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Abstract: The inspection of aquatic environments is a challenging activity, which is made more
difficult if the environment is complex or confined, such as those that are found in nuclear storage
facilities and accident sites, marinas and boatyards, liquid storage tanks, or flooded tunnels and
sewers. Human inspections of these environments are often dangerous or infeasible, so remote
inspection using unmanned underwater vehicles (UUVs) is used. Due to access restrictions and
environmental limitations, such as low illumination levels, turbidity, and a lack of salient features,
traditional localisation systems that have been developed for use in large bodies of water cannot be
used. This means that UUV capabilities are severely restricted to manually controlled low-quality
visual inspections, generating non-geospatially located data. The localisation of UUVs in these
environments would enable the autonomous behaviour and the development of accurate maps.
This article presents a review of the state-of-the-art in localisation technologies for these environments
and identifies areas of future research to overcome the challenges posed.

Keywords: unmanned underwater vehicle (UUV); localisation; complex environments

1. Introduction

The use of unmanned underwater vehicles (UUVs) has revolutionised aquatic inspection over the
last 30–40 years. UUVs are aquatic robots and are covered by two broad categories, Remotely Operated
Vehicles (ROVs) or Autonomous Underwater Vehicles (AUVs). ROVs are remotely operated by a
human and often tethered. AUVs have varying levels of autonomous capabilities and they do not
require either human operation or often a tether [1].

In the open ocean, UUVs are used widely for the inspection and maintenance of subsea assets,
surveys, oceanography, and military purposes [2–5]. They are also now being extensively used for civil
and onshore inspections, such as nuclear storage facilities [6], ship hull inspections [7], the inspection
of flooded sewers and mines [8], and liquid storage tank inspections [9,10].

A critical component of any robot is the localisation system. At the simplest level, a manual
operator can use a camera to navigate around an environment. This approach does not automatically
generate a map and it relies on the operator being able to identify salient features to localize themselves.
Areas of interest may be marked on an independent map by the operator.

Enabling accurate geo-spatial localisation of sensor data requires the robot to have its own on-board
localisation system. This is also a pre-requisite for autonomous behavior. Localisation technologies and
algorithms have been a topic of rich research development over the last decade for ocean-going UUVs
and there are several excellent reviews that discuss their capabilities and limitations [11–13]. However,
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there are significant additional challenges when trying to localize in more complex and confined
environments. These include, but are not limited to, a lack of external infrastructure, low illumination
levels, high turbidity, and a lack of salient features.

This article presents a number of contributions. Firstly, what constitutes a complex and confined
underwater environment will be defined and a number of specific application use cases will be
introduced. UUVs that have been specifically developed to explore these environments will then be
presented. Existing localisation technologies will then be presented and reviewed from the perspective
of their suitability for use in complex and confined environments. Finally, conclusions will be drawn
regarding the existing technological landscape and where further research may be needed.

This article is structured, as follows: Section 2 will formulate the problem by identifying and
analysing a range of complex and confined environments. This section will also discuss the operational
requirements for inspections and introduce UUVs that have been developed for use in them. Section 3
will then present the review of the main localisation technologies, whilst Section 4 will provide a
comprehensive analysis and discussion of the technologies in the context of the environments from
Section 2. Section 5 presents conclusions and areas of potential future research.

2. Problem Statement

The problem statement on the localisation of UUVs in complex environments can be formulated
in three stages: the identification of the target environments; identification of mission scenarios that
are required to be undertaken; and finally, the identification of suitable underwater vehicles that could
be used to complete the missions.

2.1. Terminology and Reference Frames

There are many different terms used to describe aspects of localisation systems. Within this article,
we will define and use the following:

• Absolute Localisation—in a complex environment, true global positioning (a position estimate
relative to the earth centred, earth-fixed reference frame for example) is often not possible and not
usually relevant. Due to the high ferro-magnetic content of structures in complex environments,
magnetic navigation is also often not feasible. The most appropriate alternative is to reference to
a world-fixed reference frame, which is likely to be defined by the boundaries of the environment
or the position of external beacons, markers or features of the fixed environment, whose position
is known, as shown in Figure 1. This type of localisation is known as Absolute Localisation.

• Relative Localisation—this form of localisation estimates changes in the robot’s body frame
relative to an arbitrary point in the environment. Relative localisation methods primarily generate
velocities rather than position fixes. Dead reckoning may then be used the calculate the location
relative to a position fix. If exteroceptive sensors are used, such as cameras, localisation could be
relative to several features in the environment.

Unfortunately, some systems do not easily fall into these categories. For example, simultaneous
localisation and Mapping (SLAM) systems provide a position estimate relative to a map that evolves
throughout the mission. Once the complete map is built and is essentially static, SLAM can be
considered as an absolute position estimate.

For the analysis in this article, we will consider any system which can give a position fix with
respect to external beacons, infrastructure, or environmental features as providing an absolute position
estimate. Any system that primarily delivers a velocity or change in position in either the robot’s body
frame or a world-fixed frame is considered to be a relative position estimate.
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Figure 1. World-fixed and Body-fixed Axis Frames.

2.2. Application Areas and Environmental Features

There are a number of application areas that have complex environments that require inspection
or operations within. These environments will have characteristics that will have direct impact on the
usability of different localisation technologies.

2.2.1. Application Areas

Nine application areas have been identified for consideration in this article.

(A) Modern Nuclear Storage Ponds—there are over 1000 wet nuclear storage facilities globally
which require continual monitoring. These are static, structured environments with clear water
and good illumination levels to facilitate visual inspections [14]. These facilities are usually
indoors and can be a few meters in dimension, up to 50 m × 25 m × 10 m.

(B) Legacy Nuclear Storage Ponds—legacy nuclear storage ponds are those that were constructed
in the 1950’s and 60’s and which have operated well beyond their original lifespan. There are
only a few of these globally, however they present significant decommissioning challenges [15].
Many of these facilities are outdoors and open to the elements and can be up to 50 m × 25 m ×
10 m in size.

(C) Legacy Nuclear Storage Silos—as well as large ponds, nuclear waste was also stored in silos
in the 19050’s and 60’s, such as those found on the Sellafield site in the UK [16]. These are
around 5 m in diameter and 16 m deep and contain nuclear material stored in water.

(D) Nuclear Reactor Pressure Vessels—reactor Pressure Vessels (RPVs) are a critical component
of nuclear reactors and they require periodic inspection to ensure there are no structural
defects [17,18]. In 2011, the incident at the Fukushima Daiichi Nuclear Power Plant, Japan,
led to the fuel rods melting through the RPV into the flooded pedestal below. This led to the
formation of a highly complex and radioactive aquatic environment with very restricted access,
which requires investigation [19].

(E) Offshore Asset Decommissioning—there are a significant number of offshore assets globally,
primarily associated with energy generation; either Oil & Gas (O&G) or wind. Over the next
30 years, many of these will need to be decommissioned [20,21]. The decommissioning process
is likely to generate a range of complex environments which UUVs will have to operate in.

(F) Ship Hulls—the inspection of ship hulls is very important in the maritime industry as structural
defects can lead to significant reductions in revenue. Traditionally, inspections have been
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conducted in dry-docks or by divers, which is both expensive and dangerous [22]. UUVs have
recently been developed to undertake inspections of both active ships [7] and ship wrecks [23].

(G) Liquid Storage Tanks—liquid storage tanks are widely used all over the world and periodic
inspection is required to ensure that structural defects are not present which could lead to
catastrophic failures [9]. If the tanks are used to store water, inspections are also required to
ensure the water quality is kept high [24,25]. These inspections can be undertaken when the
tank is empty (dry) or full (wet). Wet inspections are lower cost and they can be conducted
by UUVs; however, they are often limited to manual inspections/interactions due to a lack
of localisation technologies. UUVs have also been used to inspect water ballast tanks on
ships [26,27].

(H) Marinas, Harbours and Boatyards—Marinas, harbours, and boatyards are vital areas that
allow for the use of yachts and small boats. Periodic inspections are required to ensure there
are no structural defects and, more recently, for security purposes [28]. Often, these inspections
are conducted by divers, which is very hazardous [29]. UUVs have started to be developed to
replace divers for these inspections [30].

(I) Tunnels, Sewers, and Flooded Mines—there are 1000 s of km of flooded mine shafts, tunnels,
waterways and sewers globally which require inspection to ensure their continued safe
operation [8,31,32]. Many of these areas have never been inspected and UUVs offer a safe
option to do this. The environments may be natural formations which have been re-purposed,
or man-made constructions.

2.2.2. Environmental Characteristics

Eleven environmental characteristics have been identified for consideration in this article.
The application areas that are described in Section 2.2.1 will contain subsets of these.

(i) Scale—these are the characteristic dimensions of the environment which needs to be explored.
This size of the environment will have a direct impact on the size of the UUV that can be
deployed and the accuracy the localisation system has to provide. Dimensions are given in
meters as either [width × length × depth] or [φ (diameter) × depth].

(ii) Obstacles—the majority of the applications can be considered as vessels or facilities which
contain water. They will be bounded by a floor, walls, and often a ceiling. Obstacles are
defined as objects that are not part of this bounding infrastructure. If they are free-standing,
they will likely be placed on the floor. Alternatively, they may be a significant protrusion from
one of the surfaces.

(iii) Structure—if there are obstacles in the environment, they can be defined as either structured
or unstructured. Structured means that they have been placed in the environment in an
ordered manner, such as containers that have been stacked. Unstructured means that there is
no order to the placement of them. An environment can have unstructured obstacles, even if
they have been purposely plac ed and there is clear knowledge of where they are.

(iv) Obstacle Type—if there are obstacles, they can also be classified as static or dynamic.
Static obstacles are fixed and they will not move for the duration of a mission.
Dynamic obstacles will move during the mission.

(v) Access—two methods of access will be considered: surface deployment and restricted access.
Surface deployment is where there is no ceiling to the environment and the UUV can be
deployed directly into the water from the edge. Restricted access is where there is a ceiling
and the UUV needs to be deployed through a hatch or similar entry port.

(vi) Additional Infrastructure—some environments will allow for additional infrastructure to
be placed in them. Quite often, these are the more open environments, where, for example,
beacons could be installed around the edges. Other, more closed environments with restricted
access, do not allow this.
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(vii) Line-of-sight (LoS)—if an environment has obstacles, their disposition may inhibit LoS from
the UUV to various points. For this analysis LoS will be considered to the surface and to the
edges of the environment.

(viii) Turbidity—urbidity is a measure of water clarity and is affected by the presence of suspended
particulates. Light is scattered by the particles, so the more there are, the more light is scattered
and the higher the turbidity. If there are no particles, then the turbidity is very low and the
water will be clear.

(ix) Ambient Illumination Levels—some environments will have external light sources that will
provide a certain level of ambient lighting (i.e., not provided by lights mounted on the UUV).
Other environments will not and the only light will be generated from on board the UUV.

(x) Salient Features—certain localisation technologies require the identification of features
in the environment. Detectable features are known as salient features. A long smooth,
uniform surface will provide no salient features; however, if you placed defined objects,
such as QR codes, on the wall, then these could then be detected.

(xi) Variance of Environment—whilst objects have been defined as static or dynamic for the
duration of a single mission, the variance of the environment over a number of missions also
needs to be considered. Some environments will not change over an extended duration (years),
whereas others will change over hours or days.

2.2.3. Analysis

Table 1 shows an analysis of different application environments. Each environment has a different
sub-set of the environmental characteristics, which suggests that no single localisation system is
likely to be applicable to all environments. The scales of the environments mean that the accuracy of
the localisation system will have to be much smaller than those that are commonly found in ocean
going systems.
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Table 1. Environmental Characteristics of Confined and Hazardous Application Areas.

Area Scale (m) Obstacles Structure Obstacle Access Additional LoS Turbidity Ambient Salient Variance
Type Infrastr. Illumin. Levels Features of Env.

