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Abstract: The paper presents a novel depth-estimation method for light-field (LF) images based
on innovative multi-stereo matching and machine-learning techniques. In the first stage, a novel
block-based stereo matching algorithm is employed to compute the initial estimation. The proposed
algorithm is specifically designed to operate on any pair of sub-aperture images (SAIs) in the LF
image and to compute the pair’s corresponding disparity map. For the central SAI, a disparity
fusion technique is proposed to compute the initial disparity map based on all available pairwise
disparities. In the second stage, a novel pixel-wise deep-learning (DL)-based method for residual
error prediction is employed to further refine the disparity estimation. A novel neural network
architecture is proposed based on a new structure of layers. The proposed DL-based method is
employed to predict the residual error of the initial estimation and to refine the final disparity
map. The experimental results demonstrate the superiority of the proposed framework and reveal
that the proposed method achieves an average improvement of 15.65% in root mean squared error
(RMSE), 43.62% in mean absolute error (MAE), and 5.03% in structural similarity index (SSIM) over
machine-learning-based state-of-the-art methods.
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1. Introduction

Light-field (LF) cameras were recently introduced in the image-processing and computer-vision
domains in order to resolve the limitations of the conventional camera model. Conventional cameras,
which capture the red, green and blue (RGB) primary colours, were designed to capture the color and
the accumulated light intensity of the incoming light rays from all directions incident to the camera
plane at each pixel position. In contrast to this model, LF cameras were designed to capture the
intensity, color, and directional information of each light ray at each pixel position, yielding a 4D LF
image for each acquisition.

LF cameras, also known as plenoptic cameras, are implemented by placing an array of microlenses
in front of the camera sensor. They serve as an alternative to the conventional paradigm to acquire 4D
LF data, which is to arrange conventional RGB cameras on a rectangular grid. Conventional camera
systems are difficult to implement and handle, and the inherently large baselines between cameras
yield substantial difficulties when handling occlusions in many applications.

The advantages brought by LF cameras were recently demonstrated in several image-processing
applications such as depth estimation [1–5], refocusing [6], calibration [7,8], editing [9], matting [10],
face analysis [11], and 3D point cloud enhancement [12], to name a few.

The problem of depth estimation from stereo images was widely investigated during several
decades. Recently, LF images have received more attention due to their capability to provide both
light ray intensity and directional information about the scene. Stereo matching was limited to
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the correspondence cue, whereas a LF image can also provide defocus and shading cues [13,14].
However, several issues must be addressed to achieve optimal depth estimation from LF images.
The depth-estimation problem for LFs is equivalent to estimating depth in multi-camera systems.
Since a LF image can be represented as a camera array of sub-aperture images (SAIs) with narrow
baselines, finding matching correspondences between the SAIs remains a very challenging task as
it is difficult to achieve robust disparity estimates with high precision for such small displacements.
However, one can refine the final depth information by fusing the passive depth maps estimated
from light-field data with the active depth maps captured by depth sensors. Works such as [15–18]
would benefit from an accurate depth model as the accuracy of their reconstructed 3D models is of
utmost importance. Since the quality of depth estimation influences the overall quality of subsequent
processing steps, the goal of this paper is to provide an efficient depth-estimation model to improve
the 3D reconstruction in applications such as underwater 3D reconstruction [19], 3D printing [20],
or building renovation [21].

Even though LFs provide more information about the scene compared to a regular RGB image,
depth estimation based on LF images still remains a challenging task. Most recent state-of-the-art
algorithms, such as [22,23], propose to employ Machine-Learning (ML) techniques to improve over
traditional computer-vision-based algorithms. The multi-stereo matching techniques tend to provide a
more robust performance; however, their depth-estimation results are affected by different types of
distributions of the depth-estimation errors: in the flat areas due to depth uncertainties, and around
the edges due to disocclusions. The goal of this paper is to propose a depth-estimation algorithm
for LF images which combine these two techniques by allying the robustness of the computer-vision
algorithms and the efficiency of deep learning-based (DL) algorithms. In this paper, a multi-stereo
matching algorithm is first employed on a corresponding set of different pairs of SAIs in the LF image
to generate the initial disparity map of the central view. The initial estimation is then refined by
employing a DL-based algorithm for residual error prediction.

In our prior work [24,25] we tackled the problem of depth estimation using both multi-stereo
matching techniques and ML techniques. In [24], we proposed a depth-estimation method based on
the multi-scale multi-window approach which employs belief propagation to regularize the results.
In [25], we proposed a DL-based depth-estimation method, where a neural network is employed to
compute the disparity of each pixel by processing the 3D block patches extracted from epipolar plane
images (EPIs). In this paper, we first extend our algorithm from [24] and employ it to compute an initial
depth estimation, and then we follow a residual error prediction approach where a novel DL-based
algorithm is employed to refine the initial estimation. The proposed approach was inspired by our
previous work for DL-based lossless image compression [26,27], where a DL-based dual prediction
method is employed to compute an improved prediction.

The contributions of this paper are as follows: (a) a novel comprehensive framework for depth
estimation which combines stereo matching and ML techniques; (b) an improved stereo matching
algorithm designed to operate on any SAI pair; (c) a novel neural network architecture for depth residual
error prediction based on a new and efficient block structure; and (d) an efficient depth-estimation
method with outstanding performances when compared with state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 provides an overview of the existing
depth-estimation techniques for LF images. Section 3 describes the proposed method based on stereo
matching and ML techniques. Section 4 presents the experimental validation. Section 5 draws the
final conclusions.

