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Abstract: Smart home technologies are growing actively all around the world. As a result,
great pressures are imposed on internet of things networks by dynamic traffic and plenty of devices.
The passive optical network is considered one of the most promising fronthaul technologies.
In particular, the time and wavelength division multiplexing passive optical network has shown the
advantage of high capacity and received attention recently. In support of internet of things networks,
the energy and transmission efficiency has emerged as an important issue on the time and wavelength
division multiplexing passive optical network enabled fronthaul networks. In this paper, we try to
enhance the energy and transmission efficiency of the time and wavelength division multiplexing
passive optical network enabled reconfigurable fronthaul. Fronthaul links’ load balancing is also
taken into consideration. An integer non-linear programming model is employed to formulate the
joint optimization problem. We also provide an adaptive genetic algorithm-based approach with
fast convergence. The simulation results show that the active units of fronthaul can be dynamically
switched on/off with the traffic variation and a significant energy saving is achieved. In addition,
the maximum transmission efficiency increases by 87% with integer non-linear programming method
in off-peak periods.

Keywords: mobile networks; network algorithms; network resources allocation; cloud radio
access networks

1. Introduction

The artificial intelligence and multimedia enabled smart home significantly facilitates our
daily life [1–3]. However, high dynamic and high peak-to-average ratio traffic is generated by
the above services. The explosive growth of dynamic traffic imposes great pressure on internet of things
(IoT) and related networks. Furthermore, Cisco’s research forecasted that billions of IoT connections
will be added by 2023 [4]. The proliferation of diverse IoT devices may change the design of traditional
IoT networks [5]. In smart homes, sensors (including the video surveillance system) are connected to
the gateway through short distance network connections, such as Wi-Fi, ZigBee, and NB-IoT [6]. In the
5G era, the information collected by the gateway can be transmitted to cloud via 5G cellular mobile
networks [6] and is stored and analyzed in cloud servers [7]. To transmit signals, the network between
the baseband units (BBU) and remote radio units (RRUs) is called mobile fronthaul network in the
centralized radio access network (C-RAN) architecture [8,9]. Then, the mobile fronthaul network will
be a key factor to support various smart home services [10], which is the first network segment to
connect smart homes. However, facing the dynamic and busty traffic of smart homes, the energy and
transmission efficiency has emerged as an important issue on fronthaul networks.
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Considering the progressive network evolution, the 5G non-standalone (NSA) will be widely
deployed in the first stage, in which cloud radio access network (C-RAN) is still being used [11]. Thus,
in this paper, we will take C-RAN based fronthaul as a typical scenario during the analysis; nevertheless,
the proposed algorithms can be easily extended for 5G standalone (SA), since the topology between
active antenna unit (AAU) and distributed unit (DU) is similar to that between RRUs and BBUs.

The energy and transmission efficiency problems should be taken into consideration.
In C-RAN, the central BBUs are responsible for coordinated signal processing based on
high-performance processors. The RRUs are located at target areas to serve the access equipment [12].
The digital signal transmission between centralized BBUs and distributed RRUs is based on
the low-latency and high-capacity passive optical network (PON). Based on current noted radio
interface (e.g., common public radio interface (CPRI) [13], e-CPRI [14], next generation fronthaul
interfaces (NGFI) [14]), oversampled in-phase/quadrature-phase (I/Q) signals are transferred via
capacity-constrained fronthaul network. The transmission efficiency of the optical fronthaul is
badly affected, since the CPRI bitrate is constant, independent of the traffic fluctuation [15].

Research on energy efficiency of C-RAN has been widely explored [16–41] from
different perspectives, including resource allocation in BBU pool, function splitting, power control in
upstream/downstream, etc. However, little attention has been focused on the energy and transmission
efficiency of the reconfigurable optical fronthaul, especially for the passive optical networks based
fronthaul system. In our previous works, we have discussed the efficient resource allocation algorithms
for time and wavelength division multiplexing passive optical network (TWDM-PON) enabled
fronthaul under different scenarios [42–45], but without complete energy consumption consideration.

