed closely (80.54) by D-SORT/Yolov3/25%. It is reasoned that the angle of capture and the
focus on heads, has reduced the amount of occlusions that MDP (via reinforcement learning) and
D-SORT (using deep features and cosine distance similarity) have been designed to cope with, and so
their particular strengths are not fully stretched. Therefore, the simpler SORT tracker is still able to
produce good results with the top two detectors. It is noted that with the poorer detector, none of the
trackers do too well (MOTA < 55). It is also noted that the Yolov3/D-SORT combination seems to be
less affected by expansion rate; therefore, this combination is used to investigate counting performance,
as described in the next sub-section.

5.3. People Counting

As indicated earlier on, one of the main requirements for transport engineers in this area is to
count the number of people entering and exiting the transport vehicle. Once people are detected
and then tracked, counting is relatively simpler. In this case, an imaginary line, with a conventional
equation x = my + b, across the image is considered as shown in Figure 9. Then, at any given time
t, for each person, its running average position (¢, ;) is computed, for all its positions up to time ¢,
starting from its first appearance. For example, for a person alighting, this running average would
tend to have decreasing values in ¥, as t increases. When that averages moves from one side of the
line to the other (by a given threshold), the person triggers a count (down, or alighting, if it originated
above the line and up, or boarding, otherwise).

Figure 9. Counting setup: an imaginary line on the image is considered and the tracking results are
used to count people crossing the line up (boarding) or down (alighting).
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Considering the tracking results (please see Table 4) and taking into account the significant
computational advantages of Yolov3, that combination (at an expansion rate of 25%) has been chosen to
provide a counting baseline for future researchers. For a given direction of flow (boarding, alighting),
true positives/negatives, false positives/negatives are defined as given by Table 5. For example,
for boarding, a down-going count would be a false positive, while an undetected person would be
a false negative. Note that true negatives are not computed.

Table 5. Counting detection definitions (positive /negative).

There Is a Crossing There Is No Crossing

Crossing detected TP FP
Crossing not detected FN TN

Given the definitions in Table 5, in addition to the conventional metrics given in Equation (1)
(Section 2), accuracy is defined as follows (note that true negatives are not included):

TP
(TP + FP + FN)’

accuracy = 4)

The evaluation of counting has been done on the videos known as “2008” in the dataset.
These consist of 145 alighting sequences (most with 50 people alighting from the carriages) and
177 boarding sequences (most with 27-29 people boarding), under different conditions of crowdiness,
depending on physical factors, such as door width. For alighting counts, the imaginary line is y = 144
and for boarding y = 85. The overall results are summarized in Table 6.

Table 6. Counting results for 322 video sequences (all values in percentages, means over all video
sequences, + indicate the standard deviation o).

Direction  Precision Recall F1 Accuracy

Alighting 9549 +0.13 95.04 £0.12 95104+0.12 92.01 £0.12
Boarding 93.59 £0.05 98.82+0.02 96.01+0.03 92.47+0.05

6. Discussion

One of the major difficulties in assessing what is the current state-of-the-art in this field has been
the lack of representative datasets with number of examples sufficiently large to train modern machine
learning methods. Recent works in this area include the use of Tiny YOLO to detect passengers in
buses by Zhang et al. [32], a proposal called MetroNet also to monitor passengers in buses described
by Guo et al. [33], passenger flow counting by Hsu et al. [34], and metro passenger flows using Yolov3
in Liu et al. [35], which uses proprietary data captured by the authors, so it is not possible to objectively
compare results. The absence of data can be explained by the need to observe real people in a natural
environment and privacy concerns prevent or limit the publication of such data. What had been
proposed is the use of full scale models using people who are habitual public transport users who have
given their informed consent to volunteer in these experiments and for the video recordings to be made
public. Previous studies show that after a relative short period of getting used to the experimental
model, people behave naturally. This has avoided the use of actors, something typical in computer
vision-based human behavior studies that have significant biases in terms of age, gender, and levels of
fitness. Therefore it is likely that with this dataset and with the baseline results presented in this paper,
it will be possible for researchers in this field to establish and improve upon the state-of-the-art.

In terms of the scope of this work on transport engineering, first the method presented showed
that annotation time can be reduced between 4 to 5 times, in particular by the ability to track passengers,
i.e.,, where they are located and from where passengers are coming or going once on the platform.
The results have an accuracy comparable to human annotators, specially in crowded conditions
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where manual annotation can lose 1 or 2 people in each boarding/alighting process. Secondly, there is
potential for the method to be used in managing the flow of passengers on platforms and inside vehicles,
which allows evaluating measures for the control and channeling of passengers. The experiments in
the laboratory have shown that the management of passenger flows, such as marking the platform,
allows reducing the times of getting on and off by more than 30%. Considering that the dwell time
represents approximately 30% of the time in a public transport vehicle, the travel time between stations
could be reduced by 10%.

In addition to on-going work on full-size models for passenger monitoring on more complex
environments, such as bus stops, further laboratory studies with this technique that are being planned
aim to answer the following questions: (a) What is the best combination of vertical and horizontal
gaps between the platform and the vehicle to reduce the dwell time? (preliminary studies have shown
that the answer is not always zero). To what extent does this combination differ for specific groups of
passengers, e.g., elderly people and people with reduced mobility? (b) What is the effect of the density
inside vehicles and on platforms on passenger boarding and alighting times and, in turn, on dwell
time? (c) What is the influence of the location of the vertical and horizontal handrails, as well as the
seating layout, on boarding and alighting times? Can this policy reduce the dwell time? (d) To what
extent can the management of passenger on the platforms encourage appropriate behavior to reduce
the dwell time? (e) Are there other lines of action, not yet identified, to improve the boarding and
alighting processes, safety, and dwell time?

7. Conclusions

This work has presented an approach based on machine (deep) learning to locate, track, and count
people in a public transport environment, exploiting the full-size PAMELA experimental facility.
A new public dataset has been introduced. The main challenge in this dataset is the angled camera
view that defeats people detectors trained with popular datasets, but that it corresponds with typical
sensor position in this kind of environment. This illustrates the fact that although data-driven learning
approaches can produce impressive results, their generalization capabilities are still below that of
human observers, leading to the need to capture application-specific data that then has to be manually
annotated at significant costs. This is a general observation applicable to many other computer vision
application domains.

In terms of sensor processing, the performance of three different state-of-the-art detectors and
trackers were evaluated to create a baseline for this dataset. Computational efficiency led to the
selection of D-SORT and Yolov3 to assess people counting, one of the main requirements of transport
engineers in this domain. Counting accuracies were very satisfactory and provide a good challenge for
future researchers to improve upon.

Future work will look at refining the use of spatio-temporal cues provided by video sequences in
a detection-by-tracking manner so as to feedback tracking into the detector, rather than the current
uni-directional sequential process where a tracker might not recover from detection errors. Additional
computational experiments are planned to improve results through optimizing anchor definitions and
augmenting data.
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