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Abstract: Precise single-point positioning using carrier-phase measurements can be provided by the
synchronized pseudolite system. The primary task of carrier phase positioning is ambiguity resolution
(AR) with rapidity and reliability. As the pseudolite system is usually operated in the dense multipath
environment, cycle slips may lead the conventional least-squares ambiguity decorrelation adjustment
(LAMBDA) method to incorrect AR. A new AR method based on the idea of the modified ambiguity
function approach (MAFA), which is insensitive to the cycle slips, is studied in this paper. To improve
the model strength of the MAFA and to eliminate the influence of constant multipath biases on
the time-average model in static mode, the kinematic multi-epoch MAFA (kinematic ME-MAFA)
algorithm is proposed. A heuristic method for predicting the ‘float position’ corresponding to every
Voronoi cell of the next epoch, making use of Doppler-based velocity information, is implemented to
improve the computational efficiency. If the success rate is very close to 1, it is possible to guarantee
reliable centimeter-level accuracy positioning without further ambiguity validation. Therefore,
a computing method of the success rate for the kinematic ME-MAFA is proposed. Both the numerical
simulations and the kinematic experiment demonstrate the feasibility of the new AR algorithm
according to its accuracy and reliability. The accuracy of the horizontal positioning solution is better
than 1.7 centimeters in our pseudolite system.

Keywords: pseudolite system; single-point positioning; carrier-phase ambiguity resolution; modified
ambiguity function approach

1. Introduction

In recent decades, the landscape of global navigation satellite system (GNSS) technology has
undergone far-reaching transformations to cater for both civilian and military needs, used throughout
the national infrastructure for providing positioning, navigation, and timing services. However,
the signal power of the GNSS is low, and hence, GNSS service may be limited or even not be
available in GNSS-challenged environments where there is poor satellite geometry or signal blockage,
such as indoors, in urban canyons, in mining pits, in tunnels, and underground, etc. A number
of researchers have claimed that pseudolites are an emerging technology with the potential to
extend the range of application of GNSSs, such as aircraft approach and landing [1], deformation
monitoring applications [2], Mars exploration [3], maritime application [4], open-cut mining [5], indoor
positioning [6], and others [7,8].

With the availability of precise GNSS satellite orbit and clock products, precise point positioning
(PPP) technology can provide global centimeter or even millimeter positioning accuracy with a single
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receiver. Fixed PPP with integer carrier-phase ambiguity resolution (AR) can shorten the convergence
time and improve the positioning accuracy significantly compared to float PPP [9]. The key to successful
AR for PPP is to remove the fractional cycle bias (FCB) from the ambiguity. Some single-differenced
(SD) FCBs estimation method and undifferenced FCBs estimation method are developed for recovering
the integer property of the ambiguity parameter [10,11]. Learning from the idea of the GNSS PPP,
an FCB correction method is proposed to recover the integer nature of single-difference ambiguities
for the synchronized pseudolite system, and the experiment demonstrates the capability of real-time
single-point positioning with centimeter or even millimeter positioning accuracy [12].

In the synchronized pseudolite system, centimeter-to-millimeter-level kinematic solutions can be
achievable from the single-point positioning technique using carrier phase measurement. The primary
task of carrier phase positioning is integer ambiguity fixing. Once the integer ambiguities are fixed
correctly, the carrier-phase measurements are turned into very precise range measurements. As the
pseudolite system is usually operated in the dense multipath environment, code measurements
experience severe multipath effect, despite the use of advanced multipath-mitigation techniques.
Phase-only processing is used to resolve the integer ambiguities for discarding the biasing effects that
the code multipath brings [13].

A number of AR techniques are proposed for the pseudolite systems. The ‘known point
initialization’ (KPI) directly calculate the integer ambiguities on a precisely surveyed point, but obviously
is not convenient for practical kinematic applications [14]. To resolve the ambiguities, ‘on-the-fly’ (OTF)
is preferred by most researchers, several OTF-AR techniques have been developed. Some OTF-AR
techniques based on the least-squares method or the unscented Kalman filter are proposed for
estimating the float ambiguities. Besides, some AR methods based on the conventional least-squares
ambiguity decorrelation adjustment (LAMBDA) method for are proposed in [15,16].

Continuous carrier phase measurement at enough epochs should be observed to obtain an accurate
float solution for the conventional LAMBDA method [17]. However, it is assumed that there is no
cycle slip and the carrier phase integer ambiguities remain constant during the OTF-AR procedure
in these papers [15,16]. When cycle slips occur, some bias will be propagated into the float solution,
finally resulting in wrong integer solution estimated by the LAMBDA algorithm [18].

Another category of OTF AR algorithms is the search techniques in the coordinate domain,
including the ambiguity function method (AFM) and the modified ambiguity function approach
(MAFA), using only the fractional value of the carrier phase measurement, which are insensitive to the
cycle slips [19].