The explosive growth of high dynamic traffic imposes great pressure on internet of things and
related networks. As the first network segment to connect smart homes, the mobile fronthaul network
faces the dynamic and busty traffic of smart homes. The energy and transmission efficiency has emerged
as an important issue on fronthaul networks. As the strict requirement of green communication, how to
achieve an energy-efficient configuration becomes more important.

In this paper, we address the energy and transmission efficiency enhancement problem of fronthaul
network to support smart home networks. Moreover, the load balancing of the fronthaul is discussed
and analyzed. Specifically, we first present a quantitative study of the problem using integer non-linear
programming (INLP) model. Afterwards, an adaptive genetic algorithm (GA) based approach is
proposed to reduce the complexity of the INLP model. Finally, we present numerical simulation analysis.
This paper gives an in-depth detailed study of a joint optimization, including energy saving and
transmission efficiency enhancement problem of optical fronthaul. Load balancing in the fronthaul
links is also taken into consideration.

The rest of the paper is organized as follows. Section 3 formulates the INLP model, the adaptive
GA is described in Section 4, and the simulation results are discussed in Section 5. Finally, Section 6
summarizes the results.

2. Related Works

Research on the energy efficiency of C-RAN has been widely explored from different perspectives,
including resource allocation in the BBU pool, function splitting, power control in
upstream/downstream, etc.

Wang et.al. proposed an efficient energy saving approach by implementing virtual base station.
Each cell will be assigned to virtualized network resources [16]. Liu et al. developed a network energy
consumption model for H-CRAN [17]. In addition, Fiorani et al. analyzed the viable fully centralized
LTE radio architectures [18]. Alhumaima et al. proposed a power model to dynamically adjust the
active virtual machines in BBU pool [19]. The model evaluated the processed resource blocks (RBs).
Latency imposed by virtualization, minimum data rate of mobile equipment, and the number of RBs
have been considered in the model. Deep learning was used to model and predict the energy efficient
mapping between baseband processing tasks and micro-servers [20]. An efficient BBU and RRU
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association algorithm was investigated on the basis of graph partitioning and rejoining [21]. The power
consumption was significantly reduced by this algorithm. Further, two efficient schemes were proposed
to improve both the power savings and survivability of the network by using optical ring network
in C-RAN [22]. And novel bounds on the user rate function were proposed [23]. The system energy
efficiency was maximized by optimizing the transmit powers while explicitly incorporating the capacity
constraints on fronthaul. Ahmad et al. addressed the problem of energy efficiency maximization in
C-RAN under the constraints of fronthaul capacity and per-BS transmit power [24]. Machine learning
approaches are also considered in various scenarios; for example, AI-driven autonomous optical
network architectures were proposed [25–29], and the architectures provided power self-adaptive
capability according to the network condition.

Further, different fronthaul functional splits have been evaluated concerning the energy
consumption of C-RAN [30]. In distributed antenna systems of C-RAN, considering the
power constraints of the users, energy efficiency can be improved by designing the transmit
precoding matrices [31]. Liu et al. redesigned the signal quantization method to maximize the
system throughput in orthogonal frequency division multiple access (OFDMA) based C-RAN [32].
The wireless power control mechanism was taken into consideration in the joint optimization also.
Zhou et al. formulated a joint problem to minimize the aggregate power consumption [33]. The problem
contains RRH mode selection, precoding design, and fronthaul compression.

