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Abstract: Important state parameters, such as torque and angle obtained from the servo control and
drive system, can reflect the operating condition of the equipment. However, there are two problems
with the information obtained through the network from the control and drive system: the low
sampling rate, which does not meet the sampling theorem and the nonuniformity of the sampling
points. By combing equivalent sampling and nonuniform signal reconstruction theory, this paper
proposes a reconstruction method for signal obtained from servo system in periodic reciprocating
motion. Equivalent sampling combines the low rate and nonuniform samples from multiple periods
into one single period, so that the equivalent sampling rate is far increased. Then, the nonuniform
samples with high density are further resampled to meet the reconstruction conditions. This step
can avoid the amplitude error in the reconstructed signal and increase the possibility of successful
reconstruction. Finally, the reconstruction formula derived from basis theory is applied to recover
the signal. This method has been successfully verified by the simulation signal of the robot swing
process and the actual current signal collected on the robot arm testbed.
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1. Introduction

As a commonly used method of condition monitoring and fault diagnosis, vibration monitoring
is very common and effective. This method requires the installation of the vibration sensor for data
collection, which is sometimes difficult to implement and costly. In addition, the location of the
sensor affects its sensitivity to signals [1]. Due to the deficiency of vibration monitoring, non-invasive
diagnostic methods such as motor current signature analysis (MCSA) [2] and load torque signature
analysis (LTSA) [3] have been further developed. For recent servo drive systems, this kind of
important information such as current, angle, etc. can be obtained directly from the servo control
drive system through the certain communication method such as EtherCAT, CAN, etc. Ehter CAT
and CAN (Controller Area Network) are two efficient bus communication technologies.Typical cases
include ePS [4], a state monitoring and remote diagnosis platform for machine tools used by Siemens,
ABB’s Remote Service platform [5], and FANUC’s remote monitoring system for industrial robots [6].
These platforms can all collect the servo data during the operation of the equipment through the certain
interfaces. Although the torque signal cannot be read directly, it can be identified by the electrical
parameters of the drive system [7]. Therefore, it is very important to analyze the servo data obtained
from the network. However, the signal obtained through the network is different from isochronous
sampling. The data density is low, and the sampling interval is uneven. The information obtained is
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limited because of the two characteristics. In response to these problems, the equivalent sampling
theory which can improve the sampling rate and the reconstruction theory of nonuniform sample
points are focused on in this paper.

The development of equivalent sampling technology breaks through the limitation of Nyquist
sampling theorem. It can sample the signal at a rate much lower than the Nyquist sampling rate
while retaining the information of the original signal [8,9]. As a basic method of equivalent sampling
technology, random equivalent sampling (RES) is widely used in signal sampling because of its low
cost and high accuracy [10,11]. The basic idea of RES is to reconstruct the multi-cycle samples in a fast,
equivalent period. However, due to the randomness of the time interval between the trigger position
and the sampling clock, the sample distribution is not uniform. In order to obtain a sufficiently high
reconstruction accuracy, the RES must undergo a large amount of random sampling to reconstruct
the original signal [12]. This multiple sampling will generate a large number of redundant samples
which will greatly reduce the reconstruction efficiency. In this paper, by extracting the period of the
signal to be reconstructed, the principle of equivalent sampling is used to recombine multi-period
nonuniform samples within one period to improve the sampling rate. However, the distribution of
the reorganized sample points is still uneven. To solve this problem, we need to utilize the theory of
nonuniform reconstruction.