2. Related Work

The existing techniques in the field of depth estimation for LF cameras can be divided into two
categories: (i) conventional computer-vision methods; and (ii) DL-based methods.
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2.1. Conventional Computer-Vision Methods

The rise of LF cameras allows the use of different cues, as it is not needed to shoot multiple images
separately to capture the scene with various focus or view point anymore. Thus, Tao et al. [28] devised
an algorithm to compute a dense depth estimation by combining multiple cues, namely defocus
and correspondence. This work was extended in [29] by refining the shape using the shading cue,
and by removing the specularity component of a scene, allowing for better depth estimation in
specular areas. Wang et al. [3] developed a depth-estimation algorithm focusing on the main issues
of [28] by detecting and improving the depth of occluded regions. Back to the correspondence cue,
Jeon et al. [4] estimated the depth by shifting SAIs using the phase shift theorem, the gradient costs and
a multi-label optimization, while Buades et al. [30] combine multiple pairwise disparity estimations
using a multi-scale and multi-window stereo matching algorithm which rejects the unreliable pixels.
Navarro and Buades [31] proposed to improve the disparity estimations of [30] by employing an
optical-flow algorithm to interpolate the disparity. Williem et al. [32] proposed two new data costs
to improve the depth estimation in noisy and occluded areas, where the first one is based on the
angular patch approach and the second on the refocus image approach. Huang [33] developed a stereo
matching algorithm by employing an empirical Bayesian framework based on Markov Random Fields
to infer the depth maps of any kind of scenes—dense, sparse, denoised, RGB or grayscale.

A different approach is based on the estimation of the slopes of an epipolar plane image (EPI)
to compute the depth. Wanner and Goldluecke [34] used structure tensor and a convex optimization
method to find the dominant slopes of the EPI and convert them to depth. Zhang et al. [35] used
a spinning parallelogram operator to determine the disparity, which is given by the orientation of
the parallelogram when the distance between the two regions enclosed in its two sides in an EPI
is maximal.

More recently, Mishiba’s work [36] focused on devising a fast stereo matching-based depth-estimation
algorithm for LF cameras. The main novelty lies in an offline cost volume interpolation, and in a
weighted median filter which replaced the usual graph cut algorithm as global optimization solver,
thus, increasing the speed of the overall algorithm.

2.2. Deep-Learning-Based Methods

An approach based on ML techniques addresses the depth-estimation problem from stereo pairs
by employing learning-based methods for stereo matching. In [37], a supervised learning approach is
proposed for predicting the correctness of stereo matches based on a random forest and a set of features
about each pixel. In [38], the authors propose a framework which trains a model for matching cost
computation in an unsupervised manner. In [39], the authors propose a deep-learning-based method
that predicts the confidence level to improve the accuracy of an estimated depth map in stereo matching.
This method was further improved in [40], where the confidence is estimated through a unified deep
network, built based on the multi-scale patch processing approach that combines the confidence
features extracted both from the matching probability volume and its corresponding disparity.

Recently, several solutions based on ML techniques were developed to address the
depth-estimation problem from 4D LF images by employing various DL-based methods. Feng et al. [22]
proposed a two-stream Convolutional Neural Network (CNN) by training the network model using
the pairs of block-size input patches extracted from the horizontal and vertical EPIs. Shin et al. [23]
proposed a four-stream fully convolutional neural network (FCNN) where each stream was designed
to process a block-size input patch extracted from a specific EPI (horizontal, vertical, main diagonal,
or anti-diagonal). In our prior work [25], a neural network design is proposed to estimate each pixel
depth by training network models using the input patches extracted from each of the following EPIs:
horizontal, vertical, main diagonal, and anti-diagonal, and by further processing the four estimated
depth maps to compute the final depth map. All these methods employ a pixel-wise strategy where the
depth information of each pixel in the central view is estimated by inferring the patches from different
EPIs containing the local neighborhood of the current pixel. Ma et al. [41] performed multi-scale
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convolutions to extract multi-scale features from the SAIs and obtain good estimations of the disparity
in texture-less and reflective areas based on the estimations at object boundaries.

3. Proposed Method

The baseline algorithm used for stereo matching was pioneered by Buades and Facciolo [30] and
then reused by Navarro and Buades [31]. In our previous work [24], we have built on this algorithm
by adapting it to operate on arrays of LF cameras. In this paper, we propose to first enhance our
previous design in [24] to increase its robustness, and then employ a DL-based algorithm for residual
error prediction to refine the final disparity estimation. Figure 1 depicts the scheme of the proposed
method. The proposed multi-stereo matching (MSM) algorithm is first employed to compute the initial
estimation, denoted by Dmsm. The proposed CNN-based algorithm for residual error prediction is
employed to compute additional details and to obtain the refined estimation, denoted by Dcnn. Finally,
a post-processing algorithm is employed to compute the final estimation, denoted by Dfinal. In this
paper, we focus on estimating the disparity information as it is well known that the depth information
can be easily computed based on disparity, camera baseline, and focal length.

Figure 1. The scheme of the proposed depth-estimation method based on stereo matching and CNNs.

This section is organized as follows. Section 3.1 introduces the proposed MSM algorithm.
Section 3.2 describes the proposed DL-based refinement algorithm.

3.1. Multi-Stereo Matching Method

The starting point of this work is represented by our algorithm from [24], where the proposed
disparity estimation method based on a multi-scale multi-window approach was improved by
employing the belief propagation [42] as the global energy minimization function. The method
is capable of achieving sub-pixel accuracy, which is of critical importance when dealing with LF images
that have very small disparity values. Furthermore, the method enforces the estimations to be reliable
as unreliable pixels of each stereo pair are rejected, which leads to gaps that can be filled in based on
estimations from other pairs. This approach is very well suited when dealing with LF images where
multiple disparity estimations are to be fused together. Indeed, the accuracy of each disparity map is
more important than its completeness as the missing pixels are likely to have an estimation in other
stereo pairs.