The tradeoff between queuing delay and energy efficiency was analyzed under the Lyapunov
framework with power allocation and interference constraints [34]. Meanwhile, Zhao et al. proposed
a cluster content caching architecture for C-RAN [35]. Two distributed algorithms were investigated
to enhance the energy efficiency of the network and quality of service (QoS) experience of the
mobile equipment under the architecture. Moreover, mobile cloud computing (MCC) technique was
implemented in C-RAN [36]. A convex problem was formulated to joint energy minimization in the
BBU pool with MCC. The problem took the constraints of tasks into consider (e.g., computing capacity,
and transmitting power). Moreover, two compression approaches were introduced to maximize
the downlink throughout of C-RAN over ergodic fading channels [37]. The compression technique
was dependent on the functional split in the physical layer. The performance of the compression
technique was influenced by the channel state information overhead caused by the large-scale of C-RAN.
Li et al. proposed a novel bandwidth allocation algorithm and adjusted the upstream optical network
unit (ONU) order [38]. The algorithm provided efficient low jitter upstream transmission in PON.
Recently, machine learning techniques have been used for improving the performance of networks [39].
And a smart collaborative automation (SCA) scheme was designed to improve resource usage and
overcome buffer limitations [40]. Luong et al. designed transmit beamforming, remote radio head
(RRH) selection, and RRH-user association jointly to maximize energy efficiency [41].

3. System Model

In this section, the considered TWDM-PON enabled smart home fronthaul network is introduced.
Then joint energy and transmission efficiency problem of the optical fronthaul is formulated using
INLP optimization method.

3.1. TWDM-PON Enabled C-RAN Architecture

Dedicated point-to-point fibers is a solution candidate for fronthaul transport network. However,
considering of the greenhouse effects and energy shortage, it is not attractive due to the high cost and
energy consumption. The energy consumption mainly caused by the large-scale deployment of fibers
and transceivers. PON is gaining more attention because of its great potential [46–48]. Different PON
techniques have been widely explored for fronthaul, such as wavelength division multiplexing
(WDM) PON [46,47], and subcarrier multiplexing (SCM) PON [48]. Meanwhile, TWDM-PON
is regarded as a potential solution candidate for the fronthaul, because of its high capacity and
low energy consumption [49]. Figure 1 depicts the energy efficient reconfigurable TWDM-PON
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enabled C-RAN architecture for smart home network. In C-RAN, ubiquitous RRUs perform the
radio signals forwarding and digitizing from all mobile devices in each small cell. We assume
that only one corresponding ONU is connected with each RRU serving the smart home gateway.
Multiple CPRI links are de-multiplexed/multiplexed at the optical line terminal (OLT). In the BBU pool,
baseband digital signals are processed by the virtualized BBU, based on the real-time flexible scheduling
and high-performance processors.
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For the reconfigurable fronthaul network, TWDM-PON is a promising candidate solution,
whose benefits has been widely explored [49]. The traffic from multiple ONUs can be multiplexed
in the same wavelength resource, thanks to the time and wavelength multiplexing technique.
Different independent virtual PONs (VPONs) will be formed when different wavelengths are used
for data transmission [20], leading to a reconfigurable virtual fronthaul network. In addition, it is
known that the tidal effect is obvious during the day in both office and residential cells. However,
in traditional C-RAN, the CPRI bitrate is constant regardless of traffic variation, while dependent of
the number of used antennas. For instance, for one 2 × 2 multiple input multiple output (MIMO)
and 20MHz bandwidth LTE sector, the required CPRI link rate is 2.4576 Gbit/s, leading to a low
transmission efficiency since only 150 Mbit/s is useful for the mobile devices in a small cell on the air
interface [50]. To accommodate the high demand traffic, different fronthaul compression techniques
have been widely studied [37,51]. Meanwhile, compression technique based bitrate-variable CPRI
was introduced [42]. This paper considers compressed bitrate-variable CPRI as a key factor for the
challenge in smart home. Furthermore, based on the operation mode of each small cell, part of the
fronthaul links and other active units such as ONUs and transceivers can be shut down without
energy supply at proper times [52–54]. Moreover, both virtual topology of reconfigurable fronthaul
and operation modes of small cells can be abstracted in the controller based on the software defined
network technique. Energy and transmission efficiency enhancement approaches can also be easily
implemented and updated with the traffic variation during the days.