Early research on nonuniformly sampled signals mainly focused on the possibility of reconstruction
and theoretical derivation of reconstruction conditions. Black [13] first summarized the reconstruction
conditions of non-uniform samples on the basis of the research of Cauchy [14]. Since the statement is
not precise enough, Yen [15] further perfected the theory of non-uniform sampling. He pointed out that
when a band-limited time continuous signal with the highest frequency component of W is divided
into several equal intervals with a width of N/(2 W), and N instantaneous sample points are taken from
each interval in any manner, the signal can be uniquely determined. In the underspecified situation of
sampling points less than N and the over-specified situation of sampling points greater than N, certain
conditions must be met before the signal can be determined. At the same time, he also discussed
the situation of recurrent nonuniform sampling [16,17], which is a typical situation in digital signal
processing. So, as to realize the transition of the reconstruction algorithm from theory to engineering
application, Ouderaa [18] proposed a reconstruction formula for non-uniform sampling of finite points.
The construction of filter banks for the reconstruction of nonuniform band-limited signals has also
been widely developed [19,20]. Wiley et al. [21] applied the iterative method to the field of nonuniform
sampling for the first time. The proof that the iterative method can be used to recover the original
band limited signal from nonuniform samples is given by Marvasti in [22]. Iterative methods often
require a large number of iterations to achieve high reconstruction accuracy. Based on the theory of
bases and frames, E. Margolis proposes a noniterative reconstruction formula suitable for any number
of points and discusses the stability of the reconstruction algorithm [23].

Equivalent sampling solves the problem of signal sampling and reconstruction at the sub-Nyquist
sampling rate, but this theory has requirements for the sampling process. This paper uses the method
of period extraction to realize the recombination of sampling points in one period, which can effectively
increase the sampling rate and is not restricted by the sampling process. In addition, this paper
proposes a down-sampling rule to screen the reorganized samples, which improves the possibility
of successful reconstruction. By researching the reconstruction of non-uniformly distributed sample
points with sub-Nyquist rate, this paper provides a method for the reconstruction of the signal obtained
by the servo system through the certain network interfaces.

2. Basic Theories

2.1. Equivalent Sampling

Equivalent sampling means that for a signal with a fixed period, under the condition of a low
sampling rate, the purpose of increasing the sampling rate can be achieved by combining multi-period
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signals. According to the main characteristics, equivalent sampling can be divided into two forms:
sequential equivalent sampling (SES) and random equivalent sampling.

In SES process [8], each period of a signal with a period of Ta is equally divided into n parts.
Obviously, the time interval ∆t = Ta/n. At time kTa + (m− 1)∆t, the mth sampling is performed by
shifting the sampling time of each cycle backward by ∆t. In the above sampling process, due to the
sampling interval ∆t� Ta, it does not satisfy the sampling theorem. But after mth of sampling, we can
get a complete period waveform by rearranging the sampling points in one cycle.

The principle of RES [12] is shown in Figure 1, the sampling circuit performs one sampling under
the control of the sampling clock from the position of the random time interval ∆t of the trigger level.
The time interval ∆t between the first sampling clock and the trigger position of each sampling is
distributed on [0 Ts] and is random, where Ts is the period of the sampling clock. Then, according
to this random but definite time interval ∆t, the position of each sample point is determined in the
recombined signal.
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For periodic signal, the equivalent sampling technology is not limited by Nyquist sampling
theorem. It reduces the sampling rate at the cost of the increase of sampling time by reorganizing the
multiple sampling data.

2.2. Reconstruction of Nonuniform Samples

The theory of frames and bases is a kind of framework for the study of nonuniform sampling.
E. Margolis et al. [23] proposed an effective reconstruction algorithm based on this theory. This algorithm
is briefly introduced in two aspects: the theory of frames and bases and the reconstruction method.

2.2.1. Frames and Bases

Let x(t) be the periodic band limited signal to be recovered, and
{
x(ti)

}N
i=1 be its N non-uniform

samples. The basic idea of the reconstruction algorithm is to represent x(t) as a linear combination of
functions ϕi(t), i.e.,

x(t) =
N∑

i=1

x(ti)ϕi(t) (1)
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The functional space Vϕ is defined as

Vϕ =
{∑N

i=1
ciϕi(t)|c ∈ RN

}
(2)

If there are constants A > 0 and B <∞ that can make all x(t) ∈ Vϕ satisfy Equation (3), then the set
of functions

{
ϕi(t)

}N
i=1 is described as a frame for Vϕ.