Modern Nuclear 50 × 100 × 10 Y Structured Both Surface Maybe Surface V. Low Good Med V. LowStorage Ponds
Legacy Nuclear 50 × 100 × 10 Y Unstructured Both Surface N Surface Variable Good Med MedStorage Ponds
Legacy Nuclear 5 × 10 Y Unstructured Static Restricted Surface Maybe Variable None Low MedStorage Silos
Nuclear Reactor 5 × 10 Y Unstructured Static Eith N None V. High None Low V. LowPressure Vessels
Offshore Asset 5–50 Y Unstructured Static Either N Maybe Variable Low Med LowDecommissioning

Ship Hulls 10 × 50 × 2 Y Structured Static Surface Maybe Both Variable Med Med Low

Liquid Storage 20 × 30 N Structured Static Restricted N Both Low None Low V. LowTanks
Marinas, 100 × 100 × 10 Y Both Both Surface Maybe Both Variable Med Med V. HighHarbours and

Boatyards
Tunnels, 3 × 3 × 100 Y Both Static Either N None Variable None Med HighSewers and

Flooded Mines
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2.3. Missions

UUV missions in the environments that are identified in Section 2.2 can broadly be described
as inspection, maintenance and repair (IMR). Because of technological limitations, the majority of
the missions are inspections [33], however there are an increasing number of maintenance and repair
activities being undertaken. Operations are normally manual, however more autonomous capabilities
are being developed [34].

UUV operation is not a binary choice between fully manual or fully autonomous, rather there
are different levels of autonomy (LoA) [35]. For this work, we will adopt and adapt the six levels of
autonomy proposed for surgical robots in [36].

0. No Autonomy—the UUV is entirely tele-operated by a human.
1. Robot Assistance—the UUV provides some automated functionality, for example staying at a set

depth (set by the operator) or prohibiting the operator to maneuver into obstacles. The operator
is still in full control of the UUV.

2. Task Autonomy—the UUV is able to execute motions under the guidance of the operator.
For example way-points could be set to which the UUV will travel with no further input from
the operator.

3. Conditional Autonomy—the UUV generates task strategies, but requires a human to select
which one to undertake. For example, when exploring an environment, the UUV may identify
several different routes to take, with the human selecting the most appropriate one.

4. High Autonomy—the UUV can plan and execute missions based on a set of boundary conditions
specified by the operator. The operator does not require to select which one the UUV should do,
however they are there to oversee the task execution.

5. Full Autonomy—the UUV requires no human input at all. It is deployed into the environment
and left with no operator oversight.

Table 2 shows current mission activities that are undertaken by UUVs and their levels of autonomy.
Inspection tasks are currently conducted in all environments except for modern nuclear storage
facilities. Limited maintenance and repair activities are conducted in legacy nuclear storage ponds,
liquid storage tanks and on offshore assets. The highest level of autonomy achieved is 1, where the
UUV is able to automate basic functions, such as staying at a given depth. There are no autonomous
activities undertaken in any of the environments.

Table 3 shows the predicted activities and levels of autonomy in the future. The highest level of
autonomy, 5, is the aspiration for robotics in general; however, there are still significant technological
and regulatory challenges to overcome.

There are a number of environments that may be suited to allow the highest level of autonomy.
Modern nuclear storage ponds may seem an unusual application for allowing high levels of autonomy,
given their stringent safety requirements, however they are highly structured and static environments
with low turbidity, good ambient lighting, and clear lines of sight to the surface. This means that UUVs
could operate more easily within them, as long as the appropriate verification and validation of their
behaviour has been conducted.

The inspection of ship hulls and liquid storage tanks may also aspire to the highest level of
autonomy as the environments are usually static with few external obstacles. For sewers and flooded
mines, the size (length) and communications challenges may dictate that UUVs have to have a much
higher level of autonomy, as operator control/intervention may not be possible.

Due to the nature of the material in legacy nuclear storage ponds (radioactive sludge, material of
unknown composition), a lower level of autonomy will be required, where there is operator oversight
(level 4).

Offshore asset decommissioning and marinas, harbours and boatyards are all highly complex
environments with a significant numbers of obstacles. As the environments may be dynamic,
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a lower level of autonomy may be utilised, where operators select appropriate routes and missions.
Legacy nuclear storage silos are likely to continue to be manually inspected due to the very high level
of obstacle complexity in them.

Table 2. Current Mission Types and Levels of Autonomy (LoA) for Different Applications.

Area Inspection Maintenance/ LoA0 LoA1 LoA2 LoA3 LoA4 LoA5Repair

Modern Nuclear N NStorage Pond
Legacy Nuclear Y Y X XStorage Pond
Legacy Nuclear Y N XStorage Silo
Nuclear Reactor Y N X XPressure Vessel
Offshore Asset Y Y X XDecommissioning

Ship Hulls Y N X X

Liquid Storage Y Y X XTanks
Marinas,

Y N X XHarbours and
Boatyards
Tunnels,

Y N X XSewers and
Flooded Mines

Table 3. Predicted Mission Types and Levels of Autonomy for Different Applications.

Area Inspection Maintenance/ LoA0 LoA1 LoA2 LoA3 LoA4 LoA5Repair

Modern Nuclear Y Y X X X X X XStorage Pond
Legacy Nuclear Y Y X X X X XStorage Pond
Legacy Nuclear Y Y X XStorage Silo
Nuclear Reactor Y Y X X X XPressure Vessel
Offshore Asset Y Y X X X XDecommissioning

Ship Hulls Y Y X X X X X X

Liquid Storage Y Y X X X X X XTanks
Marinas,

Y Y X X X XHarbours and
Boatyards
Tunnels,

Y Y X X X X X XSewers and
Flooded Mines

Analysis

To increase the level of autonomy of a UUV requires an increase in its sensing and perception
capabilities. The key piece of information that is required is the UUVs position within its environment,
which is necessary to plan missions or navigate safely around the environment. As Table 2 shows, all of
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the existing applications have UUVs with levels of autonomy 0 or 1. Automated depth position control
is often used to assist operators who can then focus on controlling movement in the x-y plane [37].

Inspection tasks will likely only require an absolute position estimate, however maintenance
and repair activities will require both absolute and relative. Absolute position estimates would allow
for higher levels of autonomy, however it would also be very useful when operating at levels 0 or 1.
Positional feedback to an operator would improve inspection performance as well as providing
accurate positions of inspection data.

The absolute and relative position estimates are likely to have different accuracy requirements,
which will be discussed in more detail in Section 3.

2.4. UUVs

The UUVs identified for this article can be categorised as either commercial or research. All current
inspection operations are manual, therefore the commercially available UUVs are ROVs, as identified
in Section 2.3. Some of the research platforms identified are being developed for increased levels of
autonomy and therefore have both ROV and AUV abilities. Figure 2 shows a number of commercial
and research UUVs and Table 4 shows key characteristics of a range of platforms.

Figure 2. Unmanned underwater vehicles (UUVs): (a) BlueROV2 [38], (b) AVEXIS [19], and (c)
HippoCampus [39].

Table 4. Characterisitcs of UUVs.

UUV Dims. Depth Tethered Payload (kg) Battery Commercial/
l × w × h (m) Rating (m) Life (hrs) Research

DTG3 0.28 × 0.33 × 0.26 200 Y Unknown 8 C
VideoRay Pro 4 0.38 × 0.29 × 0.22 305 Y Unknown N/A C

AC-ROV 100 0.2 × 0.15 × 0.15 100 Y 0.2 N/A C
BlueROV2 0.46 × 0.34 × 0.25 100 Y 1 2–4 C

UX-1 0.6 dia 500 Y Unknown 5 R
AVEXIS 0.15 dia × 0.3 10 Y 1 N/A R

HippoCampus 0.15 dia × 0.4 10 N 1 1 R

Table 4 shows that the commercial UUVs all have a small form factor, with the largest being
the BlueROV2, which is 0.46 m long. This means that the they could be deployed into restricted
access areas with small entry ports; however, the size limits the payload that can be carried. All of
the commercial platforms come with on-board cameras and lights and they can be fitted with a small
manipulator, sonar, or other perception systems; however, the total additional payload appears to
be limited to 1 kg. The BlueROV2 and the DTG3 both have tetherless capability (AUV), whereas the
VideoRay and AC-ROV are only tethered.

For the research platforms, UX-1 is the largest and it is able to carry a range of scientific equipment,
such as radiation sensors, multi-spectral cameras, and water samplers [40]. The tether is used for
communications rather than power (although power can also be sent down it) and the vehicle can
operate for up to five hours. Both the AVEXIS and HippoCampus UUVs have very small form factors
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and limited payloads and they have been developed for visual inspections of nuclear facilities [19] and
marinas [39], respectively.

Analysis

The range of UUVs that are suitable for missions in confined and hazardous environments is
relatively limited. A key characteristic of them is their small form factor when compared to ocean-going
UUVs. This means that there is reduced capacity to carry additional payload. Many ocean-based
localisation systems are quite large and they could not be used by these platforms.

3. Localisation Technologies

Underwater robot localisation technologies are primarily based on one of four fundamental
physical principles: acoustic, electromagnetic, inertial, and vision. In this section, we will review
existing localisation technologies derived from these physical principles. For the purposes of the
initial review and analysis, the technologies are considered in isolation; however, as discussed in
Section 4, in practice two or more methods would often be used in unison. A comprehensive summary
is depicted in Tables 5 and 6 in Section 4.

3.1. Inertial Navigation

Inertial navigation is the process of determining the position and velocity of a vehicle from
measurements of angular velocity and linear acceleration, according to the laws of classical
mechanics [41]. An inertial measurement unit (IMU) is used to measure linear acceleration and
angular velocity, which typically comprises three orthogonally mounted accelerometers and three
orthogonally mounted gyroscopes [42]. Given the ability to measure the acceleration of a body,
it is possible to calculate changes in velocity by integrating the acceleration with respect to time,
and changes in position can be determined by a second time integration.

To be able to navigate in 3D space, it is necessary to keep track of the direction in which the
accelerometers are pointing. The gyroscopes in an IMU measure rotational velocity and, by integrating
their readings with respect to time, changes in direction can be logged. It is possible to determine
velocities and displacements in the global frame by rotating acceleration measurements into a fixed
global reference frame prior to integration. Inertial navigation systems track changes in position, so the
position of an object can only be determined relative to a known starting pose and velocity; this is
known as dead-reckoning.

One of the key benefits of inertial navigation is the fact that the accuracy and precision of the
position estimate are largely unaffected by external factors, such as light levels or acoustic reflections.
Because the IMU is measuring in an inertial frame that is not linked to the environment, it is unaffected
by disturbances, such as water currents. Unlike many other sensing methods discussed in this section,
an IMU is not reliant on environmental features for localisation and the accuracy of the measurement
has no relation to the size of the environment. Internal noise and bias in a high quality IMU is generally
well specified and it can be taken into account in sensor fusion applications. Modern IMUs generally
provide data with a fast refresh rate (≥100 Hz) and minimal latency.

The overriding source of error in inertial navigation applications comes from the propagation of
orientation errors that are caused by noise and in-run bias of the gyroscope signals [43]. An error in
orientation means that acceleration due to gravity cannot be correctly removed from the accelerometer
signals and any error in removal of this relatively strong acceleration vector is integrated twice
and causes exponential drift. Errors in orientation also cause the derived linear accelerations to be
integrated in the wrong directions; however, in the case of aquatic vehicles, the linear accelerations are
generally around an order of magnitude that is smaller than gravity (9.81 m/s2). Titterton [42] finds
that an unaided tactical grade IMU will accumulate position error at approximately 100 km/h and a
navigation grade IMU will accumulate position error at approximately 1 km/h.
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Suitable Hardware

There are several different technologies that are commonly used as the basis for IMUs, such as
ring lasers, fibre optics, and microelectromechanical systems (MEMS). In recent years, the rapid
development of MEMS technologies has meant that high accuracy IMUs are now much more affordable
and they are available in much smaller packages [44]. MEMS based IMUs are generally better suited to
use in the robots and applications presented in Section 2, due to their size, cost, and rapid advancements
in accuracy. For instance, it is currently possible to purchase a six-axis tactical grade MEMS IMU
that comes in a 5 cm × 5 cm × 1 cm package, costs approximately 3K GBP, and has a gyro in-run bias
stability of 0.8 deg./hour [45].

Fibre optic IMUs represent the next step up in terms of accuracy, cost and size. The KVH1750
is acommonly used small form factor navigation grade fibre optic IMU. It is a cylindrical unit that
is 7 cm tall, has a diameter of 9 cm, costs approximately 15K GBP, and has a gyro in-run bias stability of
0.05 deg./hour [46]. The size and cost of a fibre optic IMU is high when compared to the size and cost
of the UUVs detailed in Section 2.4 and, therefore, would only be suitable in circumstances where it is
not possible to use other aiding sensors.