There are several research studies based on the AFM method for the pseudolite application.
An improved particle swarm algorithm to increase the search efficiency of single-epoch AFM is
proposed, but the experiments proved that it requires an initial approximate coordinate precision better
than 0.2 m to achieve centimeter-level precision positioning [20]. The MAFA is a few hundred times
faster than the AFM, and can obviously reduce computational load [21]. However, the single-epoch
MAFA model is too weak to resolve the integer ambiguity, hence more observations are required to
improve model strength. Furthermore, due to the static nature of pseudolite transceivers, the multipath
biases of the carrier phase measurement in the user receiver appear to be constant in static scenarios.
If the ambiguities are biased, the probability of correct resolution will decrease rapidly [22]. In kinematic
mode, however, the multipath biases vary randomly with the surrounding obstructs [23,24].

The MAFA methods are all based on a single-epoch or multi-epoch carrier phase measurements
in the static GNSS-RTK mode [19,21,25,26]. Considering the current research status, the motivation
for this paper is to extend the original MAFA to the kinematic mode. We propose a new algorithm,
namely the kinematic multi-epoch MAFA (kinematic ME-MAFA), to improve the model strength
and thus can increase the success rate of MAFA ambiguity estimation effectively, compared with
the original MAFA methods in the static mode. The Doppler measurement is used to help resolve
integer ambiguity for GNSS precise positioning applications in some research. Doppler-smoothed
pseudorange is used for improving the fix rate of the single-epoch AR [27,28]. Besides, velocity from



Sensors 2020, 20, 6197 3 of 21

Doppler measurements is used to help single-epoch determination of carrier-phase integer ambiguities
in the conventional LAMBDA method [29]; However, its single-epoch ‘float solution’ must be calculated
by updating an accurate previous position regarded as the result of correct ambiguities. In this paper,
a heuristic method making use of Doppler-based velocity information is proposed for improving
the computational efficiency of the kinematic ME-MAFA, predicting the proposed ‘float solution’,
corresponding to every MAFA Voronoi cell of the following multi-epoch without the need of an
accurate priori position. Reliable centimeter-level accuracy positioning can only be guaranteed if the
carrier phase integer ambiguities are correctly fixed. If the success rate is very close to 1, it is possible to
rely on the integer solution without further validation. Therefore, a computing method of the success
rate for the kinematic ME-MAFA is proposed.

2. Pseudolite Measurement Model

The signal tracking operation performed by the pseudolite receiver provides three types of
instantaneous measurements, e.g., pseudorange, carrier phase, and Doppler shift. Taking account of
the severe multipath effect on the pseudorange measurement, modeling and measurement error of the
pseudolite carrier phase and Doppler shift are only presented.

The carrier phase measurement of the user corresponding to pseudolite i is represented as φi in
unit of cycle:

φi = λ−1
(
ρi + c

(
Ti + δtu − δti

))
+ Ni + εi

φ, (1)

where λ is the carrier wave length (in meters); ρi is the geometric range between the antenna phase
center of the ith pseudolite and that of the receiver; c is the speed of light; δtu and δti are the clock offsets
of the receiver and the pseudolite, respectively; Ti is the tropospheric delay, which can be calculated
using an appropriate model [30]; Ni is the carrier phase integer ambiguity; εi

φ
is the measurement

noise, which may include residual tropospheric errors, multipath errors, receiver noise, etc.
Single-differenced operation is implemented to remove the receiver clock offset, the SD

measurement between the ith pseudolite and the jth one is expressed as:

∆φi j = φi
−φ j = λ−1∆ρi j + Ni j + ε

i j
φ

(2)

where ∆ρi = ρi
− ρ j, Ni j = Ni

−N j, εi j
φ

= εi
φ
− ε

j
φ

.
As nuisance fractional cycle bias parameter owing to the clock offset between two pseudolites

δti j = δti
− δt j can be eliminated by the synchronized pseudolite system in the transmitter end,

SD carrier phase ambiguity is retrieved to be integer in nature [12].
The Doppler measurement, although less precise compared with the carrier phase measurement,

has the advantage of being immune to cycle slips [31]. In addition, the noise and the multipath of delta
range derived from the Doppler measurement are significantly smaller than that of code measurements.

The raw Doppler measurement Di corresponding to pseudolite i, in units of Hz can be simply
modeled as:

λDi =
.
ρ

i
+ c

( .
δtu −

.
δti

)
+ εi

D, (3)

where
.
ρ

i
= −liv, (4)

.
ρ

i is range rate; li is the line-of sight unit vector between the receiver and the pseudolite; v is the
instantaneous velocity of user;

.
δtu and

.
δti are the clock drifts of the receiver and the pseudolite

respectively; εi
D is Doppler measurement noise; As the sample interval of the Doppler measurement is

generally no longer than one second, small gradient of the tropospheric delay is ignored [32].
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3. AR Methodology

The proposed algorithm in this paper is based on the MAFA AR method. MAFA is an
ambiguity estimation approach, determining the right integer ambiguity based on the search in
the coordinate domain.

3.1. Single-Epoch MAFA

The single epoch SD carrier phase measurement can be represented by the following
simplified equation:

Φ + e =
1
λ
ρ(b) + a, (5)

where Φ is the SD carrier phase measurement vector; b is the unknown coordinate vector of user
receiver; ρ(b) is the SD geometrical range vector; a is the unknown SD carrier phase ambiguity vector;
e is measurement error vector of SD carrier phase measurement.