A‖x(t)‖2 ≤
N∑

i=1

∣∣∣x(t),ϕi(t)
∣∣∣2 ≤ B‖x(t)‖2 (3)

Here,a(t), b(t) is an inner product of two functions a(t) and b(t). ‖a(t)‖2 is the squared norm of
a(t). The constants A and B are called the frame bounds, and they can be determined by the eigenvalues
of the correlation matrix R (Equation (4)). A is the minimum value of all eigenvalues, and B is the
maximum one.

Ri j =
〈
ϕi(t),ϕ j(t)

〉
(4)

In special cases, if N=M,
{
ϕi(t)

}N
i=1 are linearly independent of each other, they constitute a basis

of space Vϕ.

2.2.2. Reconstruction Method

Let x(t) be a signal with period T and band limited to 2πK/T. Then, x(t) can be reconstructed by
its N ≥ 2K + 1 unevenly distributed samples as

x(t) =
N−1∑
p=0

x
(
tp
)
hp(t) (5)

In this reconstruction formula, when N is an even number,

hp(t) = cos (
π
(
t− tp

)
T

)
N−1∏
q=0
q,p

sin (
π(t−tq)

T )

sin (
π(tp−tq)

T )

(6)

When N is an odd number,

hp(t) =
N−1∏
q=0
q,p

sin (
π(t−tq)

T )

sin (
π(tp−tq)

T )

(7)

It can be observed that when the sampling points are odd and even, the reconstruction functions{
hp(t)

}N−1

p=0
are slightly different. Actually, the aim of this difference is to ensure the function to span a

entire space of the periodic band-limited signal, so that the set of the function can constitute a basis for
the space. This means that any x(t) can be expressed with this set of function, so as to achieve the
purpose of reconstruction.

3. Proposed Method

Aiming at the nonuniformly distributed data obtained with low sampling rate from the servo
control and drive system, this paper will discuss the proposed method in three parts: reorganization
based on RES, reconstruction and error analysis.
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3.1. Reorganization of Sampling Points Based on RES

For the purpose of increasing the sampling rate and rearranging the points within the same period,
it is essential and important to obtain the precise period of the signal. We need to resample the initial
samples to obtain a uniformly spaced sequence of samples firstly. Usually, the period of the signal
is determined by the fundamental frequency in the frequency spectrum, but the error introduced by
resampling will cause great interference in this step. Instead, we choose to find the peak frequency from
the envelope spectrum to obtain the period of the signal. In this type of spectrum analysis, when the
signal has poor spectrum accuracy due to errors such as the fence effect, the accurate frequency is often
difficult to obtain. In this case, the frequency correction method [24,25] can be used to obtain the true
value of the required correction frequency.

After getting the signal period, we next determine the position of the sampling point in the
recombined signal. Let

{
x(ti)

}N
i=1 be N nonuniform sample points to be reconstructed, and ti be the

time corresponding to the ith point, T0 is the period obtained in the previous step. The time of the new
sequence after recombination is given by Equation (8), where mod is the remainder of ti/T0 and sort is
to arrange these points from small to large.

tri = sort[timod(T0)] (8)

3.2. Reconstruction of Nonuniform Sample Points

After recombining the signals within the same period, the equivalent sampling rate will increase
to several times the original sampling rate. Next step, we introduce the reconstruction theory described
above to complete the reconstruction of nonuniform sample points.

The stability of reconstruction [23] is represented by the condition number which can be denoted by

κ = B/A (9)

where B and A are the maximum and minimum eigenvalues of the aforementioned correlation
matrix Ri j. κ is an index that is only related to the distribution of sampling points. The difference
in the distribution of sampling points has a great influence on the stability of the reconstruction
function. Specifically, when the distance between sampling points is very small or the gap is very large,
the reconstruction function becomes unstable, and it is difficult to obtain an ideal reconstruction result.