Magnetometers are, in some cases, used in conjunction with the inertial sensors to reduce drift.
However, they can be heavily affected by noise and external disturbance from ferromagnetic material
in the environment, such as obstacles or infrastructure. Interference can also be generated by electrical
components such as electric motors, so they are therefore not suited to small vehicles where the
thrusters are necessarily close to sensing components.

3.2. Dynamic System Models

A 6 DOF mathematical dynamic model can be used in order to simulate the motion of an aquatic
vehicle: velocities can be predicted from the control inputs. Therefore, the dynamic model can also be
used to localise the vehicle relative to a known starting pose and velocity.

The dynamic model is usually represented by a set of equations of motion that are constructed
according to Newtons second law. Fossen gives the standard format of the equations of motion for
marine vehicles [47] and describes how the equations are assembled.

Given the control inputs and the initial conditions, the equations of motion can be numerically
solved using a time stepping solver to give velocity predictions [48]. These body frame velocities can
then be transformed into a global reference frame and integrated over a time period to give a change
in position. As with inertial navigation, navigation using a dynamic model can only track changes in
displacement and, therefore, it is defined as a dead-reckoning method.

The output of the dynamic system model is free from noise, because it is a simulation. There are
no environmental sensors used; therefore, there is no susceptibility to external signal interference,
such as from acoustic or electromagnetic sources. However, there are several sources of error. The two
main sources are external disturbances, such as those from water currents or tethers, and imperfections
in the mathematical model [49]. A dynamic model alone can only localise relative to the water that
surrounds the vehicle, so it cannot account for currents or any other movement of the water column [50].
Unmodelled hydrodynamic parameters or incorrectly identified coefficients cause the breakdown of
the dynamic model during certain manoeuvres. Without an accurate model, localisation estimates will
not be valid. Additionally, a dynamic model will produce incorrect predictions if there are changes to
the vehicle or environment, such as an under-performing thruster or a change in fluid density [51].

Localising from a dynamic system model accumulates error in a similar way to an inertial
navigation system. Therefore, in anything but ideal conditions, where there are no external
disturbances, a dynamic model will lose accuracy in a short time period if unaided.
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Suitable Hardware

The dynamic model requires no dedicated sensing hardware, as it uses the thruster command
signals and predetermined coefficients in order to calculate velocities. Running the dynamic model is
not usually computationally expensive and, therefore, it can generally be implemented on an existing
device that already has access to the thruster command signals [48,51,52].

3.3. Acoustic Localisation Methods

Acoustic localisation is widely used in the marine environment, as acoustic waves propagate much
further than electromagnetic waves in water [11]. In open water applications, acoustic localisation
is a mature technology and it is the most important and reliable means of positioning and tracking
available [53]. However, localisation in complex and confined environments brings a new set of
challenges, which means that tried and tested hardware may not be suitable.

There are three main approaches to acoustic localisation which will be reviewed: Acoustic Beacons,
Sonar SLAM (SSLAM), and Doppler Velocity Logs (DVLs).

All acoustic localisation relies on sound propagating through water between a reference object,
or transducer, and the robot. Because the speed of sound in water is five orders of magnitude lower
than RF propagation in air [11], all underwater acoustic systems will be affected by latency that is
related to the time-of-flight: the time taken for a sound pulse to travel between the reference and
the robot, and often back again. However, total latency remains acceptably low due to the relatively
small environment sizes that were considered in this review. Assuming a nominal speed of sound of
1500 m/s and 20 m distance, this would give an inherent latency of approximately 26 ms for two way
travel. Any time required for computation would be in addition to this.

A more problematic issue is that the ping rate (refresh rate) of the sensor is often directly related
to the time-of-flight. Typically, time-of-flight systems require the current pulse to be sent and received
and then any echoes must attenuate to a low level before the next pulse is sent. This means that the
latency described above becomes the minimum possible loop time assuming no acoustic re-reflections.
Using the example above, which would give a maximum sampling frequency of 38 Hz, which is low
for a single range measurement.

In all acoustic localisation systems, there is a trade-off between the range of the measurement and
its resolution. This trade-off is controlled by the system’s operating frequency. Low frequency waves
propagate with less attenuation but their long wavelength reduces the resolution and precision of the
derived measurements.

Another important factor to consider, especially in the present work, is that in an enclosed space,
there is no option for the acoustic energy to dissipate into open water. This can cause increases in
multipath, where an acoustic signal arrives at its target transducer via multiple different paths and
the direct path does not always give the strongest response [11]. In addition, there is a possibility
that there will be multiple re-reflections (echoes) of the sound inside the enclosed water column that
are caused by sound waves bouncing between the walls. Some acoustic energy will dissipate into
the surrounding walls, with the amount depending on the acoustic impedance match between the
water and surrounding wall materials. This raises the importance of the choice of operating frequency:
higher frequency waves dissipate faster, which reduces the effect of multipath and re-reflections.
Conversely, lower frequency waves propagate better, giving higher range. The sampling rate can be
increased by operating at multiple frequencies, but this has the negative effect of greater size, weight,
cost, and complexity of the system.

These physical phenomena can have a drastic effect on the measurement accuracy of the system.
A thorough investigation into the error sources present in acoustic localisation systems is provided by
Taudien et al. [54].
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3.3.1. Acoustic Beacons

While GPS is not available underwater, localisation using fixed beacons, transponders,
or transducers is the nearest equivalent and it has been the preferred method of underwater localisation
in open water environments for many years [55]. Acoustic positioning using fixed beacons is a classical
wave propagation and triangulation problem. The localisation system measures the time-of-flight of
the acoustic signal between the UUV and fixed transducer and can, therefore, estimate the distance
between the transducer and the vehicle. The distance between the vehicle and several fixed beacons
must be known in order to obtain a position fix in 3D space. In a marine context, traditional systems
are often termed long base line (LBL), short base line (SBL) or ultra short baseline (USBL) systems
(Figure 3); the difference being the distance between the fixed transducers.

Figure 3. Classical underwater acoustic positioning systems for marine environments, reproduced
from work presented by Alcocer et al. [56].

One of the main attractions of localisation using fixed beacons is that the location is referenced to
physical devices that are fixed in space. A drawback of this is that the accuracy of the localisation is
reliant on accurately knowing the location of the fixed transducers in the global frame. Having just one
transducer positioned incorrectly will have considerable impact on the overall accuracy of the system.

Suitable Hardware

The vast majority of commercially available systems are designed for open water applications and
their size, accuracy, and cost are not suited to complex and confined spaces. Moreover, they are not
specified for use in confined spaces and their accuracy may suffer considerably from issues, such as
multipath. For instance, Teledyne’s Trackit USBL System [57] would usually be considered to be a short
range system. However, its range of up to 1500 m is large relative to the environments considered in
the present work (Section 2.2.2). The specified range accuracy of the Trackit USBL System is +/−0.3 m
which is acceptable in most marine environments. However, in a nuclear fuel storage pool, for example,
this level of accuracy would be too coarse for closed-loop control of a vehicle in close proximity to
fuel rods.

Recently, the Ahoi-modem has been proposed as an inexpensive miniature approach to acoustic
localisation and communication [58,59]. The cost is about 600 GBP per modem, of which the
hydrophone’s share is 400 GBP leaving 200 GBP to the open-source PCB design. Its suitability for
small-scale UUV localisation in a marina environment has recently been demonstrated in [60].

The only commercially available system known to the authors that is specified for operation in
tanks or pools is the underwater GPS, produced by Water Linked [61]. The system is small enough
to be fitted to the vehicles that are described in Section 2.4 and the cost is in the region of 4K GBP.
The specified expected accuracy is 1% of the range between the locator and receivers, but there is
limited information available regarding how this is affected by the dimensions and wall construction
of the environment.
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3.3.2. Doppler Velocity Log—DVL

A DVL can be used in order to resolve the linear velocity of a vehicle relative to the ground.
A standard DVL sends four fixed frequency acoustic beams downwards to the bottom of the water;
each beam is offset to the the vertical by a known amount [62], see Figure 4. If the vehicle is in linear
planar motion when compared to the ground, the frequency of the returning echo will be different
from that of the transmitted signal. The difference, or Doppler shift, is proportional to the the speed
of the vehicle over the ground [63]. If the vehicle velocity is provided by the DVL and heading is
provided by an IMU or Attitude and Heading Reference System (AHRS), velocity in the global frame
can be integrated over time to provide dead-reckoning capabilities.

Figure 4. A schematic showing a Doppler Velocity Logs (DVL) being used to track the velocity of a
UUV relative to the sea bed, reproduced from [64].

Suitable Hardware

DVLs are commercially available from a number of manufacturers such as Teledyne Marine or
Nortek. Most units are designed for sub-sea operations and are large, expensive pieces of equipment
e.g., [65]. However, in recent years, manufacturers have begun to produce smaller and lower-cost
units that would be suitable for use on smaller vehicles. The smallest DVL currently available is
produced by Water Linked and has been demonstrated operating on the BlueROV2 in a water tank [66].
It has a specified range of 0.05–50 m, long term accuracy of +/−1 mm/s, and a ping rate of 4–26 Hz;
which makes the unit suitable for confined space use.

3.3.3. Sonar SLAM (SSLAM)

Sonar SLAM in an underwater environment is analogous to LiDAR based SLAM in a terrestrial
environment [67]. Successive range scans are used inn order to estimate the vehicle’s position.
Each scan is matched to a map which allows the vehicle’s position to be estimated relative to the map.
The previous position is generally used as the starting estimate for the scan matching. Importantly,
the map itself can be constructed by the algorithm in real-time while using the scan data.

Besides their high accuracy, the key advantage of a LiDAR sensor over sonar is that they gather
each scan almost instantaneously [68]. Commercially available sonars that scan over a range wider that
180 degrees are generally of the mechanically scanned imaging sonar (MSIS) type. MSIS sensors emit
and receive acoustic waves from a mechanical rotating head. The head rotates slowly and obtaining
a complete scan often takes several seconds, in which time the vehicle has usually moved causing
distortion. For this reason, and unlike commonly used LiDAR based SLAM algorithms, it is necessary
to account for the vehicles motion between each individual range measurement. This requires the use
of additional dead-reckoning systems, such as those described in Sections 3.1, 3.2 and 3.3.2.
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SLAM systems localise relative to a map that is typically built by the algorithm and can be updated
throughout the mission to cover newly explored areas. Despite the map updates, the transformation
between the map frame and the global frame should not change significantly.

Suitable Hardware

To perform SSLAM in a confined underwater environment, a 360 degree MSIS is generally
used [69]. MSIS sensors with ranges that are suited to confined space localisation are commercially
available from a range of manufacturers such as Blue Robotics [70] or Tritech [71]. Although such units
are commonly used in operations, they are often used in order to scan an environment and not for
localisation, so their applicability for performing SSLAM in a confined space is largely unknown.

A major drawback of current SSLAM implementations is their reliance on MSIS sensors that have
a slow scan rate, usually below 1 Hz. This could be potentially improved by the use of one or more
wide-angle multi-beam sonars with higher scan frequencies, in the range of 10–50 Hz, e.g., [72].

The key benefit of SSLAM systems over fixed beacons is that no infrastructure needs to be
deployed, calibrated or recovered. The SLAM localisation still references the fixed physical world
around it and, so, it is not subject to the accumulation of errors. SSLAM could be a useful tool in
confined space underwater localisation, although there is an absence of research where it is applied to
smaller indoor confined spaces. A further consideration is that SSLAM systems rely on measurements
from three or more sensors, which add to their cost and complexity.

3.3.4. Summary on Acoustic Localisation

This section has introduced the three methods of acoustic localisation that are currently used on
UUVs and has shown that they all have the potential for use in confined spaces, however their viability
for specific scenarios is dependent on the environmental features that are discussed in Section 2. A full
analysis of their suitability can be found in Section 4.

The technologies that have been discussed in this section are mature and they have been proven
over years of use in successful subsea operations. In recent years, hardware that is typically used for
long range localisation has been adapted for smaller vehicles and lower range use. The key issue at
present is that there is virtually no literature that independently documents the use and accuracy of
such systems when used in complex or confined environments. Therefore, the authors suggest that
validating the applicability of these systems in the environments that are specified in Section 2.2.2
should be a priority in future research.

