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Abstract: To improve the standard point positioning (SPP) accuracy of integrated BDS (BeiDou
Navigation Satellite System)/GPS (Global Positioning System) at the receiver end, a novel approach
based on Long Short-Term Memory (LSTM) error correction recurrent neural network is proposed
and implemented to reduce the error caused by multiple sources. On the basis of the weighted least
square (WLS) method and Kalman filter, the proposed LSTM-based algorithms, named WLS–LSTM
and Kalman–LSTM error correction methods, are used to predict the positioning error of the next
epoch, and the prediction result is used to correct the next epoch error. Based on the measured data,
the results of the weighted least square method, the Kalman filter method and the LSTM error correction
method were compared and analyzed. The dynamic test was also conducted, and the experimental
results in dynamic scenarios were analyzed. From the experimental results, the three-dimensional point
positioning error of Kalman–LSTM error correction method is 1.038 m, while the error of weighted least
square method, Kalman filter and WLS–LSTM error correction method are 3.498, 3.406 and 1.782 m,
respectively. The positioning error is 3.7399 m and the corrected positioning error is 0.7493 m in
a dynamic scene. The results show that the LSTM-based error correction method can improve the
standard point positioning accuracy of integrated BDS/GPS significantly.

Keywords: deep learning; positioning; error correction

1. Introduction

Over the past few years, satellite navigation technology has achieved rapid development, but there
are still some problems to be solved in some aspects. For example, in terms of reliability and integrity,
a single navigation system is difficult to meet the requirements of positioning accuracy in some areas
with complex terrain due to insufficient visible satellites [1]. In addition, in some applications with high
dynamic requirements, the dynamic positioning of satellite navigation is not good enough to meet the
needs of practical applications. Therefore, to improve navigation positioning accuracy and performance,
the integration of GPS and BDS can be used, which will increase the number of visible stars; enhance the
quality of observation; reduce the spatial position accuracy factor; improve the integrity, reliability and
stability of the satellite navigation system; improve the ability of satellite navigation system positioning
services and the positioning accuracy of the integrated positioning system; and expand the application
field of satellite navigation [2].

Many methods can be used to achieve the positioning of integrated BDS/GPS, such as real-time
kinematic (RTK), precision point positioning (PPP) and SPP. RTK is a technique that uses the carrier
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phase in the satellite signal as the observation and uses the difference equation to solve the ambiguity
to achieve the dynamic positioning between the mobile station and the reference station [3]. At present,
the static positioning accuracy of RTK technology can reach even centimeters or even millimeters [4].
However, due to the dependence of RTK technology on carrier signals, it is susceptible to signal spoofing,
interference and occlusion. PPP is a solution to solving the position using precise ephemeris, precise
satellite orbit and precision satellite clock and dual-frequency carrier phase observations [5,6]. It can be
divided into non-differential PPP and differential PPP according to the data processing [7–9]. The current
PPP positioning accuracy can reach decimeter or even centimeter level [10]. However, the shortcoming of
PPP is that the initialization time and re-initialization time after the satellite loses lock is very long, and the
precision ephemeris can only be processed afterwards, so its scope of use is limited. SPP is a technique
for determining the absolute coordinates of the receiver in Earth’s coordinate system based on satellite
broadcast ephemeris and observations from a single receiver [11,12]. Due to the above shortcomings of
RTK and PPP, if the positioning accuracy of SPP can be improved, it would be more suitable for use in
vehicle applications.

There are many error sources in the positioning process [13–15]. In the positioning process,
various errors are roughly divided into the following three aspects according to different sources:
(a) Satellite-related errors, which mainly include satellite clock errors and ephemeris errors, are due
to the fact that they are affected by various complex factors, making it difficult to accurately match the
operational model to the correction model and orbital parameters. (b) There are errors related to signal
propagation. The influence of various substances in the atmosphere that satellite signals must pass through
the atmosphere is called atmospheric delay. Atmospheric delays generally include ionospheric delays
and tropospheric delays. (c) Receiver-related errors mainly include multi-path effects, electromagnetic
interference, receiver noise, and software calculation errors. To achieve precise positioning, a correction
model of the positioning error must be established to correct the positioning accuracy and minimize the
effects of errors.