Typically, the noise of carrier phase measurement is about 0.01~0.04 cycle [33,34], much lower
than a half cycle. Taking account of the integer nature of SD ambiguities of synchronized pseudolite
system, the SD ambiguity vector then has the following form:

a = round
(
Φ −

1
λ
ρ(b)

)
, (6)

where round(·) is a function of rounding to the nearest integer value.
Substituting Equation (6) into Equation (5), the error equations can be shown as:

e =
(
Φ −

1
λ
ρ(b)

)
− round

(
Φ −

1
λ
ρ(b)

)
(7)

After a Taylor series expansion, a linearized form of the error equations can be rewritten as:

e = δ−B∆b, (8)

with:
δ =

[
δ1 δ2 · · · δn

]T
, (9)

δn =
(
Φ −

1
λ
ρ(b0)

)
− round

(
Φ −

1
λ
ρ(b0)

)
, (10)

∆X =
[

dx dy dz
]T

, (11)

B =



∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ2
∂x

∂ρ2
∂y

∂ρ3
∂z

...
...

...
∂ρ2
∂x

∂ρ2
∂y

∂ρ2
∂z


, (12)

where b0 =
[

x0 y0 z0
]T

is a priori coordinate vector. Additionally, n is the number of SD
observations per epoch. B is the (n × 3) design matrix. δ is the (n × 1) residual vector.

Equation (8) is solved with nonlinear least squares (LS) adjustment method:

arg min
X

(
εWSSE =

^
e Q−1

Φ
^
e
)
, (13)
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where
^
e is a LS estimate of measurement error vector e in Equation (8). εWSSE is the weighted

sum squared error of the LS adjustment. If σ0 is the variance of carrier phase measurement,
QΦ,=; E

{
, eeT,

}
,=; σ2

0D, is the variance–covariance matrix of SD measurement vector Φ, with:

D =


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

 (14)

The solution of the above nonlinear model must be Newton-iterated to obtain the convergent

result. Then, the LS coordinate increment solution ∆
^
b is obtained by the following equation:

∆
^
b =

1
λ

(
ATQ−1

Φ A
)−1

ATQ−1
Φ δ. (15)

The fix coordinate solution
^
b of MAFA can be then obtained by:

^
b = b0 + ∆

^
b . (16)

Although the ambiguity parameters are not presented in the model in (8), substituting LS

coordinate solution
^
b into Equation (6), the final constrained SD ambiguity estimate can be obtained by:

^
a = round

(
Φ −

1
λ
ρ
(^

b
))

. (17)

The pull-in regions in the ambiguity domain from the Teunissen theory are sometimes referred
to also as Voronoi cells [35]. Similar to the Voronoi cell in the ambiguity domain, there is a defined
Voronoi cell in the coordinate domain. However, the Voronoi cells in MAFA are different. A so-called
good Voronoi cell in the coordinate domain is defined in [25]. A good Voronoi cell is a graphical
interpretation of Equation (6) in the coordinate domain. For obtaining the correct ambiguities in
Equation (6), the following condition must be met:∣∣∣∣e− eρ0 /λ

∣∣∣∣ < 0.5, (18)

where eρ0 is the vector of the computed SD geometrical distance errors corresponding to the a priori
coordinate b0. Condition (18) is a necessary and sufficient condition to obtain a correct solution
in MAFA.

Figure 1 presents an example of a few Voronoi cells and some cloud of float positions in 2D space.
The good Voronoi cell is located in the center. The shape and the size of the Voronoi cell depend on the
geometry configuration and the carrier wavelength, respectively. These cells in the coordinate domain
can be empirically generated based on Equation (6) from a dense set of points.
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The MAFA method can give correct solutions only if an a priori position falls into the good
Voronoi cell. If the priori position is accurate enough to satisfy Condition (18), then it can be pulled
into the good Voronoi cell constructed for the true position. Otherwise, it will be pulled to a bad
cell in the coordinate domain that corresponds to the wrong integer ambiguities, in accordance with
Equation (6) [21].

The optimization problem in MAFA has the form of (8) and (13), in which the objective function is
the weighted sum squared error εWSSE of the LS adjustment. The search in the coordinate domain grid
by grid is needed to obtain the global minimum, which corresponds to the correct fix-solution of the
objective function. However, the objective function is a multi-valley function. With meter-level accuracy
of approximate coordinate, using only one epoch phase observation or multi-epoch observations with
the time-average operation in static mode makes the objective function noisy or biased, resulting in
low success rate of getting the fix solution.