3.4. Visual Localisation

From the early days of mobile robotics, visual robot localisation has been one of the most widely
used localisation technologies. Since then, the major challenge has been how to efficiently extract
information rich data from the camera image stream. Early approaches aimed to extract lines and
blobs within the image in order to reconstruct geometrical objects. These approaches still represent
the basis for current state-of-the-art visual localisation concepts due to their mature robustness and
advanced computational efficiency. However, more modern neural network-based concepts directly
identify and track the object of interest without intermediate processing steps [73].

Generally, cameras are an appealing sensor for localisation tasks for various reasons.
In comparison to other sensors, cameras are available at all price ranges, while providing
information-rich data. Recent technological advances have boosted both the miniaturization and
sensing quality of cameras, which makes their use by on-board embedded platforms attractive.
Additionally, due to their passive nature, vision-based localisation systems do not suffer from the
interference and multi-path effects that are common in acoustic and electromagnetic approaches.
However, visual localisation requires there to be free line of sight between the sensing camera and the
reference object of interest. In the context of submerged scenarios, light conditions, light absorption,
and turbidity become key parameters when designing a vision-based localisation system. In addition,
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submerged environments often do not possess the feature richness of surface scenarios and there is
also often a reduced texture quality rendering visual detection challenging. Despite these constraints,
visual localisation constitutes a promising approach for confined underwater scenarios, where good
visibility conditions are expected.

As with other localisation technologies, existing visual approaches can be split into a number
of groups. First, concepts that define the robot position in a fixed absolute reference frame. This is
usually the case when a-priori knowledge on landmark features is used. This group also includes
approaches that require external infrastructure, such as multi-camera systems. The second group
consists of concepts that describe the robot position relative to an initial reference frame, e.g., SLAM and
Visual Inertial Odometry (VIO) approaches. These groups are not exclusive, as some techniques and
algorithms cannot be uniquely assigned to one or the other group.

Concepts can be further sub-grouped into self-localisation techniques, where the robot itself
determines its pose and external systems, where the mobile is tracked by an external hardware that
makes the localisation estimate. External systems require a permanent communication link with the
robot in order to provide the robot with continuous data e.g., to enable position feedback control.

3.4.1. Augmented Reality Marker

Given feature-poor environments in underwater scenarios, the number of potential landmark-
features that can be easily detected and tracked by a vision-based algorithm is limited. A common
approach is to add artificial features to the underwater scenery. Augmented reality (AR) markers have
become popular for object tracking tasks within many robotic disciplines, especially mobile robotics.
While artificial features are usually impractical in open environments, such as oceans and lakes, this is
not the case for confined scenarios, where the required effort for augmentation is limited by the
bounded space of interest. An example is the early work of Carreras et al. [74] where a visually coded
dot pattern was placed on a pool’s floor. This allows for the robot’s vision algorithm to accurately
determine the robot’s position and orientation in an world reference frame bounded by the dimensions
of the pool.

AR marker design can be grouped into two categories: spherical (reflective) markers and flat
tag markers, which visually encode additional information such as an unique identification number.
In general, AR marker approaches come with the drawback that the markers have to be placed prior
to the robot deployment and within the robot’s work-space. However, they have been proven to
significantly improve the localisation accuracy and robustness and minimize drift in position estimates.

Depending on the localisation method, the marker positions have to be known in a given reference
frame, which can require additional effort for calibration measurements. However, this extra effort
highly depends on the accessibility of the robot work-space. For example, marker placement in a
controlled research tank likely comes with less effort than in a third-party marina.

The most simple markers are dots or spheres, whose color is considerably different from their
surrounding. This allows for an easy detection from the camera image. Multiple markers are combined
into known three-dimensional (3D) pattern-configurations, which are then extracted from the camera
image, in order to distinguish the detected markers from one another. These marker patterns allow
for the reconstruction of the 3D-pose between the marker set and the camera. An important point
to note is that the combinatorial problem of marker correspondence grows exponentially with the
number of visible markers, which makes the deployment challenging for large and complex scenarios.
Today, reflective sphere markers are the most common approach. However, variants exist e.g.,
uniquely colored markers that can simplify the assignment process on the cost of processing colored
images [75].

In contrast to the simple spherical reflective markers, flat tag marker can carry additional visually
encoded information, such as a unique identification number. This reduces the effort to be invested in
correspondence search and results in a more stable tracking performance. Popular examples include
the ARTooKit [76] marker system, the various versions of the AprilTag family [77–79], and the ArUCo
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marker system [80], which have been originally developed for augmented reality applications in the
field of computer vision.

In [81], the authors study various publicly available fiducial marker families (ARToolKit [76],
AprilTags [77], ArUco [80]) in underwater environments. In their work, the authors focus on static
configurations and considered various turbidity and lighting settings with respect to criteria, such as
smallest detectable marker size, maximum camera-to-marker angle, maximum distance, and processing
times. Overall, they conclude that the AprilTag library shows favorable performance given their criteria.
However, the AprilTag family showed the slowest performance out of the evaluated libraries.

The performance evaluation of dynamic application of underwater AR marker tracking is reported
in [82]. In their work, the authors study various AprilTag configuration and densities in a research tank
setup. They discuss the suitability for agile robot maneuvering, also referred to as hydrobatics [83].
Given a sufficient a of markers available within the camera field of view, they report the localisation
accuracy in the range of only a few centimeters.

There are many applications of fiducial marker systems. In [84], luminous ARToolkit markers are
used to evaluate the performance of 3D camera pose estimation in an underwater scenario. The authors
of [85] use a single wall-mounted AprilTag as a reference point for their underwater robot model
identification algorithm. In [86], tag markers are mounted to a fixed infrastructure to allow for robot
self-localisation relative to the structure for maintenance tasks (Figure 5). This work is adapted and
extended in [87], where the authors sparsely place tags on the tank ground and use a SLAM algorithm
in combination with a a downward looking camera to track ground objects in order to achieve accurate
position tracking results.

A submerged autonomous manipulation task that is based on fiducial marker localisation is
demonstrated in [88] with an Seabotix ROV. Within these experiments, the authors report a localisation
accuracy with sub-centimeter accuracy for the robot’s translational degrees of freedom. A more
dynamic navigation scenario is covered in [89] where the authors demonstrate the performance of
their model predictive control scheme using a localisation scheme that based on fiducial pool-ground
mounted markers and high-performance IMU.

Most of the reported literature use passive AR markers that are dependent on some kind of
ambient illumination. Given the strong light absorption in water, passive markers naturally have
reduced range in comparison to active illuminated markers. However, active markers require an
individual energy source that comes with additional deployment and maintenance efforts for battery
of external power supply. For this reason, only a few works are reported using illuminated markers,
including the illuminated ArUco markers in [84] and the colored spherical markers in [75].

Figure 5. Example works using Augmented reality (AR) markers for underwater localisation, [85] (left),
[86] (center), HippoCampus µAUV [82] (right).

Suitable Hardware

Recent works have used a wide range of hardware configuration for AR vision-based
self-localisation. A key criterion is whether image-processing and the subsequent localisation
algorithms have to be implemented on-board the robot. This is naturally the case for scenarios
where tetherless AUVs are deployed; an exception to this are external tracking systems as discussed in
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Section 3.4.2. In contrast, ROV platforms allow for the offloading of computationally heavy algorithms
to remote computer workstations.

However, for on-board solutions, energy-efficient single board computer, such as the RaspberryPi
family, Odroid boards, or Nvidia’s Jetson platform, are used in combination with commercial
webcam-like cameras. Even these low-cost systems can achieve sub-centimeter to centimeter accuracy
in localisation, despite the camera resolution often being reduced to 640× 480 pixels, due to the limited
computational power.

3.4.2. External Tracking Systems

External visual localisation systems target two applications fields. First, ground truth reference
tracking of underwater objects, e.g., to benchmark on-board self-localisation systems. Second, off-board
robot localisation, which enables absolute position feedback control for robots that do not possess
sufficient on-board localisation capabilities. In both cases, the suitability of external visual localisation
systems is practically limited to confined scenarios that allow for the deployment of the camera
infrastructure, such as tanks in research facilities. In this sense, these setups constitute the submerged
dual of aerial and terrestrial robotic test-beds, such as the Flying Machine Arena at ETH Zurich [90,91]
or Georgia Tech’s Robotarium [92].

These systems’ hardware typically consist of multiple high-speed tracking cameras [93,94],
which are capable of tracking reflective marker at frequency up to 350 Hz and with millimeter accuracy.
Therefore, the markers have to be mounted in a known pattern on-board the robot. Given this known
3D marker configuration, the algorithms search for marker correspondence in order to minimize
the re-projection error between the detected marker and predicted marker positions. Based on this
measurement, the algorithm estimates the relative pose between marker setup and camera.

In the context of reference tracking, this can also be done in an online or offline manner. An online,
low-cost approach to an underwater multi-camera systems for reference tracking is proposed in [95].
Here, the authors track a micro underwater robot that is equipped with AprilTags in a confined
research tank (4 × 2 × 1.5 m3). They use multiple webcam sensor nodes and decentralized RaspberryPi
single board computer. In [19], the authors use an external webcam and coloured LEDs to track an
ROV to allow for reconstruction of sonar images of objects on the bottom of a test tank. An offline
approach is presented in [96], where action sports cameras are used to track and analyze the motion of
a human swimmer.

Similar to the corresponding test-beds in aerial robotics, these systems can also be used to close
the loop for robot position feedback control by providing the underwater robot with information on its
absolute position. Examples include the SCUUL test-bed at the Neutral Buoyancy Research Facility
at University of Maryland [97] (15 m diameter, 8 m depth). However, these off-board tracking setups
require a continuous data link to the underwater vehicle, which is subject to very limited bandwidth
and high latencies and, thus, constitute a bottleneck for agile underwater robot control. A reduced
tracking setup is reported in [98], where the authors use a single birds-eye camera to provide a swarm
of robotic fish with their position information within a small-size swimming pool.

Figure 6 depicts a selection of existing approaches.

Figure 6. Example works external camera systems for underwater localisation, SCUUL multi-camera
testbed [97] (left), Single-topdown camera [98] (center), low-cost multi-camera system [95] (right).
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Suitable Hardware

External tracking systems usually rely on multiple commercial high-speed tracking cameras [93,94].
The number of deployed cameras directly correlates with the required workspace volume and the
desired accuracy, since a higher number of cameras provide a more accurate, robust, and smooth
tracking performance. These cameras usually feature blue LED spotlights in order to extend the
maximum detection range between marker and camera. The detection range is correlated with the
deployed camera equipment. For 19 mm markers, detection ranges of 14–27 m have been reported,
depending on the camera module [93]. The price range of these cameras lies around GBP 4k per camera.
However, low-cost approaches are available, such as the open-source RaspberryPi- and ROS-based
multi-camera reference tracking system proposed in [95] with a cost in the range of GBP 50 per camera
node. Moreover, an offline-tracking methodthat is based on sport actions cameras is presented in [96].

3.4.3. Vision-Based SLAM

Vision-based SLAM algorithms are a powerful tool for self-localisation in unknown environments.
Traditionally, most works focus on applications in terrestrial and aerial domains. However, research on
SLAM methods for submerged scenarios has gained considerable interest in recent years [99–102].
While existing methods can usually be transferred to underwater applications, domain specific
properties, such as feature-poorness and ambiguity, have to be considered in the development process.

Various projects have targeted the application case of submerged ship-hull inspection [99,100].
In [99] a visual pose-graph SLAM approach is used, which the authors benchmark against dead
reckoning navigation.

In comparison to sonar SLAM, see Section 3.3.3, vision-based algorithms, given sufficient
underwater visibility, enable higher resolutions and provide more accurate position information.
However, this comes at the cost of a reduced sensing range in comparison to acoustic systems.
Therefore, various works [100,102] combine visual and sonar SLAM in order to benefit from their
technology-specific advantages. While [100] studies a ship-hull inspection scenario, the recent work
presented in [102] studies visual-acoustic SLAM for underwater cave mapping.

SLAM tracking performance strongly relies on the quality of the detected features. Thus,
AR markers, as discussed in Section 3.4.1, can be deployed to improve tracking accuracy and robustness.
An AprilTag-based SLAM approach is presented in [101]. This SLAM-AR-marker combination is
appealing, since it does not require pre-mission calibration of the deployed AR-marker. Moreover,
this allows for AR-markers to be used with SLAM algorithms as a reference benchmark for other
SLAM algorithms when the AR marker are placed along the trajectory.