3.2. Problem Formulation

Consider a TWDM-PON enabled C-RAN system with M BBUs denoted by B1, . . . , BM, and N
RRUs denoted by R1, . . . , RN. The mobile devices in the small cells communicate with the ubiquitous
distributed RRUs, and the RRUs are connected to the centralized BBUs through a reconfigurable
TWDM-PON enabled fronthaul. We consider that there are N ONUs denoted as O1, . . . , ON,
deployed in the proposed C-RAN. Each ONU is co-located with the corresponding RRU in the
target area. Meanwhile, let W1, . . . , WS represent the set of wavelengths used in the reconfigurable
fronthaul. Each wavelength is served by a transceiver in the OLT, which is co-located with the BBU pool.

In TWDM-PON, an active transceiver consumes a constant energy PTr. ONU and RRU consume
a constant energy PONU, and PRRU, independently, when both of them are active. Integer N indicates
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the number of ONUs or RRUs at remote small cells. Integer S indicates the number of transceivers
in the OLT. Boolean variables si, ri, and σ j indicate whether the ith ONU, RRU, and jth transceiver
are active, respectively. The capacity of a wavelength is 10 Gbit/s, denoted as CW . Boolean variable
δW j,(Oi,Ri)

indicates that whether wavelength W j is distributed to ONU Oi (or RRU Ri) for signal
forwarding. Parameter νCPRI represents the link rate of CPRI. The variableµRi indicates the compression
ratio of RRU Ri (or ONU Oi) on the basis of bandwidth requirement in the corresponding small cell.

In this section, we only study the energy saving of the fronthaul, since the energy consumption of
BBU pool has been widely explored in previous works [16–41]. Active networks devices, except the
active equipment in the BBU pool, including transceivers, ONUs, and RRUs. An active transceiver
consumes a constant energy PTr. When it is shut off, no energy is consumed. Similarly, the operation
mode of the ONU and RRU varies with the smart home traffic fluctuation. They consume a constant
energy PONU, and PRRU, independently, when both of them are active. Otherwise, no energy is
consumed when they are in sleep mode. So, energy consumption for the fronthaul with optimization
is:

P f ronthaul =
N∑

i=1

(PONU · si + PRRU · ri) +
S∑

j=1

PTr · σ j (1)

Integer N indicates the number of ONUs or RRUs at remote small cells, and integer S indicates
the number of transceivers in the OLT. Moreover, Boolean variables si, ri, and σ j indicate whether the
ith ONU, RRU, and jth transceiver are active, respectively. Specifically, si, or ri, or σ j = 1 means that
the corresponding device is active. Otherwise, the active network device is shut off.

For traditional TWDM-PON enabled fronthaul without energy minimization optimization,
all transceivers, ONUs, and RRUs are always active, and the energy consumption is constant as follow:

P′f ronthaul = PTr · S + (PONU + PRRU) ·N (2)

Furthermore, it is known that the traditional CPRI link rate is constant independent of
traffic variation. Even low smart home flow may lead to a high bandwidth requirement and
low transmission efficiency of the optical fronthaul. In this section, we also try to improve the
transmission efficiency of TWDM-PON enabled reconfigurable fronthaul, on the basis of the compressed
bitrate-variable CPRI [42]. In the proposed C-RAN, the capacity of a wavelength is 10 Gbit/s,
denoted as CW . Each wavelength is served by a transceiver in the OLT co-located with the BBU pool.
So σ j = 1 can also indicate that the wavelength W j is used for data forwarding in the fronthaul optical
links. The transmission efficiency of TWDM-PON enabled fronthaul is defined as follow:

η =

S−
S∑

j=1
σ j

S
(3)

As we know, the tidal effect is clear during the day in both the smart homes of office and residential.
Uneven requirements among RRUs results in load imbalance in fronthaul links. We take the load
balancing in the wavelength dimensioning into consideration in the problem formulation. We use
mean squared error (MSE) (similar to [42]) to indicate the load balancing state of the TWDM-PON
enabled fronthaul network:

LB f ronthaul =

S∑
j=1

σ j ·


N∑

i=1
ri · si · δW j, (Oi, Ri) · νCPRI · µRi

−

(
N∑

i=1
ri · si · νCPRI · µRi

)
/

S∑
j=1

σ j


2

S∑
j=1

σ j

(4)
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where Boolean variable δW j, (Oi, Ri) indicates that whether wavelength W j is distributed to ONU
Oi (or RRU Ri) for signal forwarding. Specifically, δW j, (Oi, Ri) = 1 if W j is allocated to ONU Oi
(or RRURi), and 0 otherwise. (Oi, Ri) means that there is a corresponding ONU Oi is connected with
RRU Ri serving the small cell. Moreover, parameter νCPRI represents the link rate of CPRI. The variable
µRi indicates the compression ratio of RRU Ri (or ONU Oi) on the basis of bandwidth requirement in
the corresponding small cell.

Our objective is to enhance the energy and transmission efficiency of the proposed TWDM-PON
enabled reconfigurable fronthaul. Moreover, we also consider the load balancing between the optical
fronthaul links. Three sub-objectives are given by Equations (1), (3) and (4), respectively. We use INLP
approach to optimize the proposed three sub-objectives with the following constraints:

si ∈ {0, 1}, ri ∈ {0, 1},∀i ∈ {1, . . . , N} (5)

σ j ∈ {0, 1}, δW j, (Oi, Ri) ∈ {0, 1},∀i ∈ {1, . . . , N},∀ j ∈ {1, . . . , S} (6)

N∑
i=1

si · ri · δW j, (Oi, Ri) · νCPRI · µRi ≤ CW ,∀ j ∈ {1, . . . , S} (7)

S∑
j=1

si · ri · δW j, (Oi, Ri) = 0, or 1,∀i ∈ {1, . . . , N} (8)

S∑
j=1

N∑
i=1

δW j, (Oi, Ri) =
N∑

i=1

si · ri. (9)

Value constraints of variables si, ri, σi, and δW j,(Oi, Ri) are shown in Equations (5) and (6).
Equation (7) limits the maximum aggregated CPRI signal transmission rate served by an active
wavelength W j. Equation (8) indicates that only one wavelength can be assigned to each active ONU
Oi (or RRU Ri), and zero otherwise. Equation (9) ensures that the total number of active ONUs (RRUs)
obtained by two different ways is the same with each other.

4. Adaptive Genetic Algorithm for Joint Optimization

In this section, we provide an adaptive GA based approach to achieve the near-optimal solutions
for the joint optimization of energy and transmission efficiency of the reconfigurable fronthaul. We also
consider the load balancing problem in the wavelength dimensioning.

4.1. Genetic Encoding and Evaluation

GA is a popular nature selection based heuristic approach to efficiently search the near-optimal
solutions with low complexity [55]. The search procedures of GA are based on the mechanics of natural
selection and natural genetics. GA is developed to allow computers to evolve solutions to difficult
function optimization problems [56,57]. The basic operation of a GA could be divided into three steps:
(1) maintain a population of solutions to a problem, (2) select the better solutions for recombination
with each other, and (3) use their offspring to replace poorer solutions. A candidate solution for the
given problem is encoded as a chromosome (or an individual). Each individual is evaluated by a fitness
function, and better individuals have more opportunities to go through further genetic procedures:
including selection, crossover, and mutation operations.

Each optical fronthaul link, including corresponding transceiver, ONU, and RRU, is indicated by
a gene vector. The gene is encoded in ζi, j =

{
si, ri, σ j, δW j, Oi, Ri

}
. Boolean variables si, ri, and σ j indicate

whether the ith ONU, RRU, and jth transceiver are active, respectively. In addition, Boolean variable
δW j shows that whether wavelength W j is distributed to ONU Oi (or RRURi) for signal forwarding.