3.2. Kinematic ME-MAFA

The success rate of MAFA using single epoch or multi-epoch observations with simple time-average
operation in static mode is usually very low, which restricts MAFA application. Therefore, the kinematic
ME-MAFA is proposed to improve the model strength and thus can increase the success rate of MAFA
ambiguity estimation effectively. The algorithm of the kinematic ME MAFA algorithm is shown in
Figure 2.
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3.2.1. Ambiguity estimation of kinematic ME-MAFA

For consecutive M-epochs carrier phase observations, the ambiguity vector shall have the form [21]:

aME =
[

a1 · · · am · · · aM
]
, m = 1, 2, · · · , M. (19)

In addition, the MAFA is immune to cycle slips even if processing multiple-epochs observations,
which has been proven in [19].
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The linearized error equations of M epochs in kinematic mode can be simply written as:

eME = δME −BME∆bME, (20)

with:
eME =

[
e1 e2 · · · eM

]T
, (21)

δME =
[
δ1 δ2 · · · δM

]T
, (22)

∆bME =
[

∆b1 ∆b2 · · · ∆bM
]T

, (23)

BME =


B1

B2
. . .

BM

. (24)

Thanks to the absence of undetermined ambiguity vector aME in the linearized MAFA model,
there is no any derivative sub-matrix corresponding to the integer ambiguity parameters in the
design matrix BME, compared with the conventional LS method for estimating the float ambiguities.
Thus, the batch-proposing all epoch observations together popular in the conventional LS method
can be avoided, which is computing-time consuming due to the large size of observation matrix in
Equation (20).

For proposed kinematic ME-MAFA, every single epoch observation shall be input to the model in
Equation (8) individually. Additionally, the objective function of the kinematic ME-MAFA has the
following form:

εWSSE-ME =
1
M

M∑
i = 1

(εWSSE(m)), m = 1, 2, · · · , M, (25)

with εWSSE(m) =
^
e mQ−1

Φ
^
e m; M is the number of the observation epochs. The objective function of

kinematic ME-MAFA is the sum of objective function of every single epoch MAFA straightforward.
Apparently, a trivial search procedure epoch by epoch can be implemented to find the correct

solution. However, if the priori coordinate of every epoch is poor and the needed epochs for high success
rate of AR is large, independent search of multi-epochs have so many search grids, that computation
time may be too long for (near) real-time applications.

Taking account of the long computation time of independent search of multi-epochs, a heuristic
method making use of user velocity information is proposed to improve the computational efficiency.
Firstly, the search grid by grid is conducted for the first epoch, using the single-epoch MAFA model
in (8). The subsequent epochs after the first epoch will take advantage of the Doppler-based velocity.

The time-differenced carrier phase is sensitive to the cycle slip, thus the raw Doppler measurement
is widely used to estimate the user velocity [36]. The Doppler measurement is also subject to the
frequency bias between the pseudolite oscillator and the receiver oscillator, thus the unknowns in the

Doppler model are the receiver antenna phase-center velocity vector v =
[

vx vy vz
]T

and the

clock drift
.
δt =

.
δtu −

.
δti. The three-dimensional velocity of user receiver is solved with nonlinear

least squares (LS) adjustment method: ∆v
∆

.
δt

 =
(
HTQ−1

D H
)−1

ATQ−1
D ∆D, (26)

where the (n + 1) dimensional H design matrix of computing the velocity is similar to the one used to
compute the position starting from the pseudorange measurement. Additionally, n + 1 is the number
of visible pseudolites. QD is the variance–covariance matrix of the Doppler measurement.
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The ‘float solution’ of next epoch can be predicted by dead-reckoning from a previous fix position
with average Doppler-based velocity, given by the following prediction equation:

b̂(m+1) =
^
b (m) + v(m) · Ts, (27)

where Ts is the sampling interval of carrier phase observation. v(m) is the average Doppler-based

velocity between two epochs.
^
b (m) is the fix coordinate of previous epoch calculated by the single-epoch

MAFA model in (15) and (16).
Doppler-based velocity is reliable, and can reach an accuracy of mm/s to cm/s [37]. If the dynamics

of the user is not high, so the predicted ‘float solution’ can be dropped into the Voronoi cell of the fix
coordinate of the next epoch. Then, the predicted ‘float solution’, as the priori coordinate, is inputted
in the single-epoch MAFA model for solving the fix solution of next epoch, as illustrated in Figure 3.

A few grids located in the same Voronoi cell generally are all pulled into the center of this cell
as shown in Figure 1, thus the number of the candidates for all of the subsequent epochs shall be
decreased naturally after the search of the first epoch. This is the reason that the proposed kinematic
multi-epoch MAFA, making use of Doppler-based velocity information, can reduce the computational
burden for real-time pseudolite precise positioning.
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3.2.2. Error Analysis of Float Solution

The accuracy of the proposed ‘float solution’ depends on the accuracy of the Doppler-based
velocity. Raw Doppler measurements can be directly obtained by the output of the phase lock loop
(PLL) filter. The Doppler tracking jitter in a GNSS receiver is given by:

σD =
1

2πTcoh

√
BL

C/N0
, (28)

where Tcoh is coherent time (s), which is equivalent to the loop update interval in general; BL is the loop
bandwith (Hz); C/N0 (dB-Hz) is the carrier to noise ratio of received navigation signal.