Different methods have been proposed by many researchers to reduce positioning errors. Ke Han et al.
proposed a wavelet packet algorithm based on two-dimensional moving weighted average processing
(WP-TD) for extracting multipath [16]. Hailiang Xiong et al. presented a novel hybrid GPS/INS/Doppler
velocity log (DVL) positioning method and a new robust adaptive federated strong tracking Kalman filter
(RAFSTKF) algorithm for data fusion [17]. An improved robust adaptive Kalman filtering algorithm was
proposed by Qieqie Zhang et al., which includes a classification robust equivalent weight function model
based on t-test statistic [18]. Most of them focus only on reducing the error of one or several sources,
but not reducing the error of multiple sources.

Recently, deep learning has become one of the most active technologies in many research areas.
Deep learning usually refers to stacking multiple layers of neural network to perform machine learning
tasks [19], which can provide a different level of abstraction to improve the learning ability and task
performance [20]. Recurrent neural network (RNN) with Long Short-Term Memory (LSTM), which was
originally introduced by Hochreiter et al. [21], has emerged as an effective and scalable model for several
learning problems related to sequential data [22–25]. Since the SPP solution process is also a sequential data
problem, the LSTM network can be used to reduce the error caused by multiple sources, including satellite
clock error, ephemeris error, ionosphere and tropospheric delays, multi-path effect and the receiver error.

In this paper, a novel standard point positioning approach to integrate BDS/GPS (all GNSS systems
would be applicable), which uses the learning method to predict the multi-source error as a whole,
is proposed to reduce the multiple sources errors. The contributions of this paper can be summarized
as follows:
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• The SPP calculation model of Integrated BDS/GPS is implemented based on the BDS/GPS original
ephemeris file and observation file data, which are collected through Sinan M300 GNSS receiver.

• The LSTM-based error correction method is proposed and implemented combined with the traditional
filtering method to reduce the multiple sources errors, in which the LSTM recurrent neural network
is used to predict the positioning error of the next epoch, so as to reduce the positioning error at the
receiving end.

• Experiments in static and dynamic scenarios were conducted on the data collected by Sinan M300
GNSS receiver and the result of proposed approach was compared with the traditional positioning
methods, which proved that the proposed approach can improve the standard point positioning
performance of integrated BDS/GPS significantly.

The rest of the paper is organized as follows. In Section 2, the method of standard point positioning
of integrated BDS/GPS is described. The LSTM-based error correction method is detailed in Section 3.
Section 4 presents the experimental results, including the WLS method, Kalman filter, WLS–LSTM error
correction method and Kalman–LSTM error correction in a static scene and the correction results in
a dynamic scene. Finally, conclusions are given in Section 5.

2. Standard Point Positioning of Integrated BDS/GPS

2.1. Unification of Time and Space Benchmarks

Both the BDS and GPS time systems use an atomic time base with consistent seconds, both of
which are counted in weeks and seconds. The time reference of the BDS is Bei Dou navigation satellite
system time (BDT), whose starting epoch is the coordinated universal time (UTC) of 00:00:00 on 1 January
2006. The time reference of the GPS is GPS time (GPST), whose starting epoch is the UTC of 00:00:00 on
6 January 1980. Their different time bases determine the time of each other, but both can be linked to UTC.
The conversion relationship between BDT and GPST can be defined as [26]:

BDT week = GPST week + 1356

BDT sec = GPST sec + 14
(1)

BDS adopts China geodetic coordinate system 2000 (CGCS2000), while GPS adopts world geodetic
coordinate system 1984 (WGS-84). The coordinate frames of both systems are the International Terrestrial
Reference Frame (ITRF) defined by the International Earth Rotation Service (IERS) organization. In terms
of coordinate system accuracy, the difference between the CGCS2000 and ITRF is about 5 cm, while the
accuracy of the WGS-84 has reached 2 cm, which is basically consistent with the accuracy of ITRF.
The study has proved that the coordinate and gravity changes caused by the flatness difference of the
two coordinate systems are negligible compared with the current high-precision measurement level.
The WGS84 coordinate system and the CGCS2000 coordinate system are compatible at the level of accuracy
for standard point positioning.

2.2. Integrated Positioning Model

For GPS satellites, the observation equation for pseudorange is:

PG = ρG + c(dtG − dtG) + TG + IG + eG (2)

where PG is the pseudorange measurement from satellite to receiver; ρG represents the geometric distance
from receiver to satellite; c denotes the speed of light; dtG means the receiver clock error; dtG is the star
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clock error; TG, IG and eG represent the tropospheric delay, ionospheric delay and other delay error terms,
respectively; and G stands for GPS satellites.