All of the previous introduced methods rely on submerged visual features. An interesting
multi-domain approach is presented in the recent work conducted by Suresh et al. [103]. In their
work, the authors propose a SLAM concept for confined environments. The underwater robot runs a
SLAM algorithm that relies on terrestrial visual features. The authors propose a stereo-camera SLAM
algorithm that allows an underwater robot with top-mounted cameras to track its position through the
water surface against the ceiling of the pool surrounding building.

Suitable Hardware

The hardware requirements of visual underwater SLAM methods mainly differ with respect to
their camera sensing concept—monocular vs. stereo—and to what extend they rely on additional
sensors. Rovco have developed a commercially available system, the SubSLAM X2 [104], which uses
stereo-cameras as the basis of the vision system. This system has a small form factor; 0.4 m × 0.275 m ×
0.14 m, and it is able to be mounted on smaller UUVs, such as the BlueRoV2. A significant challenge to
overcome with VSLAM systems is the computational requirements and being able to do this on-board
the UUV for autonomous missions. If the SLAM algorithm is to be used on-board a tethered small-scale



Sensors 2020, 20, 6203 20 of 35

ROV, it may be necessary to offload the extensive computations to an external computing unit with
independent energy supply.

3.4.4. Summary on Visual Localisation

This section has introduced the three fundamental methods of visual localisation and has shown
that all of them can be potentially used in confined spaces. However, their individual viability for
specific scenarios is strongly dependent on the environmental features discussed in Section 2. A full
analysis of their suitability is presented in Section 4.

For non-marine robots, vision-based localisation is often seen as the most important source for
information on the robot localisation. This is particularly the case for localisation in terrestrial and
aerial robots. The concepts that are discussed in this section are well studied and widely deployed
throughout various domains.

However, transferring and adapting visual localisation methods from non-marine applications to
the specific challenges of confined submerged environments, as discussed in Section 2.2.2, is still a
hard step and there is significant research still to be undertaken.

3.5. Electromagnetic Localisation

Electromagnetic (EM) localisation constitutes a niche method for short-range distancing,
as required in confined environments and is not widely covered in the available literature surveys on
underwater localisation.

The concept of underwater robot localisation based on the attenuation of electromagnetic
(EM) carrier signal waves for short range localisation has been explored in a recent series of
publications [105–111]. EM-localisation exploits the strong attenuation of EM-carrier signals in water,
which is otherwise usually undesirable e.g., for communication. Due to its limited range, it primarily
targets strictly confined scenarios with length scales <5 m, such as docking [112] or maneuvering in
small tanks [110]. The carrier signal attenuation is described by an a-priori identified range sensor
model (RSM), which allows for the computation of the distance between an emitting anchor node and
a receiver on-board the robot, based on the received signal strength (RSS).

EM-carrier signals are emitted by spatially distributed anchor nodes at known positions.
Each anchor node emits its signals at an unique frequency channel. A mobile node (e.g., the robot)
captures the overlayed power spectrum density. A fast Fourier transformation is then applied in order to
extract the individual anchor’s received signal strengths (RSS) from the power spectrum. Exploiting the
channel allocation, the extracted RSS values can be assigned to the individual anchor node based on
their unique frequencies (Figure 7). This allows for the processing of all incoming RSS data within a
single step, rather than sequential node-wise processing. Various EM-frequency bands are possible
and longer wavelengths allow for extended detection ranges. However, known approaches [107–110]
favor the commercial 433 MHz frequency band since suitable transmission and receiving devices are
available off-the-shelf.

In the original work [105], an underwater RSM is introduced exploiting Frii’s transmission
formula and the underlying Maxwell equation. When modelling the signal, attenuation, conductivity,
permeability, and permittivity parameters of the transmission medium have to be taken into account.
In addition, the emitted and received signal strength is strongly affected by the antenna design.

However, Park et al. show, in [105], that these individual parameters can be summarized by
introducing an environmental parameter Γ and Λ. This results in the simplified RSM for the planar case

RSSi = −20 log10(Ri)− 20 Ri α log10(e) + Γ [dBm] , (1)

where RSSi denotes the received strength of a carrier signal emitted by anchor node i, received by
the mobile robot anchor at distance Ri, alpha is the propagation constant and Γ summarizes all
unmodelled constant effects. Given this model in combination with an external high-fidelity spectrum
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analyzer, the authors of [106] report sub-centimeter accuracy at 1 KHz update rate for position tracking
experiment in a workspace of approximately 2 × 1.5 m.

So far, the RSM, as defined in Equation (1), is limited to model the carrier signal attenuation within
the plane defined by the anchors. In [107], the RSM is extended in order to capture varying relative
orientations between the anchor’s transceiver antenna and the robot’s receiver antenna. Subsequently,
the concept is extended to 3D by stacking multiple anchor nodes and providing the robot with depth
sensor data, as studied in [108]. These early works used an external full-fledged spectrum analyzer
(NI 5660 vector spectrum analyzer) to compute the power density spectrum in real-time. The rack-size
spectrum analyzer makes this setup unsuitable for small size UUV deployment for size and cost
reasons. Therefore, when using an off-board spectrum analyzer, a tether connection to the robot’s
antenna is required, which limits the deployment to tethered ROVs.

Figure 7. Signals from two beacons emitting at 432.6 MHz and 433.0 MHz. The receiver identifies the
emitting beacons based on the frequency and determines the range to the beacons using the received
signal strengths (RSS) values.

3.6. Suitable Hardware

This size and cost challenge is addressed in [109], where the authors present a small scale and
low-cost approach to EM-based localisation targeting deployment in micro UUVs. They replace the
large and expensive spectrum analyzer by a digital video broadcast (DVB-T) USB dongle, which is
capable of software defined radio (SDR) and a RaspberryPi single board computer (SBC), see Figure 8.
Using the light-weight setup, the authors demonstrate centimeter localisation accuracy at 5–15 Hz
update rate, depending on the SBC’s computing capabilities. The suitability of this setup for position
feedback control on-board a micro AUV is demonstrated and critically discussed in [110] for two
confined scenarios.

Figure 8. Hardware setups for EM-based localisation; using an external vector spectrum
analyzer [105,106] (left) and the miniaturized DVB-T USB-dongle SDR-based concept with single
board computer by [109,110] (right).
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4. Discussion

Localisation technologies that are based on four different physics principles have been identified
and reviewed in this article. Eleven environmental characteristics were outlined in Section 2.2.2.
Table 5 shows the relationship between some of these characteristics and the underlying principles
and also summarises some common comparison metrics. Table 6 shows the suitability of different
technologies for localisation within the environments that are discussed in Section 2.2.1, ranked as
either low, medium, or high.

A key consideration in the selection of a localisation technology is the requirement for additional
infrastructure. In complex and confined environments, additional infrastructure may be very difficult
to deploy, especially if sub-surface beacons are required to be placed around the perimeter of the
environment. Fixing and accurately locating beacons is a time consuming task and, if beacon
locations are not correctly set, this will have a significant negative impact on the accuracy of the
localisation estimate. Fixing beacons to the environment can also be challenging in certain application
environments, such as nuclear, due to access restrictions and the increased risk of contamination.

An alternative solution, where surface access is available, may be to mount these beacons on
autonomous surface vehicles (ASVs), much in the same way as ocean-going localisation systems
are often referenced back to a deployment boat. The same challenges with accuracy of the beacon
placement are present, as the ASV will not be fixed to the environment.
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Table 5. Technology Comparison.

Acoustic Dynamics Electromagnetic Vision

Criteria Acoustic DVL [66] Sonar Inertial Dynamic EM-Signals AR Ext. Tracking VSLAMBeacons [61] SLAM [68] MEMS IMU [45] Models [108,109] Tags [82] [93,95,97]

Local. Type Absolute Relative Absolute Relative Relative Absolute Absolute Absolute Relative
Stand Alone Y Y N N N Y Y Y N

Range 100 m Infinite 75 m Infinite Infinite 2 m 5–10 m 10–30 m 5 m
Reflections Severe Mild Mild Unaffected Unaffected Mild Low Low Low
Add. Infra. Y N N N N Y Y Y N
Infra. Size 27× 24.6× 12.4 cm N/A N/A N/A N/A 20× 10× 10 cm 10× 10× 1 cm � 25× 15 cm N/A

LoS Important N/A N/A N/A N/A Important Important Important N/A
Turbidity Unaffected Unaffected Unaffected Unaffected Unaffected N/A Important Important Important

Amb. Illum. Unaffected Unaffected Unaffected Unaffected Unaffected N/A Important Important Important
Salient Features N/A Mild Medium N/A N/A N/A Important N/A Important

Cost ≈5K GBP ≈6K GBP ≈5K GBP ≈3K GBP N/A 100–12k GBP ≈100 GBP 500–20k GBP 500 GBP
On-board Size � 20 × 41 mm � 66 × 25 mm � 56× 79 mm 5× 5× 1 cm N/A 10× 6× 5 cm 10× 6× 3 cm N/A 10× 5× 5 cm

Power 5 W 4 W 4 W 3 W N/A 5 W 5 W 5–20 W 10 W
Update Rate 2–4 Hz 4–26 Hz 5–20 s 4 kHz Variable 10 Hz/1 kHz 10–30 Hz 100–300 Hz 10 Hz

Accuracy ≈1% of range ±0.1 cm/s ±1.9 m ±100 km/h Variable ±1–5 cm ±1–5 cm ±1 cm variable
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Table 6. Suitability of localisation Technologies for Different Applications.

Area Acoustic DVL Sonar Inertial Dynamic EM-Signals AR External VSLAMBeacons SLAM Models Tags Tracking

Modern Nuclear Low Med Med Med Med Low Med Med MedStorage Pond
Legacy Nuclear Low Med Med Med Med Low Low Med MedStorage Pond
Legacy Nuclear Low Low Low Med Med Low Low Low LowStorage Silo
Nuclear Reactor Low Low Low Med Med Low Low Low LowPressure Vessel
Offshore Asset Low Low Med Med Med Low Low Low MedDecommissioning

Ship Hulls Med Low Med Med Med Low Med Low High

Liquid Storage Low Low Low Med Med Low Low Med MedTanks
Marinas,

High Med Med Med Med Low Med Med MedHarbours and
Boatyards
Tunnels,

Low Med Med Med Med Low Low Low MedSewers and
Flooded Mines

4.1. Acoustic-Based Systems

Acoustic systems are the most widely used in ocean-based localisation and, as such, they have the
largest range. Unfortunately, when they operate in confined environments with obstacles, they suffer
significant interference from multi-path propagation. However, they are not affected by visual
spectrum interference. They can provide either an absolute or relative position estimate.

4.1.1. Acoustic Beacons

Table 6 shows that this technology is only suitable for use in marinas, harbours, and boatyards.
The two primary challenges with the use of this technology are the inability to place external
infrastructure and the severe multi-path which is generated in cluttered and confined areas.

Line of sight is an important factor in cluttered environments. Loss of line of sight may be
overcome by the use of mobile beacons, however this adds an additional layer of complexity to the
system. Alternatively, SLAM-based systems could be used when line of sight is lost.

The scarcity of suitable commercially available systems and independent testing of these systems
in different complex and confined environments is also a limitation. A custom built system with an
operating frequency that is tuned to match the environment could potentially improve performance;
however, this will only mitigate the physical constraints so much.

Whilst acoustic beacons are the default localisation technology for ocean-based systems, they are
generally unsuitable for most confined environments.

4.1.2. DVL

The use of DVLs is commonplace in marine applications [51,68,69,113,114]. They are typically
used alongside a means of absolute localisation to join up regions between location fixes or to aid
dynamic positioning or station keeping of aquatic vehicles. This would also be the case for confined
space localisation.

As a minimum, a DVL requires a method of obtaining the heading of the vehicle for localisation
to be achieved in a global frame. The introduction to the market of new hardware that is specifically
designed for use on smaller vehicles means that the use of DVLs in confined space localisation may
now become much more prevalent.
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Because these products are relatively new, they have not had the many years of testing and real
world validation that larger units have had in sub-sea operation [113], so more detailed conclusions
regarding their suitability cannot be drawn yet.