In this paper, we propose to extend our previous work from [24] to improve the disparity
estimation in flat and untextured areas. The following concepts are proposed: (i) remove the constraint
that the two SAIs in the stereo pair must be aligned horizontally or vertically, and extend the set of
stereo pairs to contain all available SAI pairs; and (ii) modify the disparity fusion algorithm to employ
a weighted mean estimation based on the pixel confidence, instead of a median filter aggregation,
and depending on the camera baseline.

3.1.1. Neighborhood Window Selection

To compute the disparity map corresponding to each stereo pair, eight different costs are computed
for each pixel and disparity value using different neighborhood windows. These windows, which have
different orientations, are depicted in Figure 2. By employing these windows instead of a regular
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squared window, the proposed multi-stereo method provides improved results in the areas close to
objects boundaries and in the slanted regions where the selected window can align with the minimal
disparity changes [31]. However, highly untextured areas remain difficult. To overcome this limitation,
we introduce a threshold, denoted by τ, for the variance within the neighborhood inside the window.
If the computed value is below τ, the size of the window is increased. This enforces the method
to assure that enough information of the scene is available for finding overlapping patches in both
stereo image, for each pixel p and for each of the eight windows. More exactly, four different window
sizes are used in our implementation: 9× 9, 17× 17, 65× 65, and 129× 129. Figure 3 illustrates the
different windows selected for each pixel of the five LF images commonly used in the literature to
compare the state-of-the-art methods for depth estimation, extracted from the dataset introduced
in [43], where white marks the smallest window size and black marks the largest window size.
As expected, uniformed areas such as the wall in the kitchen LF image use a big window size, while the
very textured areas like the floor in the town LF image use a small window size. The same observation
holds for the object boundaries, where very recognizable edges use the smallest windows.

Figure 2. Windows with various orientations used in the stereo matching algorithm.

(a) (b) (c)

(d) (e)

Figure 3. Illustration of the window size selection per pixel for five LF images from [43]: (a) town,
(b) pillows, (c) medieval2, (d) kitchen and (e) dots . The smallest windows are marked in white and the
largest ones in black.

The use of various window sizes improves the disparity estimation in large uniform areas.
The threshold plays an important role: if it is too small, a 9× 9 window will be assigned to all pixels
which does not capture enough information about the scene in untextured areas; if it is too large,
a 129× 129 window will be used, which reduces the sharpness of object boundaries. Our threshold was
empirically chosen and fixed for all images, to prove the robustness of the approach. Our experiments
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show that for the tested dataset, the PSNR increases with up to 0.35 dB and the number of reliable
pixels increases with up to 3%.

In the case of stratified scenes such as dots, with a lot of noise, the variance is high everywhere in
the image, thus limiting the impact of this threshold. Hence, here we propose to employ a DL-based
algorithm to refine the initial estimation map by first detecting the cases where the proposed stereo
matching method does not perform very well and then by computing the corresponding residual error
to adjust the estimated disparity.

3.1.2. Fusion Algorithm

LF cameras were invented as a different method to capture information of a given scene with
the intention to improve its 3D reconstruction. Intuitively, it is clear that the more information
of the incoming light should allow for better 3D reconstruction. In [31], only the horizontal and
vertical SAIs, with respect to the SAI for which the disparity maps are computed for, are used.
In contrast, the proposed method uses all available SAIs when necessary. However, to achieve such
goal, we propose to extend our method to take into account the epipolar lines of each stereo pair,
because the pairs that are not extracted from the same row or column are neither horizontally nor
vertically registered. The epipolar lines are computed using the intrinsics and extrinsics matrices of
each SAI. By adding the epipolar lines, the algorithm also gains the advantage of getting closer to
reality, where two images captured by two different cameras are not likely to be registered.

The LF images in the 4D benchmark dataset from [43] consists of an array of 9× 9 SAIs. Therefore,
here we first apply the proposed stereo matching algorithm on all the available 92 − 1 = 80 stereo
pairs, where each pair contains the selected reference SAI (i.e., the corresponding view of the estimated
disparity map) and one of the remaining SAIs, selected in turn. The algorithm computes 80 different
disparity estimations for the reference SAI, which in our case is selected as the central view. The final
disparity estimation is obtained by fusing the 80 disparity maps into one disparity map, Dmsm.
In [24,31], the final disparity value for each pixel was computed as the median of the estimations.
In this paper, we propose to carefully analyze the set of obtained estimations to find the best possible
method to fuse them and compute the disparity maps.

Figure 4 depicts the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE)
computed for each stereo pair between the estimated disparity map and the ground truth. Each image
collects the RMSE (first row) and MAE (second row) on the positions of the stereo pair marked in
Figure 5. One easily notes that the error decreases when the baseline between the stereo images
increases. Moreover, the observations depicted in Figure 4 are consistent for all LF images in the
dataset from [43], and not exclusively for this set of LF images. For the kitchen and dots LF images
the visualizations look slightly different. Most probably, in the former, this is due to the reflective
surfaces contained in the scene, and in the latter because of the high amount of noise. Regardless,
the relationship between the baseline and estimation error remains the same. Therefore, we decided to
give more importance to the disparity maps resulting from the SAIs with a bigger baseline. More exactly,
we only use the disparities obtained from the inner SAIs if the estimations from the outer SAIs are
not reliable and, thus, rejected, as explained in Section 3.1. These baselines are depicted in Figure 5.
Please note that the figure does not express the actual distances between the SAIs, but merely provides
a reference of the baseline distances as interpreted by the proposed algorithm.