In the step of recombining all the sampling points in one cycle, the positions of the sampling
points can be distributed anywhere in the interval [0 T0]. According to the foregoing discussion,
if there is a case where the distance between sampling points is close or far, the stability of the
reconstruction algorithm will be greatly affected. An excessively large condition number κ may even
cause reconstruction failure. The proposed solution is to perform a down sampling on the recombined
sampling points. We select these points with the smallest deviation compared with the uniformly
distributed sampling sequence and discard the remaining sample points with large deviations that do
not contribute much to signal recovery. Finally, we use these samples that we selected as the input of
the reconstruction algorithm. The selected sample points are brought into the reconstruction algorithm
to realize signal reconstruction.

3.3. Reconstruction Error

There are several evaluation methods for signal reconstruction error, such as mean square error
and mean absolute error. In this paper, mean absolute percentage error (MAPE) index is used to
evaluate the accuracy of reconstruction.

The definition of MAPE is given by Equation (10), where yr is the amplitude of the reconstructed
signal and y is the amplitude of the original signal. MAPE indicates the degree of deviation between
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the reconstructed signal and the actual signal. The smaller the deviation, the better the accuracy of the
reconstruction algorithm

MAPE =
1
N

N∑
i=1

∣∣∣∣∣∣ yr(i) − y(i)
y(i)

∣∣∣∣∣∣ ∗ 100% (10)

3.4. Flow Chart

As described above, the steps of the method proposed in this paper are as the follows and the
flow chart of the method is shown in Figure 2.

1. Obtaining the original non-uniform, sub-Nyquist rate sample sequence to be reconstructed.
2. Uniformly resampling these nonuniform samples.
3. Calculating the period of the original waveform through the envelope spectrum of the resampled

signal according to Section 3.1.
4. Regrouping sampling points from multiple periods into one period by using Equation (8).
5. According to the criteria in Section 3.2, some sampling points are selected as the input of the

reconstruction algorithm through down sampling.
6. According to basis-based reconstruction theory, the discrete signal is reconstructed into a

continuous signal.
7. Analyze the error of the reconstructed signal.
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4. Simulation Verification

The simulation signals of periodic reciprocating motion of robot are constructed to verify the
effectiveness of the above methods. During the reciprocating motion of the robot, the movement of the
robot arm is divided into four stages.

The first stage is that the robot arm accelerates from the standstill to the maximum speed, and then
slowly decelerates to a speed of 0, at which time the movement of robot arm reaches the end position.

The second stage simulates the state where the robot arm reaches the end position and stops for a
period of time.

In the third stage, the robot arm starts to rotate from the end position, the speed increases to the
maximum and then decreases to 0. The robot arm returns to the initial position.

The fourth stage simulates that the robot arm stops moving for a period of time after returning to
the initial position, and then enters the first stage, cyclically reciprocating.

In order to simulate the characteristics of this movement, the simulation vibration signal is now
constructed as follows. Two sinusoidal signals with frequencies of 70 Hz and 15 Hz are used to simulate
different frequency components in the signal. Due to the influence of the robot’s speed in the first and
third stages of the robot arm’s movement, the robot arm should exhibit a relatively obvious amplitude
modulation phenomenon on the waveform. A sine wave with a frequency of 2 Hz and 1 Hz is used as
the modulation signal to simulate this phenomenon. Suppose the period of the robot arm movement is
T0 = 2.2 s, and the time that the robot arm stays at the initial position and the end position is 0.4 s
and 0.3 s, respectively. The simulation waveform of one movement cycle of the robot arm is shown in
Figure 3a. Then the signal is periodically extended to obtain a signal of 10 cycles, the signal after the
extension is as shown in Figure 3b.
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Figure 3. A full-cycle simulation signal (a) and simulation signal after extension (b).