For BDS satellites, the observation equation for pseudorange is:

PC = ρC + c(dtC − dtC) + TC + IC + eC (3)

where C stands for BDS satellites and the meaning of the parameters is the same with the GPS satellites.
Suppose the number of GPS satellite signals received by the receiver is m and the number of BDS

satellite signals is n. The mathematical model of the combined positioning is shown in Equation (4) [27].
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where Xk denotes the X-axis coordinate of satellite k, Yk denotes the Y-axis coordinate of satellite k and Zk

denotes the Z-axis coordinate of satellite k. ρk
i means the geometric distance from receiver i to satellite k. Xi0,

Yi0 and Zi0 represent initial estimated coordinates of the receiver i on X-axis, Y-axis and Z-axis, while4Xi,
4Yi and4Zi stand for the difference between estimated coordinates and real coordinates, respectively.

If m + n ≥ 5 in the formula, the value of4Xi,4Yi and4Zi can be calculated by least square method,
iteratively iterating to minimize b, where b = Pi − ρi + c·dtG + c·dtC − Ti − Ii − ei.

The steps of Integrated BDS/GPS positioning are as follows:

1. Read RINEX format file generated by Sinan M300 GNSS receiver separately. In the RINEX format
file, N file represents GPS ephemeris file, C file represents BDS ephemeris file and O file represents
BDS/GPS observation file.

2. Convert the UTC time of BDS and GPS in the observation file into BDS time and GPS time, and unify
the time.

3. Judge the number of visible satellites in a certain epoch. If the number of visible satellites is greater
than or equal to 5, continue, and, if not, the end.

4. Select the effective ephemeris. The reference time of the effective ephemeris must be within 2 h of
BDS/GPS time.

5. Calculate position and clock difference of BDS/GPS respectively. Then, correct error of
Earth’s rotation.

6. Calculate the elevation and azimuth of the satellite using the position of the satellite and the receiver.
7. Use the error correction model to calculate the corresponding ionosphere and tropospheric delays.
8. Calculate receiver position until the difference between the two positions of the receiver is less than

a threshold.
9. Perform WLS [28,29] or Kalman filter [29–31] on positioning.
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3. Error Correction Method

3.1. The LSTM Model

LSTM network is a special RNN network, which also has a module link structure, but the difference
is the module structure of the hidden layer [32]. The input of the LSTM network at time t includes not
only the input value of the current time network, but also the output at time t−1 and the unit status at
time t−1. At the same time, its output not only has the output of the current moment, but also the unit
state of the current moment. The structure of un-rolled LSTM sequential architecture is shown in Figure 1.

Figure 1. The un-rolled LSTM sequential architecture.

In this paper, LSTM recurrent neural network with peephole is performed on the error correction of
integrated BDS/GPS point positioning. The structure of an LSTM block is shown in Figure 2.

Figure 2. The structure of an LSTM block.

Compared to the standard four-layer LSTM neural network module, the LSTM recurrent neural
network with the peephole has only three neural network layers, including two sigmoid layers and one
tanh layer. At the same time, forget gates are coupled with input gates in the modified LSTM recurrent
neural network.

In the modified LSTM block, the input of the forget gate layer consists of three vectors, which are
the state of the memory cell at the previous moment (Ct−1), the output of the memory cell at the previous
moment (ht−1) and the input of the memory cell at the current moment (Xt) [33]. W f , b f and ft are used
to represent the weight, offset and output vector of sigmoid neural network layer of the forget gate,
respectively. The sigmoid activation function can be defined as:
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σ(x) =
1

1 + e−x (5)

The output vector of forget gate layer can be defined as:

ft = σ(W f × Ct−1 + W f × ht−1 + W f × Xt + b f ) (6)

The input gate layer controls the information injected into the memory cells by coupling with the
forget gate layer to determine the update of the cell state. C

′
t is used to denote the vector of new information

to be injected into the memory cell, which is the output of the tanh layer. The weights and offsets of the
tanh layer are represented by Wc and bc. The tanh activation function can be defined as:

tanh(x) =
1− e−2x

1 + e−2x (7)

The C
′
t can be defined as:

C
′
t = tanh(Wc × ht−1 + Wc × Xt + bc) (8)