In addition, the cost associated with each pixel, denoted by cost(i, j), was computed when
estimating the disparity maps as the zero-mean sum of squared differences (ZSSD) between the
patches in the two images, as expressed by Equation (2). Since this cost is inversely proportional to the
similarity of the patches in the stereo pair, it is used here to compute the confidence level measurement
of the found match, denoted by con f (i, j), and computed as follows:

con f (i, j) = 1− cost(i, j), (1)
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where cost(i, j) is the cost associated with pixel p = (i, j) int the first image for the chosen window W
and disparity d leading the corresponding pixel q in the second image:

C(p, q) =
1
|W| ∑

t∈W

∣∣∣(u(p + t)− uW(p)
)
−
(

v(q + t)− vW(q)
)∣∣∣2 . (2)

town pillows medieval2 kitchen dots

Figure 4. Visualization of the RMSE (1st row) and MAE (2nd row) of the disparity maps computed
between the central SAI and each of the remaining 80 SAIs in the LF image, each pixel representing the
error for one stereo pair.

4 4 4 4 4 4 4 4 4
4 3 3 3 3 3 3 3 4
4 3 2 2 2 2 2 3 4
4 3 2 1 1 1 2 3 4
4 3 2 1 x 1 2 3 4
4 3 2 1 1 1 2 3 4
4 3 2 2 2 2 2 3 4
4 3 3 3 3 3 3 3 4
4 4 4 4 4 4 4 4 4

Figure 5. Representation of the baselines between SAIs relative to the central view (x), giving the order
in which the final disparity map is to be filled in, starting from the largest ones.

The output estimated disparity map of the proposed SM-based method, Dmsm, is computed as the
weighted mean of multiple estimated disparity maps D using the confidence metric as follows:

Dmsm(i, j) =
1
N ∑

k∈K
con fk(i, j)Dk(i, j), (3)

where
N = ∑

k∈K
con fk(i, j), (4)

and K is the set of estimated disparity maps to consider for a given pixel, based on their baselines
and reliabilities.

The proposed fusion method, shown in Algorithm 1, combines k estimated disparity maps Dk
and their corresponding masks mk based on those two observations. For each pixel, the weighted
mean of the reliable disparity maps is first computed using the largest available baseline, which has the
value 4 in the case of an LF image represented as an array of 9× 9 SAIs, for which the disparity map at
the central location is computed. If not all pixels are filled in, due to the lack of a reliable estimation,
the next available baseline, 3, is then used. This process is repeated until all pixels are filled in or no
more disparity estimations are present. In general, due to the large amount of information available in
an LF image, all the pixels are filled in. Otherwise, a simple inpainting technique is employed for the
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remaining pixels. Our tests show that the only remaining image holes are isolated pixel and not large
patches and the values can easily be estimated from the surrounding pixels. Therefore, the remaining
pixels are filled in based on their neighborhood’s disparity estimations, as the mean of the reliable
values among its eight neighbors.

Algorithm 1 Disparity maps fusion algorithm
Input: k disparity maps Dk, k reliability masks mk, and k baselines bk
Output: disparity map Dmsm

1: baseline = 4
2: while baseline > 0 and not all pixels filled in do
3: for all pixels (i, j) in Dmsm not yet filled in do
4: create empty vector K of estimations to consider
5: for all k do
6: if bk == baseline and mk(i, j) == 1 then
7: add Dk to vector K
8: end if
9: end for

10: Dmsm(i, j) = weighted_mean(K, i, j)
11: end for
12: baseline = baseline − 1
13: end while

3.2. Deep-Learning-Based Refinement

The estimated disparity map computed by the proposed MSM-based method is refined by
employing a novel DL-based refinement method. The proposed pixel-wise DL-based algorithm is
employed to process the local neighborhood information around the current pixel position and to
estimate the corresponding residual error of the initial MSM-based estimation. Hence, the initial
estimation is first adjusted with the CNN-based residual error prediction, and then further refined by
employing a post-processing algorithm to compute the final estimation map.

The proposed training strategy is presented in Section 3.2.1, the proposed network architecture is
described in Section 3.2.2, the loss function formulation is introduced in Section 3.2.3, while the final
post-processing algorithm is outlined in Section 3.2.4.

3.2.1. Training Strategy

The goal of the proposed DL-based algorithm is to process a small patch extracted from Dmsm,
and to evaluate the performance of the proposed MSM-based method by predicting its residual error.
More exactly, the proposed DL-based algorithm uses the local context of the current pixel to detect
the cases where the initially applied MSM-based method fails to provide a good disparity estimation,
and then predicts the corresponding adjustment needed to correct the current estimation. The strategy
was successfully applied in our previous work on lossless image compression [26,27]; however, in this
paper, several design changes are required to refine the initial estimation.
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The input patch corresponding to the current pixel position, (i, j), is denoted by Xi,j and contains
the neighborhood of the current pixel, extracted from Dmsm, by selecting all the rows and columns
between the current position and a maximum distance of b pixels, as follows:

Xi,j =



dmsm(i− b, j− b) . . . dmsm(i− b, j) . . . dmsm(i− b, j + b)
...

...
...

dmsm(i, j− b) . . . dmsm(i, j) . . . dmsm(i, j + b)
...

...
...

dmsm(i + b, j− b) . . . dmsm(i + b, j) . . . dmsm(i + b, j + b)


. (5)

Here we set b = 15 and generate input patches of size (2b+ 1)× (2b+ 1) = 31× 31, as our experiments
show that this patch size offers a good performance vs. complexity trade-off.