4.1.3. Sonar SLAM

Ribas and collaborators have repeatedly demonstrated that SSLAM can be used to localise a
vehicle in an underwater environment [67–69,115–117]. Testing in an abandoned marina, Mallios et al.
found that their pose-based SLAM method has a mean accuracy of 1.9 m [68]. In these experiments,
the SSLAM system was aided by dead-reckoning from an IMU and a DVL, which is a typical
arrangement.

This level of error is relatively large when compared to many of the confined environments
that are the focus of this review. However, the marina environment used in the experiments was
large, with range measurements frequently exceeding 50 m. A reasonable assumption can be made
that accuracy could be considered as a percentage of the range measurements, which would give an
accuracy of 4% based on an estimated average 50 m range measurement.

The key benefit of a SSLAM system over fixed acoustic beacons is that no infrastructure needs
to be deployed, calibrated ,or recovered and the SLAM localisation still references the fixed physical
world around it, so is not subject to accumulation of errors.

SSLAM could be useful tool in confined space underwater localisation, although there is an
absence of research where it is applied in smaller indoor confined spaces. An important note to make,
is that typical SSLAM systems rely on measurements from three or more sensors, which add to their
cost and complexity and may not fit on some of the smaller UUVs identified in Section 2.4.

4.2. Dynamic Localisation Systems

Dynamic localisation systems (inertial sensing or system models) can only be used in conjunction
with one of the other technologies. As they only uses proprioceptive sensors, they are robust to many
of the environmental constraints; however, because they only provide a relative position estimate while
taking prior information into account, the errors and uncertainties can grow rapidly, unless corrected
by an absolute localisation system.

4.2.1. Inertial Systems

Inertial navigation is used widely in subsea environments and often forms an integral part of
the localisation package [63]. In [118] Rogne et al. evaluate the use of MEMS inertial sensors on a
marine vessel that has closed-loop control of its position and heading (dynamic positioning). They find
that MEMS IMUs are a valuable addition, either as a replacement or to compliment existing systems
such as the DVL. Because inertial navigation is largely environment agnostic, it is equally suited
to localisation in confined underwater spaces. However, in a confined underwater environment,
the required positioning accuracy is generally much higher than in an open-ocean environment;
therefore, selecting an IMU with the lowest possible in-run bias instability is recommended.

Because of the high drift of suitable IMUs, the use of an unaided inertial navigation system is
not generally recommended in confined environments. Instead, the inertial system should be used
to compliment other technologies. For example, in [51,52], the dead reckoning capabilities of inertial
navigation systems are improved by fusion with a dynamic system model and in [68,119–121] the
performance of absolute positioning systems are improved by the incorporation of an IMU.

4.2.2. Dynamic Models

The most common use of dynamic models in aquatic vehicles is to aid in understanding and design
of control systems that automatically hold aquatic vehicle positions and velocities, e.g., [122–125].
However, there are also many examples where aquatic vehicle localisation is achieved or aided by a
dynamic model [50–52,126,127]
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Localisation from a dynamic model is particularly attractive in confined spaces, because water
currents are not always present and circulation pumps can often be temporarily turned off. The fact
that, in most cases, no added hardware is required is also a very positive point due to tight space,
weight, and cost restrictions on small vehicles. However, the use of an unaided dynamic model for
localisation is not recommended, due the dynamic model’s high susceptibility to disturbances and
the accumulation of errors. Rather, a dynamic model is suited to aiding existing systems in order to
improve precision or to dead-reckon between position fixes.

4.3. EM-Signals

EM-signal systems only operate over a short range, but have high accuracy. They require additional
infrastructure to be deployed, but they are not affected by visual or acoustic spectrum interference.

Although promising results have been presented using EM-localisation in confined scenarios,
EM-based localisation still face various challenges. Depending on the confined environment,
existing methods are subject to carrier signal reflection, e.g., caused by tank walls. These reflections
distort the monotonically decreasing signal strength attenuation (Figure 9) and, thus, reduce the
localisation accuracy.
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Figure 9. EM-localisation concept with four emitting anchor nodes and a receiver onboard an UUV
(left) and range sensor model fit from calibration measurements (right).

Another challenge is the sensitivity towards antenna orientation mismatches between the
transmitter and receiver, as discussed in [107,110]. Kwak et al. [107] aim to model this drop of
RSS by high order sine and cosine terms. However, small scale UUVs naturally come with more agile
dynamics than large ROVs and demand for a robust dynamic compensation of the relative antenna
orientation. Further work is required in order to study and extend existing EM-localisation methods
towards micro underwater robots.

Due to the absence of physical antennas with isotropic attenuation pattern, dipole antennas with
omni-directional patterns are used. So far, this renders consistent full 3D EM-localisation coverage
challenging. However, depending on the specific scenario, stacked anchor arrays, as proposed in [108],
can be used.

For the environments that are covered in Table 6, EM-Signal localisation is not suitable for any of
them as the primary method of localisation. This approach could, however be used in a more targeted
manner in scenarios where high positioning accuracy for high precision robot maneuvering within an
a-priori known area, for example docking.

4.4. Vision-Based Systems

Given confined scenarios, vision systems have the best balance of accuracy to range of all of the
technologies considered. However, they are highly susceptible to environmental conditions, such as
turbidity, illumination levels, optical reflections, and the availability of salient features. Depending on
the method used, vision-based systems can provide either an absolute or relative position estimate.

4.4.1. AR Tags

Augmented reality marker systems constitute an attractive choice to achieve highly accurate and
robust localisation in scenarios where there is sufficient visibility and limited turbidity, but that
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does not possess sufficient visual features. Their major drawback is the required effort of
pre-mission deployment.

However, depending on the environment, those efforts have to be invested only once if the marker
infrastructure can remain within the confined volume, e.g., if tag markers are painted on tank walls.
This is usually the case for dedicated facilities, such as research tanks, but it may be the case for others.

A trade-off exists between the required detection range of the markers and the marker dimension.
The detection range and, thus, the work-space covered by the localisation systems, can be additionally
increased by using illuminated markers and better camera sensors. Successful detection ranges have
been reported up to 10 m between camera and marker in good operating conditions.

If localisation methods are used that require exact knowledge of the marker position, the effort for
this calibration process can be significant. In this case VSLAM methods, as discussed in Section 3.4.3,
can be a convenient alternative if high accuracy is less not the top priority.

For the environments that are presented in Table 6, AR tags could be used in modern nuclear
storage facilities, ship hull inspections or marinas, harbours, and boatyards. For all of these
environments, the AR tags could be installed prior to inspections. For example, the tags could
be placed on the sides of nuclear storage containers and coupled with consignment tracking tags.
For the other unsuitable environments, the inability to prior locate the AR tags means that they are not
feasible to use.

4.4.2. External Tracking

External vision-based tracking systems are common for sophisticated robotic test-beds, where they
provide accurate robot position tracking at high-rates. External tracking systems naturally require
the deployment of highly calibrated infrastructure. Therefore, their general suitability is limited to
confined scenarios that allow long-term deployment of additional equipment, the same problem as
with acoustic beacons.

However, there is ongoing research into their use with lower-quality systems requiring less
calibration mounted on floating platforms. This could prove to be highly effective where there is
surface access, such as nuclear storage ponds.

4.4.3. VSLAM

Visual SLAM algorithms are an attractive and common choice for navigation in unknown
environments, as they do not rely on additional infrastructure. However, their performance can
be improved when additional features, such as AR markers, are deployed. An attractive advantage of
VSLAM systems is the map generation of the potentially unknown environment, which can also be
used for planning tasks.

As with traditional non-aquatic VSLAM systems, they are reliant on salient features in the
environment to be able to be detected. When these are not available, the system will not work properly
and a back-up localisation method may be required.

In direct comparison to acoustic approaches, VSLAM is usually more accurate while facing a shorter
sensing range. Therefore, both sensing concepts are often combined. Furthermore, VSLAM systems
usually fuse IMU and DVL data in order to improve their tracking performance. This results in a high
cost of SLAM systems, since they combine various expensive sensing components.

Overall, VSLAM could be used in a range of environments, if the water quality is high.

5. Conclusions

This article has presented a review of the state-of-the-art in underwater localisation technologies
from the perspective of being used in complex and confined environments. Significant research has
been undertaken into aquatic localisation for use in the open-ocean; however, these technologies are
very often not transferable to confined spaces.
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The default localisation technologies in the open-ocean are acoustic based; however, these are often
not suitable for confined environments due to the severe multi-path which occurs. Dynamics-based
systems can only provide relative position estimates, but they can be universally used and fused with
other systems, whilst EM-signal systems can only be used over very short distances. Vision-based
systems offer the best solutions, either external tracking or VSLAM, however they quickly fail if the
water quality is poor.

Rather than a single solution, it is likely that multi-modal localisation systems will be required to
robustly operate in complex and confined environments [128].

Nine complex and confined environments were identified across a range of industries. For modern
and legacy nuclear storage ponds and offshore asset decommissioning, external vision tracking systems
using cameras that are mounted on ASVs may be the most suitable technology. This could be coupled
with VSLAM, DVL, or SSLAM. In modern nuclear storage ponds, water clarity is kept very high;
however, clarity can be variable in legacy nuclear storage ponds, so having multi-modal localisation
(vision and acoustics for example) may be necessary.

There are no suitable absolute localisation technologies available for legacy nuclear storage
silos and nuclear reactor pressure vessels. This is highlighted by the challenges surrounding the
inspection of the Fukushima Daiichi Nuclear Power Plant in Japan, where ROVs have been deployed,
but they have been unable to be localized and, therefore, the data that have been returned cannot
be geo-spatially referenced, which is required for the decommissioning process. Novel localisation
technologies will need to be specifically developed for these environments.

Liquid storage tanks are another challenging environment due to the restricted access and inability
to install external infrastructure. VSLAM may be the most suitable technology.

Ship hulls, marinas, harbours, boatyards, tunnels, sewers, and flooded mines are all on the larger
in scale, which provides more options. Ship hull, marinas, harbours, and boatyards are on the threshold
of ocean/confined and it may be easier to adapt some of the ocean-based technologies, such as acoustic
systems. Tunnels, sewers, and flooded mine inspections happen over longer distances (although the
width of the environment may be constrained), so DVLs could be used. VSLAM could also be used if
the water quality was good enough.

Overall, significant research and development is still required to accurately and reliably localize
UUVs in complex and confined environments. There is no single technology that could be applied to
all environments and new disruptive technologies are required in the case of legacy nuclear storage
silos and nuclear reactor pressure vessels.
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Abbreviations

The following abbreviations are used in this manuscript:

AHRS Attitude and Heading Reference System
AR Augmented Reality
ASV Autonomous Surface Vehicle
AUV Autonomous Underwater Vehicle
DOF Degree of Freedom
DVB-T Digital Video Broadcast
DVL Doppler Velocity Log
EM Electro-magnetic
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GPS Global Positioning System
IMR Inspection, Maintenance and Repair
IMU Inertial Measurement Unit
LBL Long Base Line
LOA Level of Autonomy
LoS Line-of-Sight
MEMS Micro-Electro-Mechanical Systems
MSIS Mechanically Scanned Imaging Sonar
ROV Remotely Operated Vehicle
RSM Range Sensor Model
RSS Received Signal Strength
SBL Short Base Line
SDR Software Defined Radio
SLAM Simultaneous localisation and Mapping
SSLAM Sonar-based Simultaneous localisation and Mapping
USBL Ultra Short Base Line
UUV Unmanned Underwater Vehicle
VIO Visual Inertial Odometry
VSLAM Vision-based Simultaneous localisation and Mapping
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40. Fernandez, R.A.S.; Milošević, Z.; Dominguez, S.; Rossi, C. Motion Control of Underwater Mine Explorer
Robot UX-1: Field Trials. IEEE Access 2019, 7, 99782–99803. [CrossRef]

41. Barshan, B.; Durrant-Whyte, H.F. Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom.
1995, 11, 328–342. [CrossRef]

42. Titterton, D.H. Weston, J.L. Strapdown Inertial Navigation Technology, 2nd ed.; IEE Radar, Sonar, Navigation,
and Avionics Series 17; Institution of Electrical Engineers: Stevenage, UK, 2004.

43. Woodman, O.J. An Introduction to Inertial Navigation; Technical Report; University of Cambridge,
Computer Laboratory: Cambridge, UK, 2007.

