
sensors

Article

An Adaptive Median Filter Based on Sampling Rate
for R-Peak Detection and Major-Arrhythmia Analysis

Tae Wuk Bae 1,* , Sang Hag Lee 2 and Kee Koo Kwon 1

1 Daegu-Gyeongbuk Research Center, Electronics and Telecommunications Research Institute,
Daegu 42994, Korea; kwonkk@etri.re.kr

2 TriBell Labs, Kyungpuk 38541, Korea; lsh6465@tribell-lab.com
* Correspondence: twbae@etri.re.kr; Tel.: +82-53-670-8063

Received: 23 September 2020; Accepted: 26 October 2020; Published: 29 October 2020
����������
�������

Abstract: With the advancement of the Internet of Medical Things technology, many vital sign-sensing
devices are being developed. Among the diverse healthcare devices, portable electrocardiogram
(ECG) measuring devices are being developed most actively with the recent development of sensor
technology. These ECG measuring devices use different sampling rates according to the hardware
conditions, which is the first variable to consider in the development of ECG analysis technology.
Herein, we propose an R-point detection method using an adaptive median filter based on the
sampling rate and analyze major arrhythmias using the signal characteristics. First, the sliding
window and median filter size are determined according to the set sampling rate, and a wider median
filter is applied to the QRS section with high variance within the sliding window. Then, the R point
is detected by subtracting the filtered signal from the original signal. Methods for detecting major
arrhythmias using the detected R point are proposed. Different types of ECG signals were used
for a simulation, including ECG signals from the MIT-BIH arrhythmia database and MIT-BIH atrial
fibrillation database, signals generated by a simulator, and actual measured signals with different
sampling rates. The experimental results indicated the effectiveness of the proposed R-point detection
method and arrhythmia analysis technique.
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1. Introduction

The development of wearable medical devices has accelerated with the advancement of sensor
technology. Among the various biometric parameters, the electrocardiogram (ECG) is the most
important biosignal. To date, diverse wearable and portable ECG devices have been commercialized.
The Seers Tech. Biopatch is a wearable ambulatory cardiac monitoring device with a single lead
and a sampling rate of 256 samples/s [1]. KardiaMobile from AliveCor is a finger-contact mini ECG
measurement tool with a sampling rate of 300 samples/s [2]. The recently developed TLC5000 made by
Contect is a 12-lead ECG system with a sampling rate of 10,000 samples/s [3]. The currently available
ECG devices have different sampling rates, which is an important variable to be considered when
developing an ECG analysis algorithm.

Likewise, public databases were created at various sampling rates, e.g., the MIT-BIH arrhythmia
database (MITDB) at 360 Hz [4], MIT-BIH atrial fibrillation database (AFDB) at 250 Hz [5],
QT database [6], and Long Term AF database at 128 Hz [7]. The Contec MS400—an ECG multiparameter
simulator—was used to obtain reference arrhythmia signals at 250 Hz [8].

In previous works, R-point detection methods using the sampling frequency-based Hilbert
transform [9] and the sampling period-based difference equation [10,11] were proposed. However,
several R-point detection studies have been performed at specific sampling rates. The linear
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adaptive filter [12], three-point center derivative [13], morphology and differential filter [14],
max–median–min filter [15], generic algorithm [16], wavelet transform [17], wavelet denoising [18],
multiscale mathematical morphology (3M) [19], and derivative-max filter [20] use predefined sizes for
filter or window selection without considering the sampling rate. And recently, QRS detection [21]
and T-wave detection [22] using adaptive filters have been proposed.