Time division multiple access (TDMA) is adopted to overcome the well-known near-far problem
in the pseudolite system. Each pseudolite transmitter is identified by a unique transmission slot.
For the TDMA scheme of the pseudolite system, the Doppler tracking jitter due to thermal noise in a
pseudolte receiver is given by:

σD =
PDC

2πTcoh

√
BL

C/N0 · PDC
, (29)

where PDC is the pulse duty cycle (range from 0 to 100%) of the pseudolite signal. The loop update
interval is equivalent to Tcoh/PDC. The coherent time Tcoh is determined by the pulse time-width.

The coherent time Tcoh, the pulse duty cycle PDC, and the loop bandwidth BL of the designed
receiver in our pseudolite system are set to 0.2 ms, 10%, and 15 Hz, respectively. The theoretical
Doppler jitters as function of the C/N0 are shown in Figure 4.
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The random noise of raw Doppler can be lowered by the time-average processing. The average
Doppler observation is written as:

D(m) =
1
K

K∑
k = 1

Dk, (30)

where K is the number of raw Doppler observations in a sampling interval of the carrier phase
observation. In addition, its noise can be derived according to the law of variance propagation as:

σD =
σD

K
. (31)

The raw Doppler measurement from the PLL is updated at a high rate up to 500 Hz in our
pseudolite system. If the sampling interval is set to 0.2 ms, then K is equal to 100. When C/N0≥35 dB-Hz,
according to Equation (31), the standard deviation of average Doppler is lower than 0.18 Hz.

The average velocity derived from the smoothed Doppler measurement can be approximated as an
instantaneous velocity for such a small sampling interval [38]. For the BeiDou B1 signal (λ = 19.2 cm),
if the dilution of precision is no higher than 2.9, the average velocity can still reach the accuracy
of centimeter per second. Under the above circumstance, according to Equation (27), the standard
deviation of estimated ‘float solution’ is better than 2.5 cm.

3.2.3. Computing Success Rate of Kinematic ME-MAFA

A very high positioning performance can only be guaranteed if the estimated integer ambiguities
are correct. If the success rate is very close to 1, it is possible to rely on the integer solution without
further validation [39]. In practice, a user does not want to use the integer solution if the failure rate is
too large.

Therefore, it is very important to assess the success rate. MAFA can obtain exactly the same SR
values as conventional integer least squares (ILS) [21]. The success rate of ILS cannot be evaluated
exactly, but the bootstrapped success rate is known to be a tight lower-bound. The bootstrapped
success rate can be calculated as [40]:

Ps =
n∏

i = 1

(
2Φ

(
1
σẑi|I

)
− 1

)
, (32)

Φ(x) =
1
√

2π

∫ x

−∞

exp
(
−

1
2

v2
)
dv, (33)
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where σẑi|I is the conditional standard deviation after decorrelating Z-transformation of the
variance-covariance matrix Qââ of the float ambiguities.

There are no float ambiguities solutions and their corresponding variance–covariance matrix in
the proposed kinematic ME-MAFA. The corresponding variance-covariance matrix is estimated as:

Qââ =
(
ATPyyA−ATPyyBME

(
BTPyyBME

)−1
BME

TPyyA
)−1

, (34)

with:

A =


I1

I2
. . .

IM

, (35)

where I1 = I2 · · · = IM is the n-dimensional identity matrix.

The design matrix BME is computed from the fix solution
^
b ME =

[
^
b 1

^
b 2 · · ·

^
b M

]T
after

the minimum search of the objective function in Equation (25).

4. Numerical Simulations

The performance of the kinematic ME-MAFA AR method will be investigated under a variety
of functional and stochastic models, to make a guideline for the real-world experiment in the next
section and for the future applications. The coordinates of six pseudolite layouts in a defined Cartesian
coordinate system are shown in Figure 5. It is assumed that the receiver moves along the x-axis in
the center of the coverage region symmetrically (Y = 0, Z = 0). The speed of the receiver is assumed
to be 1 m/s. The carrier frequency of BeiDou B1 signal (λ = 19.2 cm) is used. The simulated integer
ambiguities are the round results of the theoretical geometric distances corresponding to the first
epoch divided by the carrier length. The SD carrier phase measurement is the result of theoretical SD
geometric distances of all epochs minus the SD integer ambiguities. The differencing is conducted
against the PL1. The carrier phase data and the raw Doppler data are generated with sampling rates of
5 and 500 Hz, respectively. The pseudolite transceivers and the user receiver of the pseudolite system
are designed by ourselves. Thus, the sample rate of the raw measurement can be changed according to
our need. The updated interval of the signal tracking loops is 2 ms in our receiver, so the sample rate
of the Doppler measurement can be as high as 500 Hz.Sensors 2020, 20, x 11 of 22 
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The average vertical dilution of precision (VDOP) for three-dimensional (3D) positioning is 6.59.
The VDOP of the pesudolite system is commonly higher compared with the corresponding term of
GNSS. Integration with GNSS is adopted to improve the poor vertical geometry of the pseudolite
system in [41]. The layout in the real-world experiment is similar to the term in the simulations.
Therefore, for the standalone pseudolite system, two-dimensional (2D) positioning is implemented in
the following simulations and the real-world experiment. The horizontal dilution of precision (HDOP)
for 2D positioning in the whole coverage area is mostly smaller than 1.15. The average HDOP for 2D
positioning is 1.05 for this simulated layout, and the HDOPs in the whole coverage area are mostly
smaller than 1.15. The VDOP for 3D positioning and HDOP for 2D positioning implemented in this
paper are shown in Figure 6.Sensors 2020, 20, x 12 of 22 
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The noise of simulated measurements is assumed as Gaussian white noise. For each Monte-Carlo
simulation scenario, a set of 104 or 105 noise vectors are generated. Then, each simulation for the
different measurement noise and for the different geometry change was repeated. The density of
the grid of candidates or the searching step is set at half of the carrier wavelength in all simulation
scenarios, according to [26].