In this simulation, the original sampling points are constructed by randomly generating 1200 points
at arbitrarily intervals in the interval [0 10T0]. The equivalent sampling frequency of these sample
points is 54.5 Hz, which satisfies the condition of sampling at sub-Nyquist frequency. The initial signal
with sub-Nyquist sampling rate is shown in Figure 4. Next, we use these nonuniform sampling points
to reconstruct the original signal (Figure 3).
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After uniformly resampling through interpolation, we calculate the period of the original signal
from the peak frequency Fp in the envelope spectrum of these pseudo sampling points. The envelope
spectrum is shown in Figure 5. A period of the original signal contains two similar parts, so the time
corresponding to the peak frequency is half of the period of the original signal. The signal period can
be obtained according to Equation (11).

T0 = 2/Fp (11)

It can be observed from Figure 5 that the peak frequency Fp = 0.9091 Hz. T0 = 2.19998 s can be
calculated by Equation (11), which is very close to the true period of the original signal.Sensors 2020, 20, x FOR PEER REVIEW 8 of 13 
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After the period of the signal T0 is determined, according to the corresponding positions of the
sampling points in their respective periods, they are transferred to the first period. The new time
position tr is determined by Equation (8). In order to avoid the failure of reconstruction caused by the
distance between the sampling points, the sample point with the smallest deviation from a uniformly
distributed sequence are selected from all the regrouped samples. The highest frequency of the
simulation signal is 70 Hz. Theoretically, as long as the average sampling rate is greater than or equal
to 140 Hz, the original signal can be recovered. After recombining 1200 points of 10 cycles into one
cycle (Figure 6a), there are a lot of redundant sampling points. As shown in Figure 6b, 340 nonuniform
sample points closest to the uniform time series are selected out from 1200 samples to ensure the
distribution of nonuniform samples and to discard those points with very close or far spacing.
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Finally, these points are taken into the reconstruction function when the sampling points are even
(Equation (6)), and the signal of one period after reconstruction is obtained. As shown in Figure 7,
compared with the original signal, only a few points of the reconstructed signal deviate from the true
value, and the deviation is small. The value of MAPE calculated according to Equation (10) is 0.27%.
Such a small value indicates that the accuracy of the reconstructed signal is quite high.
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5. Reconstruction of Actual Signal

The current signal collected from the arm swing test stand is used to verify the effectiveness of
the proposed method. As shown in Figure 8, the structural part of the stand is composed of base,
servo motor, reducer, bearing seat, swing arm and other components. For the control part, Siemens
PLC is applied to implement the periodic reciprocating movement of the robot arm swing. The size of
the weights and its installation position on the swing arm can be adjusted to simulate the change of
load. The function of the test stand is to collect the current and vibration signals of the swing arm
in the whole life test process to study the decline characteristics of the reducer. The current signal
is collected by the NI9234 acquisition card with a sampling rate of 256 Hz and the period of swing
movement is 5 s. The names of all components of the test stand are given in Table 1.
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Table 1. Description of the parts of the test stand.

Number Name of Parts Number Name of Parts

1 base 2 AC PMSM

3 planetary gear reducer 4 bearing seat

5 swing arm 6 weights

7 acquisition card 8 Siemens PLC

9 servo driver 10 current sensor

11 power

As in simulation, we take 10 full-cycle current signals (Figure 9), and then obtain the initial
nonuniform sample sequence for reconstruction by down sampling the original data. The number of
sampling points is 1000. By observing the spectrum of the original signal, it can be seen that the highest
frequency of the signal is around 30 Hz, as shown in Figure 10. Therefore, the average sampling rate
20 Hz still satisfies the sub-Nyquist sampling rate.
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After uniform resampling, the peak frequency of 0.2 Hz can be seen in the envelope spectrum
(Figure 11). The current signal does not show two very similar waveform components in one cycle as
in the simulation. Therefore, the signal period 5 s is obtained by Equation (12),

T0 = 1/Fp (12)
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Figure 11. The envelope spectrum of the current signal after resampling.