The vector of the memory cell state at the current moment Ct can be defined as:

Ct = ft × Ct−1 + (1− ft)× C
′
t (9)

The output gate layer has a peephole, and the vector it inputs is the state Ct after the memory cell
is updated. Therefore, the input of the output gate layer is composed of three components, which are
the state Ct of the current memory cell, the output of the memory cell ht−1 at the last moment and the
input of the memory cell Xt at the current moment. Wo and bo are used to represent the weight and offset
of sigmoid neural network layer of the output gate, respectively. Then, the representation of the output
vector of output gate layer Ot can be described as:

Ot = σ(Wo × Ct + Wo × ht−1 + Wo × Xt + bo) (10)

The current memory cell output vector ht can be defined as:

ht = tanh(Ct)×Ot (11)

The training algorithm of LSTM including the following three steps:
Step 1: Forward calculation of the output value of each neuron in the LSTM [34].
Step 2: Reverse calculation of the error term value δ of each neuron. The back-propagation of the

LSTM error term includes two directions: one is the back propagation along time, that is, the error term at
each moment is calculated from the current time, and the other is to propagate the error term up to one
layer [35].

Step 3: Calculate the gradient of each weight according to the corresponding error term [36].

3.2. LSTM-Based Error Correction Framework

The weighted least square method minimizes the sum of squares of all measurement errors and
makes the positioning easy and quick. However, the estimation accuracy of the least square method is not
high, and. when the observation shows a large deviation, it also causes a large deviation of the estimation
result. The Kalman filter algorithm can overcome the shortcomings of the position at the adjacent time and
make the filtered positioning result smoother and more accurate, thereby improving the positioning effect.
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To effectively reduce common errors and receiver errors, and suppress multi-path effects, the LSTM-based
error correction method is proposed.

The overall flow of the LSTM-based error correction method is shown in Figure 3. First, the Rinex
file generated by the GNSS receiver is read. Among them, the N file means the GPS ephemeris file,
the C file denotes the BDS ephemeris file and the O file represents the BDS/GPS observation file. Then,
the LSTM-based error correction method is used to solve the position and finally obtain the corrected
position information.

Figure 3. The overall flow of the LSTM-based error correction method.

The LSTM-based error correction framework including WLS–LSTM and Kalman–LSTM is shown
as Figure 4. The Kalman–LSTM error correction process in the red box on the left is as follows: Firstly,
initial parameters are set, including sampling interval, initial state matrix, initial mean square error
matrix, state transition matrix, noise driving matrix, system variance matrix, noise covariance matrix,
measured value matrix and epoch number. Then, for 1 to epoch number, the vector observation matrix
is constructed, followed the Kalman filter prediction and the measurement update process is performed.
Then, the Kalman filter result is obtained. After that, the LSTM prediction , which uses the error result of
Kalman filtering as the input of the learning network, is performed and the prediction result is obtained.
Finally, the error correction is performed. The WLS–LSTM error correction process in the blue box on
the right is as follows: Firstly, initial parameters are set, the same with Kalman–LSTM. Then, for 1 to
epoch number, the weighted least square method is performed, including obtaining the residual vector
and calculating the weight matrix. Then, the weighted least square method result is obtained. After that,
the same with Kalman–LSTM, the LSTM prediction is performed, and the prediction result is obtained.
Finally, the error correction is performed.
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Figure 4. The LSTM-based error correction framework.

4. Experimental Analysis

4.1. Experimental Environment

4.1.1. Static Experimental Environment

The integrated BDS/GPS Point Positioning was performed on a Windows PC with two 3.5 GHz Intel
Xeon processors. Compass Receiver Utility software version 1.7.3 was used to operate and obtain the
relevant raw data, the SPP calculation model of Integrated BDS/GPS was conducted on MATLAB and the
error prediction and correction process was implemented in Python. The experimental data in this study
were obtained from 11:31 to 11:59 by the Sinan M300 GNSS receiver shown in Figure 5, while the sampling
interval was 60 s, the coordinates of the receiver were known and the proposed SPP calculation model
and error correction methods were used to post-process the collected data.