Let us denote the ground truth map as Dgt. For the current pixel position, the residual error of the
proposed SM-based method, εi,j, is computed as follows:

εi,j = dgt(i, j)− dmsm(i, j). (6)

A natural approach would require the target prediction of the proposed network, denoted by yi,j, to be
set as the residual error εi,j. However, in the distribution of the residual error, one notes that for most
of the samples, the target prediction is set with a value within a small range centered at 0. In such case,
the neural network tends to ignore the large magnitude errors as not enough samples are available
in the corresponding context so that the network can adjust its weights. Therefore, we propose to
threshold the residual error using T = 0.25 and set the target prediction as yi,j = −T for large negative
errors and yi,j = T for large positive errors. More exactly, here, we choose to focus on predicting the
large amount of small residual errors found in large image areas, since the high magnitude errors are
sparse and their correction will have a small visual impact. Furthermore, we propose to quantize the
residual error, εi,j, and set the target prediction, yi,j, as follows:

yi,j =


q
⌈

εi,j
q

⌉
, if εi,j < 0,

0, if εi,j = 0,

q
⌊

εi,j
q

⌋
, if εi,j > 0,

(7)

where q = T
Ncls

is the quantization step and Ncls = 100 is the number of classes generated for the
corresponding range. More exactly, we propose to assign each input patch to one of the 2Ncls + 1 = 201
available classes, where all the samples in a class have a single quantized residual error assigned.
Based on this strategy, more samples are allocated to each class to create reliable contexts. One notes
that the quantized residual error is rounded towards zero, so that the adjustment will introduce the
smallest distortion.

In conclusion, the proposed neural network architecture (presented below) is trained based on the
input patches Xi,j, extracted using Equation (5), and the target prediction yi,j, set using Equation (7),
and computes the residual error, denoted by ε̃(i, j). Moreover, our tests have shown that a small
improvement is obtained by quantizing ε̃(i, j). Hence, ε̃(i, j) is further processed using Equation (7) to
obtain ε̄(i, j).

Finally, the adjusted CNN map, Dcnn, is computed as follows:

dcnn(i, j) = dmsm(i, j) + ε̄(i, j). (8)
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3.2.2. Proposed Neural Network Design

The proposed architecture is called Depth Residual Error estimation Convolutional Neural
Network (DRE-CNN). Figure 6 depicts the DRE-CNN architecture design built based on two types of
layer structure, the Convolution Block (CB) and the 2-branch Convolutional Block (2bCB), depicted in
Figure 7a,b, respectively.

Figure 6. The proposed Depth Residual Error estimation Convolutional Neural Network (DRE-CNN)
architecture design.

(a) (b)
Figure 7. (a) Convolutional Block (CB) structure. (b) 2-branch Convolutional Block (2bCB) structure.

The CB block contains the following layer sequence: (i) a 2D convolution (2D Conv) layer with
a 3× 3 kernel; (ii) a batch normalization (BN) layer [44]; and (iii) a rectified linear unit activation
function layer (ReLU). Please note that the parameters of the 2D Conv layers are set using the following
notation “[N, k, s]”, where N denotes the number of channels, k denotes the k× k kernel size, and s
denotes the stride. The default stride is s = (1, 1) and it is omitted in the DRE-CNN design, while the
stride s = (2, 2) is denoted by s = /2.

The 2bCB block was inspired by the ResLB block proposed in our previous work [27]. 2bCB
follows a two-branch strategy where “branch 1” is processing the input patch using one convolutional
layer, while “branch 2” is processing the input patch using a sequence of two convolutional layers.
Compared to the ResLB block [27], the 2bCB block proposes the following modifications: (1) introduces
two Dropout layers [45] with a probability of 0.2 for setting the input samples to zero, one placed
after the ReLU activation layer of the first 2D Conv layer in “branch 2”, and one placed at the end
of 2bCB layer structure; and (2) replaces the addition layer with a concatenation (Concat) layer,
resulting in halving the number of channels in 2D Conv layers before concatenation and reducing the
network complexity.

The proposed DRE-CNN architecture contains one CB block, seven 2bCB blocks, and one dense
layer, also known as fully connected layer. The CB block is equipped with N channels to process
the input patch of size 31× 31, and extracts the initial features. The following two 2bCB blocks are
employed to further process the patches, while the remaining five 2bCB blocks are employed to reduce
the patch resolution from 31× 31 to 1× 1 by employing a stride s = /2. Please note that the DRE-CNN
design follows the general rule of doubling the number of channels whenever the path resolution is
halved. The last 2bCB block contains 2D Conv layers with kernels of size 2× 2. The last layer in the
DRE-CNN architecture is a dense layer which contains one output as the network to estimate the final
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residual error, ε̃(i, j). In this paper, we set N = 16 and train models containing around 2.3 million (M)
parameters. One notes that DRE-CNN takes advantage of both BN and Dropout concepts proposed in
the literature to avoid overfitting.

3.2.3. Loss Function Formulation

The loss function is computed based on the Mean Squared Error (MSE), and it employs `2

regularization to avoid overfitting. Let us denote Θ as the set of all DRE-CNN model parameters,
where Wi ∈ Θ are the trained weights; Xi is the ith input patch of size 31× 31; yi the corresponding
target prediction set using Equation (7). Let F(·) be the function which processes Xi using Θ to compute
the predicted residual error as ε̃i = F(Xi, Θ). The loss function is formulated as follows:

L(Θ) = LMSE + λLL2, (9)

where:

(a) LMSE is the loss term computed as the MSE between yi and ε̃i as follows:

LMSE =
1
m

m

∑
i=1

(yi − ε̃i)
2, (10)

where m is the number of samples in the batch.
(b) LL2 is the `2 regularization term computed as follows:

LL2 = ∑
Wi∈Θ

‖Wi‖2. (11)

In this paper, the DRE-CNN models are trained using λ = 10−2.