Referring to RES, after recombining 1000 samples in the same cycle (Figure 12a), in order to
improve the stability of the reconstruction algorithm and avoid reconstruction errors, the samples are
down sampled. As described in the previous simulation section, samples with small interval changes
shall be selected as much as possible. Theoretically, if a signal with a sampling rate greater than 60 Hz
can recover a signal with a maximum frequency of 30 Hz, then we need at least 300 sampling points
within a period of 5 s. In order to improve the accuracy of reconstruction, 320 samples are selected
from 1000 points, as shown in Figure 12b.



Sensors 2020, 20, 6246 11 of 13

Sensors 2020, 20, x FOR PEER REVIEW 10 of 13 

 

 

Figure 10. Spectrum of original current signal. 

After uniform resampling, the peak frequency of 0.2 Hz can be seen in the envelope spectrum 

(Figure 11). The current signal does not show two very similar waveform components in one cycle as 

in the simulation. Therefore, the signal period 5 s is obtained by Equation (12), 

𝑇0 = 1/𝐹𝑝 (12) 

 

Figure 11. The envelope spectrum of the current signal after resampling. 

Referring to RES, after recombining 1000 samples in the same cycle (Figure 12a), in order to 

improve the stability of the reconstruction algorithm and avoid reconstruction errors, the samples 

are down sampled. As described in the previous simulation section, samples with small interval 

changes shall be selected as much as possible. Theoretically, if a signal with a sampling rate greater 

than 60 Hz can recover a signal with a maximum frequency of 30 Hz, then we need at least 300 

sampling points within a period of 5 s. In order to improve the accuracy of reconstruction, 320 

samples are selected from 1000 points, as shown in Figure 12b. 

  

(a) (b) 

Figure 12. Reorganization of sampling points (a) and screening of sampling points (b). 

The last step is to bring samples selected into the reconstruction function and obtain the 

reconstructed time-domain waveform. In order to show the quality of the reconstruction effect more 

Figure 12. Reorganization of sampling points (a) and screening of sampling points (b).

The last step is to bring samples selected into the reconstruction function and obtain the
reconstructed time-domain waveform. In order to show the quality of the reconstruction effect
more intuitively, the time-domain comparison chart (Figure 13) and frequency-domain comparison
chart (Figure 14) are given.
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Figure 14. Spectrum comparison.

The time-domain waveform of the reconstructed signal is basically consistent with the original
signal except for a small number of points that are slightly offset. We can observe in the frequency
spectrum that the reconstructed signal basically covers all the components of the original signal with
slight differences of amplitude. The frequency components higher than 30 Hz in the original signal
spectrum are not reflected in the reconstructed signal, but this part of the frequency component has
very low energy and can be directly ignored. The MAPE value calculated by Equation (9) is 0.66%.
The results of the reconstruction are generally satisfactory.

6. Conclusions

In order to solve the difficulty of signal reconstruction due to the low sampling rate and uneven
sampling of the data obtained from the servo system, this paper proposes a method to recombine
the sample points in the same period by calculating the period of the signal, and then using the
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basis-based reconstruction theory to achieve signal reconstruction. According to the characteristics of
the reconstruction algorithm, the method of down sampling with slightly redundant sample points
improves the stability of reconstruction. In this paper, the simulation signal of the reciprocating motion
of the robot arm and the actual collected current signal are used for down sampling to obtain the initial
non-uniform samples. Both the simulation and experiment parts show the comparison results of the
time-domain waveform and frequency spectrum of the reconstructed signal and the actual signal.
We can see that the time domain of the reconstructed signal deviates very little from the actual signal
(MAPE values are all less than 1%), and there is no loss of main frequency components in the frequency
spectrum. These results prove the effectiveness of the method.