Figure 5. The Sinan M300 GNSS receiver experimental environment.
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4.1.2. Dynamic Experimental Environment

To further verify the positioning effect of the proposed method in a dynamic environment, a dynamic
experiment was conducted on the campus of a university in Wuhan, China. The moving speed of the
vehicle with the experimental equipment ranged from 20 to 40 km/h, and the equipment sampling interval
was 1 s. In the experiment, the T30 GNSS receiver data of Sinan Navigation, whose horizontal accuracy
is ±(8 + 1× 10− 6× D) mm and vertical accuracy is ±(15 + 1× 10− 6× D) mm, were used as the
reference. D is the baseline length, and its unit is mm. The measurement roadmap and the connection of
test equipment is shown as Figure 6 .

Figure 6. The dynamic experimental environment.

4.2. Integrated BDS/GPS Point Positioning Results

4.2.1. Static Positioning Results

In satellite positioning, the position dilution of precision (PDOP), which is an important indicator
for measuring the ability of satellite positioning, is usually used to represent the quality of the satellite’s
geometric distribution. Generally, the more visible satellites there are, the better the satellite constellation
structure, the better the satellite geometric distribution, the smaller the PDOP and the higher the positioning
accuracy. The PDOP and the number of visible satellites during the experimental period are shown in
Figure 7.

The WLS and Kalman filter were performed on collected data, and the results are shown in Figure 8.
The positioning errors of WLS and Kalman filter are presented in Table 1. The positioning results show
that, compared to the result of WLS, Kalman filter is smoother. In terms of accuracy, the positioning
root mean square error of WLS in the X-axis direction is slightly lower than the Kalman filter, while the
positioning root mean square error of the Kalman filter in the Y-axis and Z-axis directions is slightly lower
than the weighted least square method. One point is that the two methods have little difference in the
accuracy of three-dimensional positioning, and the Kalman filter has slightly higher accuracy than WLS.
In addition, the positioning error from 12:31 to 13:11 is obviously larger, but there is no significant change
in PDOP and the number of visible satellites during this period. According to the analysis, this is due to
the obvious large clock deviation of the BDS receiver during this period.
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Figure 7. The PDOP and the number of visible satellite during the experimental period.
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Figure 8. Result of standard point positioning on the three axes: (a) positioning error of weighted least
square method; and (b) positioning error of Kalman filter.

Table 1. Positioning errors of the two methods.

Positioning Root Mean Square Error (m) 3D Position
Methods X Y Z Error (m)

WLS method 1.347 2.945 1.322 3.498
Kalman filter 1.379 2.897 1.123 3.406

4.2.2. Dynamic Positioning Results

The dynamic positioning results are shown in Figure 9, and the dynamic positioning errors are
presented in Table 2, from which it can be found that the 3D error of dynamic positioning is slightly higher
than that of static positioning.
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Table 2. Dynamic positioning errors.

Axis X Y Z 3D

Positioning Error (m) 1.5460 3.1694 1.2459 3.7399

Figure 9. The dynamic positioning error.

4.3. Error Prediction Results

4.3.1. Static Prediction Results

To reduce the common errors, receiver errors and multi-path effects more effectively on the basis of
WLS and Kalman filter, the LSTM-based error prediction was performed on the integrated positioning.
The prediction result can be used to correct the errors caused by multi sources.

The prediction results of LSTM-based error prediction performed on WLS is presented in Figure 10,
while that performed on Kalman filter is shown in Figure 11. The error data were divided into training set
and testing set, and the ratio of the training set to the testing set was 2:1. In Figures 10 and 11, the blue
curves denote the original data, the orange curves represent the prediction of training set and the green
curves mean the prediction testing set. The root mean square errors (RMSE) and correlation coefficient of
the prediction of two methods on three axes are shown in Table 3. From the prediction results, the root
mean square error of WLS is higher and the correlation coefficient is smaller than the Kalman filter in
both training set and testing set on the three axes, which illustrates that the performance on the prediction
of Kalman filter is better than the prediction of WLS on three axes.

Table 3. Prediction errors and correlation coefficient of the two methods.

Predicted Methods
RMSE of Training (m) RMSE of Testing (m) Correlation Coefficient

X Y Z X Y Z X Y Z

WLS method 0.77 1.17 0.65 0.90 1.26 0.74 0.7580 0.7842 0.6985
Kalman filter 0.27 0.34 0.26 0.28 0.34 0.32 0.9262 0.9439 0.8303
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(a) (b)

(c)

Figure 10. Result of LSTM error prediction performed on the weighted least square method: (a) result on
X-axis; (b) result on Y-axis; and (c) result on Z-axis.