44. High-End Gyroscopes, Accelerometers and IMUs for Defense, Aerospace & Industrial. Institiution:
Yole Development. 2015. Available online: http://www.yole.fr/iso_upload/Samples/Yole_High_End_
Gyro_January_2015_Sample.pdf (accessed on 16 June 2020).

45. ADIS16495 Tactical Grade, Six Degrees of Freedom Inertial Sensor. Available online: https://www.analog.
com/en/products/adis16495.html (accessed on 16 June 2020).

46. Inertial Measurement Units (IMUS) 1750 IMU. Available online: https://www.kvh.com/admin/products/
gyros-imus-inss/imus/1750-imu/commercial-1750-imu (accessed on 16 June 2020).

47. Fossen, T.I. Guidance and Control of Ocean Vehicles; Wiley: New York, NY, USA, 1994.
48. Lennox, C.; Groves, K.; Hondru, V.; Arvin, F.; Gornicki, K.; Lennox, B. Embodiment of an Aquatic Surface

Vehicle in an Omnidirectional Ground Robot. In Proceedings of the 2019 IEEE International Conference on
Mechatronics (ICM), Ilmenau, Germany, 18–20 March 2019; Volume 1, pp. 182–186.

49. Allotta, B.; Costanzi, R.; Pugi, L.; Ridolfi, A. Identification of the main hydrodynamic parameters of Typhoon
AUV from a reduced experimental dataset. Ocean. Eng. 2018, 147, 77–88. [CrossRef]

50. Groves, K.; Dimitrov, M.; Peel, H.; Marjanovic, O.; Lennox, B. Model identification of a small omnidirectional
aquatic surface vehicle: A practical implementation. In Proceedings of the Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 25–29 October 2020.

51. Arnold, S.; Medagoda, L. Robust Model-Aided Inertial Localization for Autonomous Underwater Vehicles.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018.

52. Hegrenaes, O.; Hallingstad, O. Model-aided INS with sea current estimation for robust underwater
navigation. IEEE J. Ocean. Eng. 2011, 36, 316–337. [CrossRef]

53. Wu, Y.; Ta, X.; Xiao, R.; Wei, Y.; An, D.; Li, D. Survey of underwater robot positioning navigation.
Appl. Ocean. Res. 2019, 90, 101845. [CrossRef]

54. Taudien, J.; Bilen, S.G. Quantifying error sources that affect long-term accuracy of Doppler velocity logs.
In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016;
pp. 1–10.

55. Kottege, N. Underwater Acoustic Localisation in the Context of Autonomous Submersibles. Ph.D. Thesis,
The Australian National University, Canberra, Australia, 2011.

http://dx.doi.org/10.1007/s43154-020-00012-7
http://dx.doi.org/10.1126/scirobotics.aam8638
http://dx.doi.org/10.5772/57334
https://bluerobotics.com/store/rov/bluerov2/
http://dx.doi.org/10.1109/ACCESS.2019.2930544
http://dx.doi.org/10.1109/70.388775
http://www.yole.fr/iso_upload/Samples/Yole_High_End_Gyro_January_2015_Sample.pdf
http://www.yole.fr/iso_upload/Samples/Yole_High_End_Gyro_January_2015_Sample.pdf
https://www.analog.com/en/products/adis16495.html
https://www.analog.com/en/products/adis16495.html
https://www.kvh.com/admin/products/gyros-imus-inss/imus/1750-imu/commercial-1750-imu
https://www.kvh.com/admin/products/gyros-imus-inss/imus/1750-imu/commercial-1750-imu
http://dx.doi.org/10.1016/j.oceaneng.2017.10.032
http://dx.doi.org/10.1109/JOE.2010.2100470
http://dx.doi.org/10.1016/j.apor.2019.06.002


Sensors 2020, 20, 6203 32 of 35

56. Alcocer, A.; Oliveira, P.; Pascoal, A. Underwater acoustic positioning systems based on buoys with GPS.
In Proceedings of the Eighth European Conference on Underwater Acoustics, Carvoeiro, Portugal, 12–15 June
2006; Volume 8, pp. 1–8.

57. Trackit USBL System. Available online: http://www.teledynemarine.com/trackit?ProductLineID=59
(accessed on 7 July 2020).

58. Renner, B.C.; Heitmann, J.; Steinmetz, F. ahoi: Inexpensive, Low-power Communication and Localization
for Underwater Sensor Networks and µAUVs. ACM Trans. Sens. Netw. 2020, 16, 1–46. [CrossRef]

59. ahoi: Open-Source, Inexpensive, Low-Power Underwater Acoustic Modem. Available online: www.ahoi-
modem.de (accessed on 16 October 2020).

60. Duecker, D.A.; Steinmetz, F.; Kreuzer, E.; Seifried, R. Micro AUV Localization for Agile Navigation with
Low-cost Acoustic Modems. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicle
Symposium (AUV), St. John’s, NL, Canada, 30 September–2 October 2020.

61. Underwater GPS. Available online: https://waterlinked.com/underwater-gps/ (accessed on 7 July 2020).
62. Yoo, T.; Kim, M.; Yoon, S.; Kim, D. Performance enhancement for conventional tightly coupled INS/DVL

navigation system using regeneration of partial DVL measurements. J. Sens. 2020, 2020, 5324349. [CrossRef]
63. Christ, R.D.; Wernli Sr, R.L. The ROV Manual: A User Guide for Remotely Operated Vehicles;

Butterworth-Heinemann: Oxford, UK, 2013.
64. New to Subsea Navigation? Available online: https://www.nortekgroup.com/knowledge-center/wiki/

new-to-subsea-navigation (accessed on 18 September 2020).
65. Workhorse Navigator DVL. Available online: http://www.teledynemarine.com/workhorse-navigator-

doppler-velocity-log?ProductLineID=34 (accessed on 27 July 2020).
66. DVL A50. Available online: https://waterlinked.com/dvl/ (accessed on 9 July 2020).
67. Hernàndez Bes, E.; Ridao Rodríguez, P.; Ribas Romagós, D.; Batlle i Grabulosa, J. MSISpIC: A probabilistic

scan matching algorithm using a mechanical scanned imaging sonar. J. Phys. Agents 2009, 3, 3–11. [CrossRef]
68. Mallios, A.; Ridao, P.; Ribas, D.; Hernandez, E. Scan matching SLAM in underwater environments.

Auton. Robot. 2014, 36, 181–198. [CrossRef]
69. Ribas, D.; Ridao, P.; Neira, J. Underwater Slam for Structured Environments Using an Imaging Sonar; Springer:

Berlin/Heidelberg, Germany, 2010; pp. 37–46.
70. Ping360 Scanning Imaging Sonar. Available online: https://bluerobotics.com/store/sensors-sonars-

cameras/sonar/ping360-sonar-r1-rp/ (accessed on 27 July 2020).
71. Micron—Mechanical Scanning Sonar (Small ROV). Available online: https://www.tritech.co.uk/product/

small-rov-mechanical-sector-scanning-sonar-tritech-micron (accessed on 27 July 2020).
72. M1200d Dual-Frequency Multibeam Sonar. Available online: https://www.blueprintsubsea.com/pages/

product.php?PN=BP01042 (accessed on 9 July 2020).
73. Foresti, G.L.; Gentili, S. A vision based system for object detection in underwater images. Int. J. Pattern

Recognit. Artif. Intell. 2000, 14, 167–188. [CrossRef]
74. Carreras, M.; Ridao, P.; Garcia, R.; Nicosevici, T. Vision-based Localization of an Underwater Robot in a

Structured Environment. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Taiwan, Taiwan, 14–19 September 2003; Volume 2652, pp. 150–157.

75. Buchan, A.D.; Solowjow, E.; Duecker, D.A.; Kreuzer, E. Low-Cost Monocular Localization with Active
Markers for Micro Autonomous Underwater Vehicles. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 4181–4188.

76. Kato, H.; Billinghurst, M. Marker tracking and HMD calibration for a video-based augmented reality
conferencing system. In Proceedings of the 2nd IEEE and ACM International Workshop on Augmented
Reality (IWAR) 1999, San Francisco, CA, USA, 20–21 October 1999; pp. 85–94. [CrossRef]

77. Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3400–3407. [CrossRef]

78. Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Daejeon, Korea, 9–14 October 2016; pp. 2–7.

79. Krogius, M.; Haggenmiller, A.; Olson, E. Flexible Tag Layouts for the AprilTag Fiducial System.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau,
China, 3–8 November 2019; pp. 1898–1903.

http://www.teledynemarine.com/trackit?ProductLineID=59
http://dx.doi.org/10.1145/3376921
www.ahoi-modem.de
www.ahoi-modem.de
https://waterlinked.com/underwater-gps/
http://dx.doi.org/10.1155/2020/5324349
https://www.nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation
https://www.nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation
http://www.teledynemarine.com/workhorse-navigator-doppler-velocity-log?ProductLineID=34
http://www.teledynemarine.com/workhorse-navigator-doppler-velocity-log?ProductLineID=34
https://waterlinked.com/dvl/
http://dx.doi.org/10.14198/JoPha.2009.3.1.02
http://dx.doi.org/10.1007/s10514-013-9345-0
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/
https://www.tritech.co.uk/product/small-rov-mechanical-sector-scanning-sonar-tritech-micron
https://www.tritech.co.uk/product/small-rov-mechanical-sector-scanning-sonar-tritech-micron
https://www.blueprintsubsea.com/pages/product.php?PN=BP01042
https://www.blueprintsubsea.com/pages/product.php?PN=BP01042
http://dx.doi.org/10.1142/S021800140000012X
http://dx.doi.org/10.1109/IWAR.1999.803809
http://dx.doi.org/10.1109/ICRA.2011.5979561


Sensors 2020, 20, 6203 33 of 35

80. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic generation
and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292.
[CrossRef]

81. dos Santos Cesar, D.B.; Gaudig, C.; Fritsche, M.; dos Reis, M.A.; Kirchner, F. An Evaluation of Artificial
Fiducial Markers in Underwater Environments. In Proceedings of the IEEE OCEANS, Genoa, Italy,
18–21 May 2015; pp. 1–6.

82. Duecker, D.A.; Bauschmann, N.; Hansen, T.; Kreuzer, E.; Seifried, R. Towards Micro Robot Hydrobatics:
Vision-based Guidance, Navigation, and Control for Agile Underwater Vehicles in Confined Environments.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 25–29 October 2020.

83. Bhat, S.; Stenius, I. Hydrobatics: A Review of Trends, Challenges and Opportunities for Efficient and Agile
Underactuated AUVs. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop
(AUV), Porto, Portugal, 6–9 November 2018; pp. 1–8.

84. Ishida, M.; Shimonomura, K. Marker Based Camera Pose Estimation for Underwater Robots. In Proceedings
of the IEEE/SICE International Symposium on System Integration, Fukuoka, Japan, 16–18 December 2012;
pp. 629–634.

85. Britto, J.; Cesar, D.; Saback, R.; Arnold, S.; Gaudig, C.; Albiez, J. Model Identification of an Unmanned
Underwater Vehicle via an Adaptive Technique and Artificial Fiducial Markers. In Proceedings of the
OCEANS 2015—MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–6. [CrossRef]

86. Jung, J.; Li, J.H.; Choi, H.T.; Myung, H. Localization of AUVs using visual information of underwater
structures and artificial landmarks. Intell. Serv. Robot. 2017, 10, 67–76. [CrossRef]

87. Jung, J.; Lee, Y.; Kim, D.; Lee, D.; Myung, H.; Choi, H.T. AUV SLAM Using Forward/Downward Looking
Cameras and Artificial Landmarks. In Proceedings of the IEEE Underwater Technology (UT), Busan, Korea,
21–24 February 2017; pp. 1–3. [CrossRef]

88. Hexeberg Henriksen, E.; Schjølberg, I.; Gjersvik, T.B. Vision Based Localization for Subsea Intervention.
In Proceedings of the ASME 2017 36th International Conference on Offshore Mechanics and Arctic
Engineering (OMAE), Trondheim, Norway, 25–30 June 2017; pp. 1–9.