4.1. Influences of Measurement Noise and Search Region

The first test is intended to investigate the success rates of the kinematic ME-MAFA ambiguity
estimation under different measurement noise and different search region. The success rate is defined
as the percentage of the integer estimation equal to the correct integer vector [39]. The moving distance
of the receiver is 2 m, thus observations of 11 epochs are generated. The measurement noise of the
undifferenced carrier phase measurement is assumed to range from 0.03 to 0.05 cycle. The standard
deviation of the Doppler measurement is 20 Hz. The circle radius (R) of the search region corresponding
to the prior coordinate of the first epoch is assumed to range from 1 to 6 m. Four search regions with
different radius are shown in Figure 7.

Table 1 shows the simulation-based success rates as function of the phase noise levels and the
circle radius of the search region. For each Monte-Carlo simulation scenario, a set of 104 noise vectors
are generated. The results show that the success rates depend on the precision of the carrier phase
observation. When the noise level is lower, the success rate is higher. More importantly, large size
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of the search region has no influence on the success rate of MAFA, which is also verified by some
simulations in [21].

Table 1. Success rates for the kinematic ME-MAFA, as function of the phase noise levels and the circle
radius of the search region.

Noise Level [Cycle]
Search Radius [m]

1 2 4 6

0.03 99.73% 99.73% 99.82% 99.73%
0.04 97.75% 97.46% 97.79% 97.67%
0.05 92.92% 92.88% 92.60% 92.62%
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Doppler-based velocity information is proposed to improve the computational efficiency. A few
search grids may be pulled into the center of the same Voronoi cell. Thus, after the search corresponding
to the first epoch, the number of Voronoi cells is smaller than the original grids in the search circle of
the first epoch. Table 2 shows the original grids in the search circle and the value of the number of the
Voronoi cells. For the search radius ranging 1 to 6 m, the candidates are decreased by 24.63%, 24.39%,
25.36%, and 26.24% respectively. Therefore, the computation time of the kinematic ME-MAFA using
the Doppler-based velocity information can be shortened by about a quarter in this simulation.

Table 2. Comparison of the number of the Voronoi cells with the number of original grids in the
search circle.

Search Radius [m] No. of Original Grids Mean No. of Voronoi Cells

1 341 257
2 1361 1029
4 5449 4067
6 12,281 9059

4.2. Influence of the Cycle Slip

To investigate the AR performance of the proposed algorithm with the unexpected cycle slip,
another simulation is conducted. Then, one-cycle slip is inserted into the simulated carrier phase
measurement of PL5 at the 6th epoch. The search radius is set to 1 m. For all of the following
Monte-Carlo simulation scenarios, a set of 105 noise vectors are generated. Success rates with the cycle
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slip are summarized in Table 3, which is exactly identical to the corresponding terms without the cycle
slip. The kinematic ME-MAFA is verified to be resistant to the cycle slips, similar to conventional
AFM and MAFA. When there are no any cycle slips, LAMBDA obtains almost the same success rate
values as the proposed kinematic ME-MAFA. However, when there is a cycle slip, our method clearly
provides much better results than the conventional LAMBDA method. In addition, the MAFA has the
weakness in the computation efficiency, and the computation time in MAFA is ten or so times longer
than in the LAMBDA [21].

Table 3. Success rates with cycle slips.

Noise Level [Cycle]
Without Cycle Slip With Cycle Slip

Kinematic ME-MAFA LAMBDA Kinematic ME-MAFA LAMBDA

0.03 99.769% 99.733% 99.769% 0%
0.04 97.871% 97.569% 97.871% 0%
0.05 93.019% 92.510% 93.019% 0%

4.3. Influence of Geometry Change

The model of kinematic ME-MAFA is a geometry-based model. For the pseudolite geometry-based
model, the user-pseudolite geometry change is a critical factor in terms of improving OTF-AR
performance. Due to the static nature of pseudolite transceivers, geometry change can only be
generated with the movement of the user receiver [42].

To investigate the influence of the geometry change on the AR performance of the kinematic
ME-MAFA, the third simulation is conducted. The moving distance of the user receiver ranges from
1 to 4 m. The noise level is set to 0.04 cycle. The kinematic ME-MAFA is a multi-epoch AR method.
The number of epochs using for AR increases with the moving distance. The statistical results of the
simulation in the fourth column of Table 4 show that the success rate is improved significantly with
the increment of the moving distance of the user receiver, owing to more and more epochs used to
fix the integer ambiguities. When the moving distance is longer than 3 m, the success rate is higher
than 99.99%. When the moving distance is 4 m, there is no any wrongly fixed solution. The theoretical
lower bound based on the bootstrapped success rate and the theoretical upper bounds based on the
ambiguity dilution of precision (ADOP) for the ILS success rate are also listed in Table 4. All the
lower bounds and the upper bounds of the success rates are calculated by using the Ps-LAMBDA
toolbox, and the designers indicate that for some cases, the ADOP-based upper bound often gives a
too optimistic value compared to the actual success rate [39].