4.3.2. Dynamic Prediction Results

The error prediction based on LSTM was also performed on dynamic experimental data.
The prediction result is presented in Figure 12 and prediction errors are shown in Table 4. As in the
static prediction, the error data were divided into training set and testing set, and the ratio of the training
set to the testing set was 2:1. Compared with the prediction errors of the static prediction, the effect of
dynamic prediction on the Y-axis and Z-axis is better than the two static methods, while, on the X-axis, its
effect is better than the static prediction of WLS method but slightly worse than the static prediction of
Kalman filter on the testing set.

Table 4. Prediction errors and correlation coefficient of dynamic experimental data.

RMSE of Training (m) RMSE of Testing (m) Correlation Coefficient

Axis X Y Z X Y Z X Y Z

Positioning Error 0.27 0.22 0.23 0.34 0.21 0.22 0.9072 0.9097 0.9396
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(a) (b)

(c)

Figure 11. Result of LSTM error prediction performed on Kalman filter: (a) result on X-axis; (b) result on
Y-axis; and (c) result on Z-axis.

4.4. Error Corrected Positioning Results and Evaluations

4.4.1. Static Corrected Results

The prediction results were used to achieve the error correction. The LSTM error correction performed
on the weighted least square method is called WLS–LSTM error correction, while the LSTM error correction
performed on Kalman filter is called Kalman–LSTM error correction. The result of WLS–LSTM error
correction and Kalman–LSTM error correction are presented in Figure 13. The positioning errors of the
two error correction methods are shown in Table 5. The root mean square error of the Kalman–LSTM error
correction method in the X-axis, Y-axis and Z-axis are 0.523, 0.705 and 0.554 m, respectively. The root mean
square error of the WLS–LSTM error correction method in the X-axis, Y-axis and Z-axis are 0.880, 1.345
and 0.770 m, respectively. The experimental result illustrates that the positioning result of Kalman–LSTM
error correction method is smoother and more accurate than the WLS–LSTM error correction method.
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(a) (b)

(c)

Figure 12. Result of dynamic LSTM error prediction: (a) result on X-axis; (b) result on Y-axis; and (c) result
on Z-axis.
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Figure 13. Result of LSTM-based error correction method on the three axes: (a) positioning error of
WLS–LSTM; and (b) positioning error of Kalman–LSTM.
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Table 5. Positioning errors of error correction methods.

Error Correction Methods
Root Mean Square Error (m)

3D Position Error (m)
X Y Z

WLS–LSTM 0.880 1.345 0.770 1.782
Kalman–LSTM 0.523 0.705 0.554 1.038

The positioning results of the four different methods are presented in Figure 14. From the
positioning results, compared to the positioning methods without LSTM correction, the positioning
error of LSTM-based error correction methods is significantly reduced on three axes. The Kalman–LSTM
error correction is the most accurate method for its positioning error is significantly smaller than the
other methods. It is worth mentioning that the point positioning error of Kalman–LSTM error correction
method can almost reach the sub-meter level, which is 1.038 m from the experimental result, while the
point positioning error of WLS–LSTM error correction method, Kalman filter and WLS method are 1.782,
3.406 and 3.498 m, respectively. Moreover, the positioning error from 11:31 to 11:59, which is obviously
larger, is effectively reduced by the proposed error correction method.

Figure 14. The position error of four different methods.

4.4.2. Dynamic corrected results

The corrected dynamic positioning results of proposed method are shown in Figure 15, while the
corrected dynamic positioning errors are presented in Table 6. It can be seen from the experimental error
results that it is obvious that the positioning error corrected by the proposed method in a dynamic scene is
smaller on the X-axis, Y-axis and Z-axis than the two methods in a static scene, which illustrates that the
error correction method may achieve better results in a dynamic scene.

Table 6. Error corrected dynamic positioning errors.

Axis X Y Z 3D

Positioning Error (m) 0.4949 0.4289 0.3641 0.7493
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Figure 15. The corrected dynamic positioning results.