3.2.4. Final Post-Processing

The output of the proposed DL-based algorithm, Dcnn, is then post-processed using the algorithm
proposed in our previous work [25], where the estimated disparity is first filtered and then denoised
based on a conventional algorithm. Hence, Dcnn is first filtered twice using a mean filter with a 3× 3
window, where the disparity values outside the [d̄− τ, d̄ + τ] range are removed from the window,
where τ = 1 and d̄ is the median value inside the window.

Finally, the disparity map is further processed to obtain the final disparity map, D f inal , using the
denoising algorithm proposed in [22] and available online. The algorithm uses a directional NonLocal
Means (NLM) filter, where the neighborhood regularization term is defined based on the idea that the
pixels with similar colors are encouraged to have similar depth values [46]. Therefore, the refinement
of the disparity map is guided by the color information found in the corresponding central view (SAI)
of the LF image. In the literature, various studies have proven that NLM can be efficiently used for
image restoration and denoising [47], and depth map refinement [46,48].

4. Experimental Evaluation

4.1. Experimental Setup

The experimental and visual results are shown in comparison with the state-of-the-art
depth-estimation methods proposed by: (a) Wang et al. [3]; (b) Williem et al. [32]; (c) Feng et al. [22];
and (d) Schiopu et al. [25]. The results for [3,32] are obtained by running the source codes, which were
kindly provided by the authors of these methods. The numerical and visual results for [22] were
extracted from the paper. The performance of these state-of-the-art methods is compared with
the performance of the Proposed Multi-Stereo Matching method, denoted simply Proposed Stereo
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and presented in Section 3.1, and the proposed method depicted in Figure 1, denoted simply
Proposed Method.

The experimental evaluation is performed on synthetic LF images [43]. The dataset contains 24 LF
images, each represented as a grid of 9× 9 SAIs, belonging to the sub-categories additional, stratified,
and training, with available ground truth. Each SAI was captured using a resolution of 512× 512.

The results of Proposed Method are obtained by first training a DRE-CNN model based on a
set of LF images, called Training Set, and by inferring the model for the remaining LF images, called
Test Set. In [22], the following training configuration is proposed: Training Set of 19 LF images;
Test Set of following LF images: town, pillows, medieval2, kitchen, dots. Please note that from each LF
image 512× 512 = 262,444 samples are extracted, e.g., for the configuration of [22] a total number of
19× 262,144 = 4,980,736 samples are extracted for training. In [25], other training configurations were
proposed by randomly collecting a Training set of 20 LF images and a Test Set of the four remaining
LF images, i.e., 5,242,880 samples are extracted for training. The Training Set is further divided into
15 LF images for model training and 4 LF images for model validation for the configuration from [22],
and respectively 5 LF images in the configuration of [25]. Here, configurations C2 and C3 are selected to
prove the robustness of Proposed Method. Therefore, three DRE-CNN models were trained, i.e., one for
each training configuration. The Adam optimization algorithm [49] is applied because it is known
as an improved procedure for adjusting the learning rate. Each model is trained during 40 epochs,
using the learning rate of 2× 10−4 and a batch size of 512 samples.

The performance is measured based on the MAE and RMSE metrics (where small values mark
better results), and the structural similarity index measure (SSIM) [50] (where large values mark better
results) computed between the ground truth and the estimated disparity map. Moreover, we introduce
the Relative Gain (RG) (%) metric computed over the average results of a method M relative
to Proposed Method as follows: RGRMSE = RMSEM

RMSEProposed Method
− 1, RGMAE = MAEM

MAEProposed Method
− 1,

and RGSSIM = 1− SSIMM
SSIMProposed Method

.

4.2. Experimental Results

Table 1 shows the depth-estimation results obtained for the training configuration of [22] for:
the two traditional methods, [3,32]; the two DL-based methods, [22,25]; and the two proposed methods,
Proposed Stereo and Proposed Method, where the bold values mark the best result. Please note that
the conventional methods have different pre-processing and post-processing steps, including cost
volume computation to produce the best possible results, therefore, only the final result is shown
here for convenience. The average results show that the Proposed Method provides much better
results compared to all other methods. One can note that based on the RMSE metric, the Proposed
Method achieves an improved performance with 15.65% compare with [25] and 14.97% compared with
Proposed Stereo. Based on the MAE metric, the Proposed Method achieves an improved performance
with 43.62% compare with [25], and 22.69% compared with Proposed Stereo, which proves the
efficiency of the proposed DL-based algorithm for residual error prediction. Moreover, based on the
SSIM index, the Proposed Method achieves an improved performance with 12.12% compared with the
state-of-the-art method based on conventional techniques [32], and an improved performance with
5.03% compared to the state-of-the-art method based on ML techniques [25].

Figure 8 shows the visual results for the four state-of-the-art methods [3,22,25,32] and the two
proposed methods.
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Figure 8. Visual results for the central view of 5 LF images in training configuration of [22], from left
to right: town, pillows, medieval2, kitchen, and dots. (1st row) RGB images [43]. (2nd row) Results for
Wang et al. [3]. (3rd row) Results for Williem et al. [32]. (4th row) Results for Feng et al. [22]. (5th row)
Results for Schiopu et al. [25]. (6th row) Results for our Stereo method. (7th row) Results for our
Proposed method. (8th row) Ground truth disparity [43].
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One notes that the Proposed Method systematically improves the quality of the disparity map
estimated by Proposed Stereo. E.g., in town (2nd column) the disparity around the church tower and
the top of the tower is improved and the flat areas are smoothed, in pillows (3rd column) the pillow
surface is smoothed, in medieval2 (4th column) the entire disparity map is much sharper, and in dots
(5th column) the background noise was removed completely. Moreover, one notes that the results of
the Proposed Method look visually much better than the results of other methods. Figure 8 show the
qualitative comparison of the five test LF images presented in Table 1. Due to the low resolution and
continuous disparity maps in contrast to discrete disparity maps in conventional methods, the results
of DL-based approaches look different than those of conventional methods, e.g., see the results of
Schiopu et al. [25].