Table 4. Success rates as function of the geometry change.

Moving
Distance [m]

Number of
Epochs

Theoretical Lower
Bound [%]

Statistical Value
[%]

Theoretical Upper
Bound [%]

1 6 55.312% 57.987% 100.000%
1.5 9 86.882% 88.646% 100.000%
2 11 97.419% 97.792% 100.000%
3 16 99.991% 99.993% 100.000%
4 21 100.000% 100.000% 100.000%

As is illustrated in Figure 8, positioning errors of correctly fixed solution (green scatter) are
centimeter-level; however, the large red scatter indicates that the success rate is not large enough
(only 88.646%). As a result, some of wrongly fixed positions even cause decimeter-level positioning
errors. This underlines that the fixed solution should only be used when the success rate is
sufficiently high.
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(red dots).

Figure 9 shows computed lower-bound success rates of 105 samples of four geometry
configurations, according to Equations (32) and (34). For smaller geometry change, the theoretical
lower-bound success rate is lower, as shown in the middle column of Table 4; and the computed
lower-bound success rates are lower and their fluctuation is larger due to wrong fix solutions.
For visualization purposes, the fail rate is shown in Table 5 instead of the success rate. For 4 m of
moving distance without any wrongly fixed solution, the statistical fail rate is approximately equal
to the theoretical success rate. Thus, for reliable AR without further validation in the real-world
applications, the threshold value of the fail rate is set to 5 × 10-9, according to the guideline from
this simulation.
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Table 5. Statistical parameter of fail rates as function of the geometry change.

Moving Distance [m] Theoretical Fail Rates
Statistical Fail Rates

Mean STD

1 4.47 × 10−1 3.66 × 10−1 9.70 × 10−2

2 2.58 × 10−2 2.56 × 10−2 1.82 × 10−3

3 9.19 × 10−5 9.19 × 10−6 2.39 × 10−5

4 4.92 × 10−9 4.92 × 10−9 1.79 × 10−10

5. Real-World Experiments

To validate that the kinematic ME-MAFA is capable of producing reliable AR, the field test is
conducted at a semi-enclosed basketball court in National University of Science and Technology on
August 30, 2020. The experimental pseudolite system consists of six pseudolite (PL1~PL6) transceivers
and a user receiver, as shown in Figure 10. Antennas of six pseudolies are mounted on the metal
columns. PL1 was chosen as the master pseudolite and all other slave pseudolites are synchronized
with it. Additionally, the PL1 is chosen as the reference pseudolite. The coordinates of each pseudolite
transmitting antenna are listed in Table 6, determined by a total station setting at the margin of test field.
The antenna of user receiver is installed on a toy train, moving along the train track at an approximate
speed of 0.75 m/s. The 2D positioning experiments are conducted. The height of the receiver antenna
is fixed at 0.471 m. During the circumnavigation, HDOP values are between 0.98 and 1.1.

Table 6. Coordinates of six pseudolites.

PL ID East (m) North (m) Up (m)

PL1 −37.312 7.458 6.229
PL2 −27.191 −10.056 5.861
PL3 −28.520 8.107 6.155
PL4 −44.678 11.316 6.059
PL5 −46.102 6.879 7.224
PL6 −35.961 −10.678 6.175
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The radio-frequency (RF) signal from the antenna is fed to the RF front-end system, where the RF
signal is down-converted to the intermediate frequency (IF) signal. Then, the IF signal is digitized at
the data acquisition system. The measurements are obtained by processing the digitized IF samples
using a software-defined receiver. The architecture of the IF data collection system and the photos of
the hardware setup of the software receiver are shown in Figure 11.
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(a): Architecture of the data collection system; (b): Hardware setup for the software receiver.

The priori position of the kinematic ME-MAFA is determined using the pseudorange measurement.
In order to counter the pseudorange multipath in the terrestrial pseudolite system, the chip-rate is
increased to 10.23 million chips per second. The pseudorange positioning errors are shown in Figure 12,
and the maximum of horizontal positioning errors is 3.45 m. To achieve reliable AR, the search radius
of the kinematic ME-MAFA is set to 4 m.
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The kinematic ME-MAFA algorithm uses a variable number of epochs for a multi-epoch AR until
reliable AR is achieved. During a round trip, the integer ambiguities of all test groups are estimated
correctly, and the actual success rate is 100%. The numbers of epochs needed to meet the threshold
value of the fail rate are shown in Figure 13. The maximum and the average of the number of epochs
needed for AR are 33 and 19 (or 6.6 and 3.8 seconds of carrier phase observation), respectively. Due to
the poor accuracy of the priori position, the number of search grids in the 4 m radius circle is 5449.
After the search of the first epoch, the maximum and the average of the number of the Voronoi cells are
decreased to 3710 and 3419. Therefore, the computation time of the kinematic ME-MAFA using the
Doppler-based velocity information is shortened by about 37.2% on average. The average computation
time in these searches is 26.1 seconds (MATLAB Windows environment on a 2.6 GHz Intel CPU).
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Figure 13. Epochs needed for reliable AR (ambiguity resolutions) during the round trip.