Author Contributions: Conceptualization, X.L. and X.W.; methodology, X.L.; software, D.W.; validation, X.L., D.W.
and Z.W.; formal analysis, D.W.; investigation, Z.W.; resources, X.W.; data curation, X.L.; writing—original draft
preparation, D.W.; writing—review and editing, D.W.; visualization, X.L.; supervision, Z.W.; project administration,
X.W.; funding acquisition, X.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported in part by the National Key Research and Development plan of China under
Grant 2018YFB1306103, and in part by Science and Technology Major Project of Yunnan Province 202002AC080001,
and in part by National Natural Science Foundation of China 51875272.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kia, S.H.; Henao, H.; Capolino, G.A. A comparative study of acoustic, vibration and stator current signatures
for gear tooth fault diagnosis. In Proceedings of the 20th International Conference on Electrical Machines,
Marseille, France, 2–5 September 2012; pp. 1514–1519. [CrossRef]

2. Saadaoui, W.; Jelassi, K. Gearbox-Induction Machine Bearing Fault Diagnosis Using Spectral Analysis.
In Proceedings of the Second Uksim European Symposium on Computer Modeling & Simulation, Liverpool,
UK, 8–10 September 2008; pp. 347–352. [CrossRef]

3. Stopa, M.M.; Filho, B.D.J.C. Load Torque Signature Analysis: An alternative to MCSA to detect faults in
motor driven loads. In Proceedings of the IEEE Energy Conversion Congress & Exposition, Raleigh, NC,
USA, 15–20 September 2012; pp. 4029–4036. [CrossRef]

4. SINUMERIK 810D/840Di/840D ePS Network Service Function Manual. Available online: https://cache.
industry.siemens.com/dl/files/980/109474980/att_834992/v1/EPS_FH_0806_cs.pdf (accessed on 5 October 2020).

5. ABB. Remote Services. Available online: https://new.abb.com/abb-ability/mining/remote-services (accessed
on 5 October 2020).

6. ANUC. FANUC ZDT Product Overview. Available online: https://www.fanucamerica.com/products/robots/
zdt-zero-down-time (accessed on 5 October 2020).

7. Henao, H.; Kia, S.H.; Capolino, G.A. Torsional-Vibration Assessment and Gear-Fault Diagnosis in Railway
Traction System. IEEE Trans. Ind. Electron 2011, 58, 1707–1717. [CrossRef]

8. Shize, G.; Shenghe, S.; Zhongting, Z. A novel equivalent sampling method using in the digital storage
oscilloscopes. In Proceedings of the Instrumentation & Measurement Technology Conference, Hamamatsu,
Japan, 10–12 May 1994; pp. 530–532. [CrossRef]

9. Yi, Z.; Chu, W. A completely new equivalent sampling theory. Acta Sci. Nat. Univ. Pekin. 1999, 35, 685–690.
10. Xing, J.; Wei, H. The Design of Random Equivalent Sampling Module Based on FPGA. Electr. Meas. Instrum.

2009, 46, 17–20.
11. Zhao, Y.J.; Hu, Y.H.; Wang, H.J. Enhanced random equivalent sampling based on compressed sensing.

IEEE Trans. Instrum. Meas. 2012, 61, 579–586. [CrossRef]
12. Zhao, Y.J.; Liu, C.J. Multiband signal reconstruction for random equivalent sampling. Rev. Entific Instrum.

2014, 85, 18–19. [CrossRef] [PubMed]
13. Black, H.S. Modulation Theory; D.Van Nostrand: London, UK, 1953.
14. Cauchy, A.L. Mémoire sur diverses formules d’analyse. Compt. Rend. 1841, 12, 283–298.
15. Yen, J. On Nonuniform Sampling of Bandwidth-Limited Signals. IRE Trans. Circuit Theory 1956, 3, 251–257.