Typically, ECGs are used for arrhythmia detection and prediction or in emergency care
situations. Recently, ECG measuring devices and telemedicine systems have been actively studied.
Using Bluetooth, communication mobile telephony network, and wireless local area network
technologies, recent telemedicine systems measure and transmit ECG data in real-time to protect
heart-disease patients [23–25]. Occlusion in one of the coronary arteries of the heart leads to
cardiac ailment and myocardial infarction (MI). The localization of MI based on the investigation
of the morphology of the multi-lead ECG is the initial task for the diagnosis of this ailment [26].
These telemedicine systems for constant observation of coronary heart disease patients provide the
possibility for specialists to interpret ECGs on mobile devices, bridging the gap between patients and
specialists [27]. The automated external defibrillator, which is used urgently in the event of a heart attack,
analyzes the patient’s heart rhythm by measuring ECG signals to perform accurate defibrillation before
the defibrillation. Additionally, after cardiac resynchronization therapy, ECG signals are measured to
analyze the patient’s ECG pattern [28,29]. The sampling rate has a significant influence on the filter
design or preprocessing for R-point detection. If the sampling rate is low, the calculation speed is high,
but it is difficult to obtain detailed information, such as the fragmented R peak and the degree of noise.
Conversely, when the sampling rate is high, the processing speed is low because of the large filter size,
but it is easy to extract accurate information for each ECG wave. Thus, different ECG devices have
different sampling rates, and the R-point detection algorithm must cope with various sampling rates.

The detected R points are important for detecting cardiac arrhythmia. To date, arrhythmia studies
have been conducted with a bias toward specific arrhythmias, e.g., atrial fibrillation (AF) or ischemia.
Although bigeminy and trigeminy with different R periods due to ectopic beats or premature
ventricular contraction (PVC) may progress to dangerous arrhythmia, few related studies have been
performed [30,31]. Although PVCs caused by ventricular extra heartbeats are dangerous when
they exceed 20% of the total heartbeat, only detection studies based on signal processing have been
performed; no studies have involved heartrate variability (HRV) analysis of ventricular tachycardia
(VT) with PVCs [32,33]. Supraventricular tachycardia (SVT)—an abnormally fast heartbeat—may
be a precursor to ventricular fibrillation, but studies on this topic are not actively performed [34,35].
Therefore, there is a need for continued research on the aforementioned cardiac arrhythmias as well as
the well-known AF.

For the foregoing reasons, it is necessary to develop a universal ECG analysis algorithm to
analyze ECG signals having different sampling rates obtained from various ECG measuring devices.
This paper proposes an R-point detection method using an adaptive median filter in which the
sliding window and filter size are automatically adjusted according to the sampling rate of the
measuring device. Additionally, this paper introduces HRV analysis of not only AF, which is widely
studied, but also bigeminy, trigeminy, PVC, VT, and SVT, which are not actively studied, based on the
signal characteristics.

2. Materials and Methods

2.1. ECG Data Used

Four types of ECG data (MITDB [4], AFDB [5], actually measured ECG signals, and signals
generated by an MS400 multiparameter simulator [8]) were used, as shown in Figure 1. The MITDB
contained 48 half-hour excerpts of two-channel ambulatory ECG recordings obtained from 47 subjects
studied by the BIH Arrhythmia Laboratory between 1975 and 1979. The recordings were digitized at
360 samples per second per channel with an 11-bit resolution over a 10-mV range. MITDB is used
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to evaluate the R point detection method proposed in this paper. The AFDB included 25 long-term
ECG recordings of human subjects with AF (mostly paroxysmal). The individual recordings each had
a duration of 10 h and contained two ECG signals (sampled at 250 samples/s) with 12-bit resolution
over a range of ±10 mV. AFDB is used to test the AF detection technique proposed in this paper
and visualize the severity of the test AF signals. Actual ECG data were measured using a VP-100
(ECG measurement patch), which was developed by TriBell-Lab [36] and ETRI (Electronics and
Telecommunications Research Institute), at 250 samples/s. The bigeminy signal used in this paper was
measured by the developed ECG patch. Arrhythmias that were difficult to measure were generated by
the MS400 simulator.
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Figure 1. Simulation environment.

2.2. R-Peak Detection

The filtered signal preserving P or T waves while restraining the R wave for an original signal S is
obtained by applying the following median filter [37]:

Mi,n = medianr∈W(Si+r,n) (1)

where the subscript (i,n) denotes the ith sample point location of the nth sliding window, and W
represents the filter window. In the proposed method, a median filter with a variable filter size is used
to improve the performance of a general median filter [38,39]. Figure 2 shows the relationship between
the variance at the sample point and the median-filter size for AFDB of 250 samples/s. A median filter
with a large filter size is applied to QRS interval having a high variance, while a median filter with a
small filter size is applied to flat region (or weak wave region) among non-QRS interval having a low
variance. Also, a median filter with a basic size is applied to the P or T wave region among the non-qrs
region corresponding to the moderate variance.