Table 1. Qualitative comparison in RMSE, MAE, and SSIM between computed and ground truth
disparity maps for the training configuration of [22].

Method Metric
LF Image

Average RG
Town Pillows Medieval2 Kitchen Dots

Wang
et al. [3]

RMSE 0.3036 0.4239 0.3874 0.4518 0.2583 0.3650 215.19%
MAE 0.2546 0.3737 0.3040 0.3432 0.2300 0.3011 500.54%
SSIM 0.6897 0.7036 0.6448 0.5823 0.7307 0.6702 22.29%

Williem
et al. [32]

RMSE 0.0826 0.0698 0.0793 0.2818 0.2110 0.1449 25.13%
MAE 0.0410 0.0518 0.0341 0.2109 0.1170 0.0910 81.43%
SSIM 0.8049 0.8327 0.8401 0.6044 0.7075 0.7552 12.12%

Feng
et al. [22]

RMSE 0.1782 0.1403 0.1010 0.2673 0.2127 0.1799 55.34%
MAE 0.1047 0.0971 0.0474 0.1605 0.1282 0.1076 114.60%

Schiopu
et al. [25]

RMSE 0.1080 0.0717 0.0928 0.2593 0.1379 0.1339 15.65%
MAE 0.0551 0.0433 0.0540 0.1456 0.0621 0.0720 43.62%
SSIM 0.8175 0.9109 0.8649 0.7107 0.7913 0.8191 5.03%

Proposed
Stereo

RMSE 0.1053 0.0756 0.0938 0.2418 0.1493 0.1332 14.97%
MAE 0.0330 0.0309 0.0296 0.1238 0.0903 0.0615 22.69%
SSIM 0.8273 0.9040 0.8850 0.6745 0.7962 0.8174 5.22%

Proposed
Method

RMSE 0.0834 0.0560 0.0819 0.2345 0.1232 0.1158 anchor
MAE 0.0313 0.0302 0.0303 0.1199 0.0390 0.0501 anchor
SSIM 0.8681 0.9232 0.9076 0.7263 0.8869 0.8624 anchor

Tables 2 and 3 shows the depth-estimation results for the training configuration C2 and C3,
respectively, of [25], for the methods [3,25,32] and the two proposed methods, in MAE and SSIM.
One notes that Proposed Method achieves the best overall results. Moreover, the DL-based refinement
layer provides an improved performance with 9.77% in MAE and 6.60% in SSIM for configuration C2,
and with 15.53% in MAE and 9.77% in SSIM for configuration C3, compared with Proposed Stereo.

Figure 9 shows the visual results for the Proposed Method for the eight LF images of configurations
C2 and C3. One notes that the Proposed Method provides: (i) sharp edges, e.g., see pens, dino;
(ii) smooth areas, e.g., see dishes; and (iii) it is able to detect specific local features, e.g., see the pens in
pens, and the toys in dino.
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Table 2. Qualitative comparison in MAE and SSIM between computed and ground truth disparity
maps for training configuration C2 of [25].

Method Metric
LF Image

Average RG
Boxes Boardgames Tomb Dino

Wang
et al. [3]

MAE 0.3643 0.3438 0.1942 0.3412 0.3109 363.29%
SSIM 0.4748 0.6391 0.7212 0.5590 0.5985 26.70%

Williem
et al. [32]

MAE 0.1488 0.0296 0.0403 0.0512 0.0675 0.54%
SSIM 0.5995 0.8082 0.8086 0.7128 0.7323 10.32%

Schiopu
et al. [25]

MAE 0.1599 0.0423 0.0373 0.0946 0.0836 24.52%
SSIM 0.6245 0.8647 0.8984 0.7530 0.7852 4.00%

Proposed
Stereo

MAE 0.1390 0.0225 0.0771 0.0560 0.0737 9.77%
SSIM 0.5819 0.8614 0.8125 0.7950 0.7627 6.60%

Proposed
Method

RMSE 0.1346 0.0195 0.0693 0.0451 0.0671 anchor
SSIM 0.6529 0.9305 0.8455 0.8374 0.8166 anchor

Table 3. Qualitative comparison in MAE and SSIM between computed and ground truth disparity
maps for training configuration C3 of [25].

Method Metric
LF Image

Average RG
Pens Greek Dishes Museum

Wang
et al. [3]

MAE 0.2428 1.2229 1.1973 0.1967 0.7149 548.54%
SSIM 0.6107 0.4348 0.3544 0.7282 0.5320 32.46%

Williem
et al. [32]

MAE 0.0494 0.3568 0.0721 0.0552 0.1334 21.02%
SSIM 0.7811 0.5986 0.6345 0.8215 0.7089 10.00%

Schiopu
et al. [25]

MAE 0.0807 0.4104 0.1290 0.1202 0.1851 67.89%
SSIM 0.7715 0.6577 0.7727 0.7781 0.7450 5.42%

Proposed
Stereo

MAE 0.1127 0.2516 0.0632 0.0819 0.1273 15.53%
SSIM 0.6876 0.6438 0.7884 0.7230 0.7107 9.77%

Proposed
Method

RMSE 0.0933 0.2134 0.0571 0.0771 0.1102 anchor
SSIM 0.7769 0.7358 0.8417 0.7965 0.7877 anchor

C2, boxes C2, boardgames C2, tomb C2, dino

C3, pens C3, greek C3, dishes C3, museum

Figure 9. Disparity maps for the Proposed Method for configuration C2 and C3 of [25].
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4.3. Ablation Study

Several design variations were tested in an ablation study focused on finding the best neural
network design for residual error prediction. We analyze the impact of the following design
decisions and concepts taken into account when building the proposed DRE-CNN architecture design:
(1) employing the neural network as a classifier instead of a residual error predictor; (2) the efficiency of
the 2bCB block compared with the ResLB block [27]; (3) the importance of the quantization step in the
generation of the training data; (4) the influence of the input patch size on the method’s performance.