4.4.3. Evaluations

To further evaluate the performance of each method, the cumulative distribution function (CDF) and
probability density function (PDF) of positioning errors were used as evaluation indicators. The CDF
is used to describe the probability that the random variable X falls within a certain range and PDF is
a function that describes the probability of the output value of the random error, near a certain point
of determination [37,38]. The CDF and PDF of four different methods in a static scene are presented in
Figure 16. It can be seen from the CDF that the error at 95% confidence of Kalman–LSTM is obviously better
than the other methods, the WLS–LSTM is also better than Kalman filter and WLS, while the Kalman filter
and WLS are almost the same. As shown in Figure 16, the PDF of the position error in Kalman–LSTM is the
most concentrated, especially most position errors appear within 1 m and only a few position errors are
above 2 m. The PDF of the position error in WLS–LSTM is also more concentrated than Kalman filter and
WLS: most position errors concentrate within 2 m and a few are distributed 4 m away. The position errors
of Kalman filter and WLS are more dispersed, and Kalman filter is a little more concentrated than WLS.
In addition, the position errors of Kalman filter appear within 7 m while WLS appear within 9 m. One can
draw the conclusion from the results of CDF and PDF that the LSTM-based has a better performance than
Kalman filter and WLS method on integrated BDS/GPS positioning for the higher accuracy and more
concentrated position errors.

The CDF and PDF results in a dynamic scene are presented in Figure 17. It can be seen from the CDF
that the corrected error (within 1.5 m) at 95% confidence is significantly improved compared to before
correction (above 5 m) and better than the effect in the static scene. As shown in Figure 17b, the dynamic
errors before correction are all above 3 m, concentrated between 3 and 4 m, and the maximum error
is less than 7 m. Most of the corrected errors are within 1 m, and the maximum error is less than 5 m,
which is better than the WLS–LSTM method in the static error. Compared with the Kalman–LSTM method,
the overall effect is better, but the proportion of errors above 2 m is higher. It can be concluded that the
proposed error improvement method also has a good effect in dynamic scenes and may even be better
than the effect in static scenes.
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Figure 16. The CDF and PDF of four different methods: (a) CDF; and (b) PDF.

(a) (b)

Figure 17. The CDF and PDF of dynamic error: (a) original error; and (b) corrected error.

5. Conclusion

This paper provides a novel approach to the standard point positioning of integrated BDS/GPS.
First, the different error sources of standard point positioning of integrated BDS/GPS are elaborated.
Among them, some error sources are difficult to estimate during the positioning process. In some current
positioning methods, they are also difficult to obtain very effectively reduced or suppressed. Therefore,
an LSTM-based error prediction and correction method is proposed in this paper. On the basis of the
traditional positioning method, the data with multiple error sources are learned and predicted, and the
prediction results are used for error correction to effectively reduce and suppress the error containing
multiple error sources.

The four methods, namely weighted least square method, Kalman filter, WLS–LSTM and
Kalman–LSTM, were tested and compared based on the measured data. It turns out that the LSTM
recurrent neural network-based error correction method has greatly improved the accuracy of standard
point positioning. The proposed Kalman–LSTM error correction method achieves the best performance,
whose point positioning error can almost reach the sub-meter level under the experimental environment.
Furthermore, through the error correction method, the positioning error caused by various factors such
as the receiver clock deviation can be effectively suppressed. The greater the error is, the more the
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Kalman–LSTM can contribute to the positioning improvement of the methods without LSTM error
correction. In addition, the experimental results in dynamic scenes also show that the proposed
LSTM-based error correction method can effectively improve the positioning accuracy.

As for future work, parameter tuning of the LSTM network structure can be developed, and the
models in different environments and scenarios can be trained to adapt the method to the navigation and
positioning requirements in different environments and scenarios.
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Abbreviations

The following abbreviations are used in this manuscript:

BDS BeiDou Navigation Satellite System
GPS Global Positioning System
SPP Standard Point Positioning
LSTM Long Short-Term Memory
WLS Weighted Least Square
RTK Real-time Kinematic
PPP Precision Point Positioning
WP-TD Two-dimensional Moving Weighted Average Processing
DVL Doppler Velocity Log
RAFSTKF Robust Adaptive Federated Strong Tracking Kalman Filter
RNN Recurrent Neural Network
BDT Bei Dou Navigation Satellite System Time
UTC Coordinated Universal Time
GPST GPS Time
CGCS2000 China Geodetic Coordinate System 2000
WGS-84 World Geodetic Coordinate System 1984
ITRF International Terrestrial Reference Frame
IERS International Earth Rotation Service
PDOP Position Dilution of Precision
RMSE Root Mean Square Errors
CDF Cumulative Distribution Function
PDF Probability Density Function
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