89. Heshmati-Alamdari, S.; Karras, G.C.; Marantos, P.; Kyriakopoulos, K.J. A Robust Model Predictive Control
Approach for Autonomous Underwater Vehicles Operating in a Constrained workspace. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May
2018; pp. 6183–6188. [CrossRef]

90. Lupashin, S.; Schollig, A.; Hehn, M.; D’Andrea, R. The Flying Machine Arena as of 2010. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011;
pp. 2970–2971. [CrossRef]

91. Lupashin, S.; Hehn, M.; Mueller, M.W.; Schoellig, A.P.; Sherback, M.; D’Andrea, R. A platform for aerial
robotics research and demonstration: The Flying Machine Arena. Mechatronics 2014, 24, 41–54. [CrossRef]

92. Pickem, D.; Glotfelter, P.; Wang, L.; Mote, M.; Ames, A.; Feron, E.; Egerstedt, M. The Robotarium: A remotely
accessible swarm robotics research testbed. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1699–1706. [CrossRef]

93. Qualisys. Qualisys-MotionCapture. 2020. Available online: https://www.qualisys.com/ (accessed on
3 August 2020).

94. Vicon. Vicon-MotionCapture. 2020. Available online: https://www.vicon.com/(accessed on 3 August 2020).
95. Duecker, D.A.; Eusemann, K.; Kreuzer, E. Towards an Open-Source Micro Robot Oceanarium: A Low-Cost,

Modular, and Mobile Underwater Motion-Capture System. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, Macau, China, 4–8 November 2019; pp. 8048–8053. [CrossRef]

96. Bernardina, G.R.; Cerveri, P.; Barros, R.M.; Marins, J.C.; Silvatti, A.P. Action sport cameras as an instrument
to perform a 3D underwater motion analysis. PLoS ONE 2016, 11, 1–14. [CrossRef] [PubMed]

97. Sydney, N.; Napora, S.; Beal, S.; Mohl, P.; Nolan, P.; Sherman, S.; Leishman, A.; Butail, S.; Paley, D.A.
A Micro-UUV Testbed for Bio-Inspired Motion Coordination. In Proceedings of the International Symposium
Unmanned Untethered Submersible Technology, Durham, NH, USA, 23–26 August 2009; pp. 1–13.

98. Cui, R.; Li, Y.; Yan, W. Mutual Information-Based Multi-AUV Path Planning for Scalar Field Sampling Using
Multidimensional RRT*. IEEE Trans. Syst. Man, Cybern. Syst. 2016, 46, 993–1004. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.23919/OCEANS.2015.7404391
http://dx.doi.org/10.1007/s11370-016-0210-9
http://dx.doi.org/10.1109/UT.2017.7890307
http://dx.doi.org/10.1109/ICRA.2018.8460918
http://dx.doi.org/10.1109/ICRA.2011.5980308
http://dx.doi.org/10.1016/j.mechatronics.2013.11.006
http://dx.doi.org/10.1109/ICRA.2017.7989200
https://www.qualisys.com/
https://www.vicon.com/
http://dx.doi.org/10.1109/IROS40897.2019.8968280
http://dx.doi.org/10.1371/journal.pone.0160490
http://www.ncbi.nlm.nih.gov/pubmed/27513846
http://dx.doi.org/10.1109/TSMC.2015.2500027


Sensors 2020, 20, 6203 34 of 35

99. Kim, A.; Eustice, R. Pose-graph visual SLAM with geometric model selection for autonomous underwater
ship hull inspection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), St. Louis, MO, USA, 10–15 October 2009; pp. 1559–1565. [CrossRef]

100. Hover, F.S.; Eustice, R.M.; Kim, A.; Englot, B.; Johannsson, H.; Kaess, M.; Leonard, J.J. Advanced perception,
navigation and planning for autonomous in-water ship hull inspection. Int. J. Robot. Res. 2012, 31, 1445–1464.
[CrossRef]

101. Westman, E.; Kaess, M. Underwater AprilTag SLAM and Calibration for High Precision Robot Localization;
Technical Report October; Carnegie Mellon University: Pittsburgh, PA, USA, 2018.

102. Rahman, S.; Li, A.Q.; Rekleitis, I. Visual-Acoustic SLAM for Underwater Caves. In Proceedings of the IEEE
ICRA Workshop, Underwater Robotic Perception, Montreal, QC, Canada, 20–24 May 2019; pp. 1–6.

103. Suresh, S.; Westman, E.; Kaess, M. Through-water Stereo SLAM with Refraction Correction for AUV
Localization. IEEE Robot. Autom. Lett. 2019, 4, 692–699. [CrossRef]

104. SubSLAM—Live 3D Vision. Available online: https://www.rovco.com/technology/subslam/ (accessed on
7 September 2020).

105. Park, D.; Kwak, K.; Chung, W.K.; Kim, J. Development of Underwater Short-Range Sensor Using
Electromagnetic Wave Attenuation. IEEE J. Ocean. Eng. 2015, 41, 318–325. [CrossRef]

106. Park, D.; Kwak, K.; Kim, J.; Chung, W.K. Underwater sensor network using received signal strength of
electromagnetic waves. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1052–1057. [CrossRef]

107. Kwak, K.; Park, D.; Chung, W.K.; Kim, J. Underwater 3D Spatial Attenuation Characteristics of
Electromagnetic Waves with Omnidirectional Antenna. IEEE/ASME Trans. Mechatron. 2016, 21, 1409–1419.
[CrossRef]

108. Park, D.; Kwak, K.; Kim, J.; Chung, W.K. 3D Underwater Localization Scheme using EM Wave Attenuation
with a Depth Sensor. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2631–2636.

109. Duecker, D.A.; Geist, A.R.; Hengeler, M.; Kreuzer, E.; Pick, M.A.; Rausch, V.; Solowjow, E.
Embedded spherical localization for micro underwater vehicles based on attenuation of electro-magnetic
carrier signals. Sensors 2017, 17, 959. [CrossRef]

110. Duecker, D.A.; Johannink, T.; Kreuzer, E.; Rausch, V.; Solowjow, E. An Integrated Approach to Navigation
and Control in Micro Underwater Robotics using Radio-Frequency Localization. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 6846–6852.

111. Park, D.; Chung, W.K.; Kim, J. Analysis of Electromagnetic Waves Attenuation for Underwater Localization
in Structured Environments. Int. J. Control. Autom. Syst. 2020, 18, 575–586. [CrossRef]

112. Park, D.; Jung, J.; Kwak, K.; Chung, W.K.; Kim, J. 3D underwater localization using EM waves attenuation for
UUV docking. In Proceedings of the 2017 IEEE OES International Symposium on Underwater Technology,
Busan, Korea, 21–24 February 2017; pp. 1–4. [CrossRef]

113. Jalving, B.; Gade, K.; Svartveit, K.; Willumsen, A.B.; Sørhagen, R. DVL velocity aiding in the HUGIN 1000
integrated inertial navigation system. Model. Identif. Control 2004, 25, 223–235. [CrossRef]

114. Lee, C.M.; Lee, P.M.; Hong, S.W.; Kim, S.M.; Seong, W. Underwater navigation system based on inertial
sensor and doppler velocity log using indirect feedback kalman filter. Int. J. Offshore Polar Eng. 2005,
15, 85–95.

115. Ribas, D.; Ridao, P.; Tardós, J.D.; Neira, J. Underwater SLAM in man-made structured environments.
J. Field Robot. 2008, 25, 898–921. [CrossRef]

116. Mallios, A.; Ridao, P.; Ribas, D.; Maurelli, F.; Petillot, Y. EKF-SLAM for AUV navigation under probabilistic
sonar scan-matching. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4404–4411.

117. Mallios, A. Sonar Scan Matching for Simultaneous Localization and Mapping in Confined Underwater
Environments. Ph.D. Thesis, University of Girona, Girona, Spain, 2014.

118. Rogne, R.H.; Bryne, T.H.; Fossen, T.I.; Johansen, T.A. MEMS-based inertial navigation on dynamically
positioned ships: Dead reckoning. IFAC-PapersOnLine 2016, 49, 139–146. [CrossRef]

119. Ryu, J.H.; Gankhuyag, G.; Chong, K.T. Navigation system heading and position accuracy improvement
through GPS and INS data fusion. J. Sens. 2016, 2016, 7942963. [CrossRef]

http://dx.doi.org/10.1109/IROS.2009.5354132
http://dx.doi.org/10.1177/0278364912461059
http://dx.doi.org/10.1109/LRA.2019.2891486
https://www.rovco.com/technology/subslam/
http://dx.doi.org/10.1109/JOE.2015.2433851
http://dx.doi.org/10.1109/IROS.2015.7353500
http://dx.doi.org/10.1109/TMECH.2015.2509466
http://dx.doi.org/10.3390/s17050959
http://dx.doi.org/10.1007/s12555-019-0548-9
http://dx.doi.org/10.1109/UT.2017.7890278
http://dx.doi.org/10.4173/mic.2004.4.2
http://dx.doi.org/10.1002/rob.20249
http://dx.doi.org/10.1016/j.ifacol.2016.10.334
http://dx.doi.org/10.1155/2016/7942963


Sensors 2020, 20, 6203 35 of 35

120. Niu, X.; Yu, T.; Tang, J.; Chang, L. An Online Solution of LiDAR Scan Matching Aided Inertial Navigation
System for Indoor Mobile Mapping. Mob. Inf. Syst. 2017, 2017, 4802159. [CrossRef]

121. Tang, J.; Chen, Y.; Niu, X.; Wang, L.; Chen, L.; Liu, J.; Shi, C.; Hyyppa. LiDAR scan matching aided inertial
navigation system in GNSS-denied environments. Sensors 2015, 15, 16710–16728. [CrossRef]

122. Li, C.; Jiang, J.; Duan, F.; Liu, W.; Wang, X.; Bu, L.; Sun, Z.; Yang, G. Modeling and experimental testing of an
unmanned surface vehicle with rudderless double thrusters. Sensors 2019, 19, 2051. [CrossRef]

123. Skjetne, R.; Smogeli, O.N.; Fossen, T.I. A nonlinear ship manoeuvering model: Identification and adaptive
control with experiments for a model ship. Model. Identif. Control 2004, 25, 3–27. [CrossRef]

124. Eriksen, B.O.H.; Breivik, M. Modeling, identification and control of high-speed ASVs: Theory and
experiments. In Sensing and Control for Autonomous Vehicles; Springer: Cham, Switzerland, 2017; pp. 407–431.

125. Monroy-Anieva, J.; Rouviere, C.; Campos-Mercado, E.; Salgado-Jimenez, T.; Garcia-Valdovinos, L.
Modeling and Control of a Micro AUV: Objects Follower Approach. Sensors 2018, 18, 2574. [CrossRef]
[PubMed]

126. Kinsey, J.C.; Yang, Q.; Howland, J.C. Nonlinear dynamic model-based state estimators for underwater
navigation of remotely operated vehicles. IEEE Trans. Control. Syst. Technol. 2014, 22, 1845–1854. [CrossRef]

127. Ridley, P.; Fontan, J.; Corke, P. Submarine dynamic modelling. In Proceedings of the 2003 Australasian
Conference on Robotics & Automation, Australian Robotics & Automation Association, Brisbane, Australia,
1–3 December 2003. .

128. AUV Docking Method in a Confined Reservois with Good Visbility. J. Intell. Robot. Syst. 2020, 100, 349–361.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2017/4802159
http://dx.doi.org/10.3390/s150716710
http://dx.doi.org/10.3390/s19092051
http://dx.doi.org/10.4173/mic.2004.1.1
http://dx.doi.org/10.3390/s18082574
http://www.ncbi.nlm.nih.gov/pubmed/30082631
http://dx.doi.org/10.1109/TCST.2013.2293958
http://dx.doi.org/10.1007/s10846-020-01175-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Terminology and Reference Frames
	Application Areas and Environmental Features
	Application Areas
	Environmental Characteristics
	Analysis

	Missions
	UUVs

	Localisation Technologies
	Inertial Navigation
	Dynamic System Models
	Acoustic Localisation Methods 
	Acoustic Beacons
	Doppler Velocity Log—DVL
	Sonar SLAM (SSLAM)
	Summary on Acoustic Localisation

	Visual Localisation
	Augmented Reality Marker
	External Tracking Systems
	Vision-Based SLAM
	Summary on Visual Localisation

	Electromagnetic Localisation
	Suitable Hardware

	Discussion
	Acoustic-Based Systems
	Acoustic Beacons
	DVL
	Sonar SLAM

	Dynamic Localisation Systems
	Inertial Systems
	Dynamic Models

	EM-Signals
	Vision-Based Systems
	AR Tags
	External Tracking
	VSLAM


	Conclusions
	References