For the energy and transmission efficiency optimization problem in the reconfigurable fronthaul,
our objective is to search a series of near-optimal Boolean variables (e.g., si, ri, σ j, and δW j, (Oi, Ri))
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that satisfied with Equations (1), (2) and (4). Each wavelength is served by a transceiver in the OLT,
which means that there is one-to-one correspondence between wavelength W j and σ j. A chromosome is
consisted of N genes, denoted as I =

{
ζ1, j1, . . . , ζN, jN, j1, . . . , jN ∈ {1, . . . , S}

}
. Then we define a population

with K individuals as ψ. Each individual is a candidate solution for the energy and transmission
efficiency problem in the TWDM-PON enabled fronthaul.

The initial populationψwith K individuals is formed randomly. Since there are three sub-objectives
in the problem, weighting method is introduced during optimization. The fitness function is shown in
Equation (10).

F(I) = (α1,α2,α3) ·

(
1

P f ronthaul
, η,

1
LB f ronthaul

)
′

(I) (10)

Meanwhile, during the chromosome generation for initial population, selection, crossover,
and mutation phase, not all individuals are feasible, since some of them may not meet the constraints
shown in Equations (7)–(9). A penalty function is adopted to face the potential problem, considering of
the constraints described in Section 4. For any illegal individual who does not satisfy the constraints,
a penalty is added to decrease its fitness value. Finally, the modified fitness function is shown in
Equation (11).

F′ (I) =

F(I), I is legal

F(I)−ε0·
3∑

k=1
penalty(k,I), I is illegal

(11)

where ε0 is defined as the penalty factor, indicating the degree of penalty. Penalty function penalty(k, I)
returns 0 if individual I meets the corresponding constraint, and 1 otherwise.

4.2. Adaptive Genetic Operations

Roulette wheel selection (RWS) is introduced in the implementation in selection phase.
Selection probability p(Ik) is assigned to each individual to implement weighted selection. The selection
probability is proportional to individual’s fitness value. The probability of the individual Ik is given by:

p(Ik) =
F′(Ik)

K∑
j=1

F′
(
I j
) (12)

The proposed algorithm randomly generate a number P in the interval [0, 1], and the individual
Ik who meets the Equation (13) is chosen. The individuals with a higher weight probability have more
opportunities to be selected. The RWS operator repeats K times to form a new population.

k = min

s

∣∣∣∣∣∣∣∣
s−1∑
j=1

p
(
I j
)
≤ P, s ∈ {1, . . . , K}

 (13)

Then the new population is transferred to the crossover phase. Crossover inherits the idea of
natural reproduction. A crossover probability denoted as ρc is applied for the offspring generation of
the selected parents. In this phase, one-point crossover is used. We first randomly generate a number p
in the interval [0, 1]. If p ≤ ρc, then a crossover point in the range {1, . . . , N − 1} is selected randomly,
and the pair of parents swap the genes at the crossover point to generate two new individuals.
The offspring inherit parts of characteristics of their parents, and they are supposed to provide better
candidate solutions for the joint energy and transmission efficiency optimization. K individuals are
generated by this way.

After crossover, all individuals go through the mutation phase. New genetic characteristics can
be introduced into the population in this stage. Unlike the crossover, mutation operator can only
randomly modify the genes of an individual. A mutation probability denoted as ρm is applied for
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gene modification. For every gene in each individual, we apply the following mutation procedure.
First, we randomly generate a number p in the interval [0, 1]. If p ≤ ρm, then that gene is replaced with
another one. In each genetic operation phase, the size of generated population maintains constant.

To achieve a better performance of the proposed GA, an adaptive approach by dynamically
updating ρc and ρm is adopted. We apply Equations (14) and (15) [58] to obtain the value of

ρc and ρm in each iteration. Specifically, we have Fmax = max j
(
F′

(
I j
))

, Fmean =
K∑

j=1
F′ (I j)/K,

and Fc = max
(
F′

(
I j1

)
, F′

(
I j2

))
. Moreover, λc and λm are the default constant value of crossover

probability and mutation probability.