[CrossRef]
16. Sommen, P.; Janse, K. On the Relationship Between Uniform and Recurrent Nonuniform Discrete-Time

Sampling Schemes. IEEE Trans. Signal Process. 2008, 56, 5147–5156. [CrossRef]

http://dx.doi.org/10.1109/ICElMach.2012.6350079
http://dx.doi.org/10.1109/EMS.2008.85
http://dx.doi.org/10.1109/ECCE.2012.6342276
https://cache.industry.siemens.com/dl/files/980/109474980/att_834992/v1/EPS_FH_0806_cs.pdf
https://cache.industry.siemens.com/dl/files/980/109474980/att_834992/v1/EPS_FH_0806_cs.pdf
https://new.abb.com/abb-ability/mining/remote-services
https://www.fanucamerica.com/products/robots/zdt-zero-down-time
https://www.fanucamerica.com/products/robots/zdt-zero-down-time
http://dx.doi.org/10.1109/TIE.2011.2106094
http://dx.doi.org/10.1109/IMTC.1994.351901
http://dx.doi.org/10.1109/TIM.2011.2170729
http://dx.doi.org/10.1063/1.4899204
http://www.ncbi.nlm.nih.gov/pubmed/25362458
http://dx.doi.org/10.1109/TCT.1956.1086325
http://dx.doi.org/10.1109/TSP.2008.928695


Sensors 2020, 20, 6246 13 of 13

17. Sindhi, S.K.; Prabhu, K.M.M. Reconstruction of N-th order nonuniformly sampled signals using digital filter
banks. In Proceedings of the Sensor Signal Processing for Defence, London, UK, 25–27 September 2012.
[CrossRef]

18. Van Der Ouderaa, E.; Renneboog, J. Some formulas and applications of nonuniform sampling of
bandwidth-limited signals. IEEE Trans. Instrum. Meas. 1988, 37, 353–357. [CrossRef]

19. Yu-Ling, L.I.; Pan-Pan, Z. Reconstruction Method of Multichannel Nonuniform Sampling Signals.
J. Zhengzhou Univ. 2013, 34, 10–14.

20. Johansson, H.; Lowenborg, P. Reconstruction of nonuniformly sampled bandlimited signals by means of
digital fractional delay filters. IEEE Trans. Signal Process. 2002, 50, 2757–2767. [CrossRef]

21. Wiley, R.G. Recovery of Bandlimited Signals from Unequally Spaced Samples. IEEE Trans. Commun. 1978,
26, 135–137. [CrossRef]

22. Marvasti, F.; Analoui, M. Recovery of signals from nonuniform samples using iterative methods. IEEE Trans.
Signal Process. 1991, 39, 872–878. [CrossRef]

23. Margolis, E. Reconstruction of periodic bandlimited signals from nonuniform samples. Master Degree, Israel
Institute of Technology, Haifa, Israel, 2004.

24. Huibin, L.; Kang, D. Energy based signal parameter estimation method and a comparative study of different
frequency estimators. Mech. Syst. Signal Proc. 2011, 25, 452–464. [CrossRef]

25. Belega, D.; Dallet, D.; Petri, D. Accuracy of the Normalized Frequency Estimation of a Discrete-Time
Sine-Wave by the Energy-Based Method. IEEE Trans. Instrum. Meas. 2011, 61, 111–121. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/ic.2012.0094
http://dx.doi.org/10.1109/19.7454
http://dx.doi.org/10.1109/TSP.2002.804089
http://dx.doi.org/10.1109/TCOM.1978.1093962
http://dx.doi.org/10.1109/78.80909
http://dx.doi.org/10.1016/j.ymssp.2010.08.009
http://dx.doi.org/10.1109/TIM.2011.2159318
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Basic Theories 
	Equivalent Sampling 
	Reconstruction of Nonuniform Samples 
	Frames and Bases 
	Reconstruction Method 


	Proposed Method 
	Reorganization of Sampling Points Based on RES 
	Reconstruction of Nonuniform Sample Points 
	Reconstruction Error 
	Flow Chart 

	Simulation Verification 
	Reconstruction of Actual Signal 
	Conclusions 
	References