To investigate the AR performance of the proposed algorithm with cycle slips, artificial cycle slips
are inserted into the raw phase measurements. Table 7 summarizes the information about the data sets
and the corresponding AR performances. The integer ambiguities are fixed correctly for all data sets
regardless of epoch, pseudolite, and size of the cycle slip.

Table 7. AR performance with artificial cycle slips.

Epoch Pseudolite Cycle Slip Correct AR (Yes/No)

8 PL1 1 Yes
46 PL3 −2 Yes
91 PL6 3 Yes

125 PL2 −1 Yes
167 PL5 2 Yes
204 PL4 −3 Yes

In order to further judge the correctness of the fixed integer ambiguities, the estimated trajectory
of the toy train is plotted in Figure 14. The trajectory is quite consistent during the circumnavigation
visually. For precision and accuracy examination, the "stop-and-go" mode is employed in the following
test, and the receiver occupied seven test points (TPs) for about 18~28 s. True coordinates of seven TPs
are determined by the total station.
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Figure 14. The estimated trajectory of the toy train.

The positioning errors corresponding to seven TPs are shown in Figure 15. The positioning
accuracy statistics of the mean, root mean square (RMS), and standard deviation (STD) values are
given in Table 8. The STDs are smaller than 0.15 cm, and the RMSs range from 0.343~1.487 cm for all
TPs. The maximum of the positioning errors is 1.61 cm. The positioning biases are most likely caused
by the multipath error and the antenna phase center offsets.
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Figure 15. Positioning errors corresponding to seven TPs (test points).

Table 8. Statistics of position results of seven TPs.

TP1 TP2 TP3 TP4 TP5 TP6 TP7

MEAN (cm) 0.532 0.549 1.485 0.973 0.334 0.974 0.717
STD (cm) 0.099 0.147 0.091 0.081 0.0761 0.117 0.136
RMS (cm) 0. 541 0.568 1.487 0.976 0.343 0.981 0.729

The accuracy of predicted ‘float solution’ deduced from the Doppler-based velocity depends on the
extrapolation time. The longer extrapolation time results in increasing the accumulated errors due to
user dynamics. The extrapolation time is equal to the sample interval of the carrier phase measurement.
Thus, using different sample intervals of the carrier phase measurement to investigate the influence of
the Doppler-based velocity on the AR performance of the proposed kinematic ME-MAFA method.
The statistical success rates as function of the sample interval are shown in Figure 16. With the sample
interval increases, the success rate decreases clearly as expected. Because of the low dynamics of the
toy train moving in an indoor environment, there is no loss of the success rate with 3 s sample interval.
However, for a moving car in road testing, 4 Hz sample rate is needed when the Doppler-based velocity
is used to aid AR [29].
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6. Conclusions and Future Work

In precise single-point positioning of the pseudolite system, the carrier phase observations may
suffer from cycle slips due to the dense multipath or the low-elevation pseudolite. A robust and
instantaneous algorithm, the kinematic ME-MAFA, for OTF AR is proposed. With the proposed
approach, carrier phase measurements and Doppler measurements are used for multi-epoch ambiguity
determination. The kinematic ME-MAFA improves the model strength, compared with conventional
single-epoch MAFA, increasing the success rate of ambiguity estimation effectively.

The efficiency and the performance of the proposed method are validated by numerical simulations
and a semi-indoor experiment. The candidates are decreased by 25.15% and 37.2% on average in
the simulations and in the real-world experiment respectively, making use of Doppler-based velocity
information for predicting the ‘float position’ of the next epoch. Both simulated data and real data
with artificial cycle slips are processed, and results indicate the proposed method is resistant to the
cycle slips, similar to conventional AFM and MAFA.

During the round trip of the kinematic experiment, the integer ambiguities of all test groups are
estimated correctly, and the actual success rate is 100%. The positioning accuracy is achieved better
than 1.7 centimeters by our pseudilite system.

The simulation results show that the success rate of kinematic ME-MAFA is dominated by the
measurement quality and geometry change. With the 5 Hz sampling rate of carrier phase measurement,
3.8 seconds on average of data are required for reliably ambiguities fixing in the experiment environment,
with the threshold value of fail rate set to 5 × 10-9. The average computation time for searching the
correctly fix solution is 26.1 seconds.

The computation time of using kinematic ME-MAFA to determine integer ambiguities is relatively
long (dozens of seconds) because of the large-size search grids due to the poor accuracy of priori
position. In the future work, tailored genetic algorithm, improved particle swarm optimization
algorithm, or segmented simulated annealing algorithm can be put forward to reduce the computation
load, referring to previous research for improving the single-epoch AFM or MAFA.
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