The first architecture variation studies the effect of employing the proposed network design as
a classifier. More exactly, the DRE-CNN design was slightly modified by changing the number of
output classes of the dense layer from 1 to 2Ncls + 1 = 201 and by adding a new SoftMax activation
function as the last layer in the network, see Figure 6. This change requires that 4.45% more parameters
(compared with DRE-CNN) are needed to train the weights of the extra 200 classes used in the last
dense layer. In such case, the network will be employed to classify the input patch into a class,
and the corresponding class index will select the quantized residual error computed by Equation (7).
The obtained method is called Classification design.

The second architecture variation studies the efficiency of the 2bCB block compared with the
ResLB block [27]. More exactly, the DRE-CNN design was modified by replacing all 2bCB blocks with
corresponding ResLB blocks. Please note that in contrast to the concatenation layer in the 2bCB design,
the addition layer in the ResLB design increases the number of parameters. This change introduced
173.69% more trainable parameters compared with the proposed DRE-CNN architecture. The obtained
method is called ResLB-based design.

The third experiment studies the importance of pre-processing the training samples. More exactly,
we propose to employ a smaller quantization step q = T

Ncls
in Equation (7), by using Ncls = 1000

instead of Ncls = 100, see Section 3.2.1. Please note that in this case, only the training samples are
modified, and no design change is applied to the proposed DRE-CNN architecture. The obtained
method is called Reduced quantization step.

The last experiment studies how the input patch size influences the performance of the proposed
method. Please note that in all other experiments, we set b = 15 and generate input patches of size
31× 31. In this experiment, we first propose to set b = 11 and generate input patches of size 23× 23.
One notes that the network architecture remains the same, while the patches are processed at smaller
resolutions. This reduces the runtime as the kernels are applied a lower number of times. The obtained
method is called Reduced patch size (b = 11). Secondly, we propose to further reduce the input patch
size to less than a quarter by setting b = 7 and generating input patches of size 15× 15. In this case,
the network architecture was slightly modified by removing the processing block 2bCB_7, as shown in
Figure 6, which further reduces the inference runtime. The obtained method is called Quarter patch size
(b = 7).

Table 4 shows the results for the two proposed methods and the experiments presented above.
One notes that: (i) all DRE-CNN variations are still able to improve the performance of Proposed Stereo;
(ii) DRE-CNN operates better as a predictor than as a classifier; (iii) the proposed 2bCB block structure
provides important performance gain with a low complexity; (iv) training data pre-processing plays an
important role in network training; (v) the inference runtime can be reduced by employing a smaller
input batch; however, which will lead to a decreased performance.
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Table 4. Study of the architecture and scheme variation of DRE-CNN.

Method
Nr. of Trainable
Network Param.

Average Average Relative Gain Inference
Time (s)RMSE MAE SSIM RGRMSE RGMAE RGSSIM

Proposed Stereo − 0.1332 0.0615 0.8174 14.97% 22.69% 5.22% −
Classification design 2.4 M (+4.45%) 0.1182 0.0551 0.8528 2.11% 9.94% 1.11% 24.06
ResLB-based design 6.3M (+173.69%) 0.1175 0.0558 0.8604 1.45% 11.36% 0.23% 25.09
Reduced quantization step 2.3 M 0.1200 0.0543 0.8587 3.63% 8.39% 0.43% 24.06
Quarter patch size (b = 7) 1.2 M 0.1195 0.0563 0.8605 3.18% 12.36% 0.22% 7.17
Reduced patch size (b = 11) 2.3 M 0.1173 0.0548 0.8609 1.31% 9.43% 0.17% 14.34
Proposed Method 2.3 M 0.1158 0.0501 0.8624 anchor anchor anchor 24.06

4.4. Time Complexity

The proposed stereo estimation method requires around 9.45 min to process a stereo pair with the
largest baseline; however, the runtime decreases further for more narrow baselines. Our experiments
show that the proposed method can provide a good initial estimation with only 8 stereo pairs: 4 on the
corners, 2 on the same row, and 2 on the same column. In this case, the performance of the proposed
approach drops by only around 4%.

The proposed neural network is implemented in Python using the Keras open-source
deep-learning library, and is running on machines equipped with Titan Xp Graphical Processing
Units (GPUs). Table 4 shows the inference time for computing the refined estimation, Dcnn, for the
different experiments proposed in the ablation study. The proposed DRE-CNN network requires
around 23 hours to train one network model, and an average inference time of 47 ms for each batch of
512 input patches. Therefore, for each LF image, a total time of 512× 0.047 s = 24.064 s is required to
apply the CNN model. The experiments show that by halving the input patch resolution, the inference
time can be reduced around 3.34 times, while the performance drops by around 3.18% in RMSE, 12.35%
in MAE, and 0.22% in SSIM.

5. Conclusions

The paper proposed a novel depth-estimation method from LF images, which combines
multi-stereo matching and ML techniques. A novel block-based stereo matching method is proposed to
compute the initial disparity estimation by operating on any pair of two SAIs in the LF image. A novel
DL-based method for residual error prediction is proposed to refine the initial estimation. A novel
neural network architecture, DRE-CNN, is designed based on a more efficient layer structure, 2bCB.
Experimental results on synthetic LF data demonstrate that the proposed framework outperforms
quantitatively and qualitatively the existing state-of-the-art methods for depth estimation.
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