ρc =

{ Fmax−Fc
Fmax−Fmean

, Fc ≤ Fmean

λc, otherwise
(14)

ρm =

 Fmax−F′ (I j)
Fmax−Fmean

, F′
(
I j
)
≤ Fmean

λm, otherwise
(15)

We apply Equation (16) [58] to evaluate the convergence performance of the proposed adaptive
GA approach, where d

(
I j1, I j2

)
shows the differences between two individuals I j1 and I j2. Based on the

proof in [59], we can state that the proposed heuristic method based adaptive GA has been converged,
if GA’s degree of diversity denoted as Dp is lower than a threshold.

Dp =
2

K · (K − 1)

K−1∑
j1=1

K∑
j2= j1+1

d( j1, j2)
N

(16)

5. Numerical Results

In previous sections, both thee INLP approach and heuristic method based adaptive GA
are investigated to enhance the energy and transmission efficiency of the TWDM-PON enabled
reconfigurable fronthaul. We also take the load balancing in the wavelength dimensioning
into consideration. In this section, numerical simulation results are provided and analyzed, to evaluate
the performance of the proposed algorithms.

We consider a TWDM-PON enabled C-RAN system with N = 32 RRUs, each served by a one-to-one
corresponding ONU. And S = 8 wavelengths are assumed to be used in the fronthaul network,
forwarding the compressed bitrate-variable CPRI signals [38]. Moreover, it is known that the tidal
effect is clear during the day in smart homes of office and residential. We consider a business area,
where the typical traffic variation during an operational day is shown in Figure 2 [60]. In order to
reduce the response time, predicted traffic is used in the proposed algorithm. Other parameters are
shown in Table 1.Sensors 2020, 20, x FOR PEER REVIEW 9 of 15 
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Table 1. Simulation Parameters.

Simulation Parameters

PTr, per-active transceiver consumption 5 W [61]
PONU, per-active ONU consumption 7.7 W [62]
PRRU, per-active RRU consumption 20 W [20]

CW , per-wavelength maximum capacity 10 Gbit/s [61]
νCPRI, per-CPRI link rate (option 3) 2.5 Gbit/s
µi, compression ratio for each ONU 0.2-1
K, constant population size for GA 100
ρc, initial crossover probability 0.8
ρm, initial mutation probability 0.05

Dp, convergence threshold for GA 0.12
(α1,α2,α3) (1/2, 3/8, 1/8)

Figure 3 illustrates the heuristic method based adaptive GA’s converging condition. The initial
population is consisted of a group of distributed individuals, each representing a candidate solution for
the joint optimization. The diversity of the candidate solutions is increasing with the growing number
of initial individuals. However, more hardware resources are required in the implementation. So,
we find a proper population size K = 100 by evaluating several population sizes. It is clear that when
we take the degree of diversity Dp = 0.12, and assume that the size of population K = 100, the GA
achieves the convergence within 65 iterations.
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The running time of the adaptive GA is about 2.74 s, which is less than the traditional GA with
fast convergence. Compared to the INLP approach, much lower running time is obtained by using the
adaptive GA method on a computer with 3.2 GHz Intel Core 4 CPU and 4 GB RAM. This is because that
the INLP method takes Million times iterations to achieve the global optimal solution. The adaptive
GA is more efficient to find the near-optimal solution for the large-scale network optimization.

Figure 4 presents the energy consumptions of TWDM-PON enabled reconfigurable fronthaul
under three different conditions. Typical C-RAN with fixed topology and power supply consumes the
most energy, since all the units including transceivers, ONUs, and RRUs are supposed to remain active,
and supplied with energy all the time independent of traffic variation. C-RAN with INLP method
obtains the global optimal solution for fronthaul energy minimization, leading to a significant energy
saving. The active units of fronthaul network are dynamically turned off during appropriate times with
the traffic fluctuation, whereas the INLP method is confronted with the lack of hardware resources.
Moreover, C-RAN with the proposed adaptive GA approach achieves a better energy minimization
solution than the C-RAN with fixed power supply. Compared to the INLP method, slightly less energy
saving performance can be obtained using GA approach with lower complexity. By dynamically
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reconstructing the fronthaul virtual topology and adjusting the operation modes of the active units,
energy efficiency of the fronthaul can be improved.
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Figure 5 presents the transmission efficiency of fronthaul during an operational day with different
joint optimization methods. In C-RAN with fixed topology connection relationship, all wavelength
resources are occupied in forwarding CPRI signals regardless of load variation, leading to a significant
bandwidth waste. Meanwhile, the corresponding transceivers are active all the time, which brings in
additional energy consumption. Based on Equation (3), the transmission efficiency η is equal to zero in
C-RAN with fixed topology, which is regarded as the benchmark. Moreover, global optimum can always
be achieved by INLP method with exponential complexity. Wavelength resources are dynamically
allocated based on the aggregated bandwidth requirements from each active ONU. The maximum
transmission efficiency increases by about 87% with INLP method in off-peak periods. Whereas in
peak time periods, the performance of INLP method is not obvious, since nearly all the wavelength
resources are used to satisfy the bandwidth requirements. In addition, the proposed efficient GA
achieves closely transmission efficiency enhancement as the INLP method, with linear complexity.
Specifically, suboptimal solutions are obtained by adaptive GA, when traffic is decreasing or increasing
during an operational day. This is because that there is a tradeoff between evolution times and
optimization performance.
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Figure 6 presents the load balancing performance of TWDM-PON enabled reconfigurable
fronthaul, achieved by different approaches. The load balancing LB f ronthaul is defined in Equation (4).
As shown in Figure 2, it is observed that traffic changes over time during a day. In C-RAN with
fixed wavelength resource allocation scheme, load imbalance is obvious when traffic is decreasing
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or increasing. Uneven requirements among RRUs results in load imbalance in fronthaul links.
Meanwhile, in peak periods, nearly all the wavelength resources are on heavy load, and almost all the
wavelengths are on light load in idle periods. Thus, the load imbalance is not clear in peak/idle periods.
However, with the proposed INLP method and adaptive GA, the load imbalance of TWDM-PON
enabled reconfigurable fronthaul is optimized independent of traffic variation during a day. This is
because that the fronthaul network is dynamically reconstructed based on the amount of traffic served
by each wavelength. This means that traffic is centralized in less wavelength resources, leading to
a load balancing in the wavelength dimensioning.
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6. Conclusions

This paper tried to study the energy and transmission efficiency problem of smart home supporting
fronthaul transport network. The efficiency is improved by reconfigure the TWDM-PON. We also took
the load balancing in the fronthaul links into consideration. Specifically, we considered employing
an INLP model to formulate the joint optimization problem, which has exponential complexity.
Afterwards we provided an adaptive GA based approach to reduce the complexity of the INLP method.
The results showed that the active units of fronthaul including transceivers, ONUs, and RRUs could be
dynamically switched on/off with the traffic variation by using the proposed GA, leading to a significant
energy saving in TWDM-PON enabled fronthaul. Moreover, transmission efficiency has been improved
with the joint optimization methods. The maximum transmission efficiency increased by about 87%
with INLP method in off-peak periods. Moreover, with the proposed INLP method and adaptive GA,
the fronthaul network was dynamically reconstructed based on the amount of traffic served by each
fronthaul link. The load imbalance of TWDM-PON enabled reconfigurable fronthaul was further
reduced independent of traffic variation during a day. Compared to the INLP method, almost the same
performance could be achieved using an adaptive GA approach, with less complexity.

In the future, machine learning algorithm could be adopted for real-time prediction and response
for better performance, such as artificial neural network and deep reinforcement learning. However,
the vulnerability of machine learning should be considered to avoid unexpected reliability and security
issues during network automation.
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