The adaptive filter size r is determined by the variance of the current sample point, as follows:
r = L−C, vmin(Sn) ≤ v(Si+r,n) < Dv(Sn)/3

r = L, Dv(Sn)/3 ≤ v(Si+r,n) < Dv(Sn) × 2/3
r = L + C, Dv(Sn) × 2/3 ≤ v(Si+r,n) ≤ vmax(Sn)

where L = F/60, C = F/(60× 2)

(2)

where L represents the basic size of the filter window, which is determined by the sampling rate F.
Dv(Sn) represents the difference of vmax(Sn) and vmin(Sn), max, and min variance of the nth sliding
window. The adaptive size of the median filter for a sampling rate of 250 Hz is shown in Figure 2.
Additionally, the variance is obtained for the basic filter size. The variance section that determines the
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variable filter size is empirically divided into three uniform sections. The difference signal for the nth
sliding window is given as follows:

Dn = |Sn −Mn| (3)

The effectiveness of the adaptive median filter is shown in Figure 3, and the difference between
the original and filtered signals was normalized. The adaptive median is compared with the normal
median and exhibits a higher difference result, helping to accurately detect the R peak. A max filter
with a filter size of F/8 is applied to the difference to obtain candidate intervals, including the R peak.
The adaptive threshold for detecting the R peak in the candidate intervals is applied to the difference
signal and is defined as the average of the top 50% of the maximum filter result.Sensors 2020, 20, x FOR PEER REVIEW 4 of 22 
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Figure 3. Difference comparison of the original signal and the filter result using (a) the normal median
filter and (b) the adaptive median filter.

Due to the absolute value characteristic of the difference signal in Equation (3), the R peak detected
from the difference signal should be distinguished into a normal and abnormal R peak as follows:{

Normal (Positive) R if detected R > mean(Sn)

Abnormal (Negative R or PVC) else
(4)
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If the detected R peak is greater than the average of the ECG signal of the current nth sliding
window, it means a normal (positive) R, otherwise it is recognized as an abnormal R (negative R
or PVC).

2.3. Detection of Important Arrhythmias

The processing units for various arrhythmias are presented in Table 1. It is possible to determine
which beat is normal R or PVC with only one beat. However, bigeminy and trigeminy can be detected
by multiple beats or 1 min long. Additionally, the identification of bradycardia, tachycardia, VT, SVT,
and AF requires at least 1 min.

Table 1. Processing unit for various arrhythmias.

Processing Unit (per) Kinds of Arrhythmia

One beat Premature ventricular contraction (PVC)
Multiple beat (or one minute) Bigeminy, trigeminy

At least one minute Bradycardia, tachycardia, ventricular tachycardia (VT),
supraventricular tachycardia (SVT), atrial fibrillation (AF)

In the proposed method, the size of the sliding window is set according to the sampling rate at
which the ECG signal is measured. By setting the sampling rate, the number of sliding windows per
minute, the number of particle times constituting the sliding window, the time length of the particle
time, the step size (movement length of sliding window), and the time length of the sliding window
are automatically determined, as shown in Figure 4. The real-time processing of the proposed method
involves a sliding window of 12 s, a step size of 8 s, an overlapped interval of 4 s, and seven sliding
windows of 1 min:
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The above sliding-window structure was derived manually to detect the arrhythmia presented in
Table 1 in 1-min increments (every minute). Another sliding-window structure for detecting arrhythmia
in units of 1 min may consist of Tp = 6 s, N_Tp = 4, and NSB = 3. Naturally, if the detection of
arrhythmia in 1-min increments is ignored, various sliding-widget structures can be generated.

For a continuous ECG stream, the pseudocode for the detection of various arrhythmias is shown
in Figure 5. According to the R peaks detected in a sliding window, Q onset, S offset, P peak, and T peak
are searched for PVC, AF, VT, and SVT. The detection methods for various arrhythmias are introduced
in the following sections.
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2.3.1. Bradycardia and Tachycardia

Bradycardia is a very low heartrate (HR) of <60 beats per minute (BPM), and tachycardia is a very
high HR of >100 BPM [40]. If tachycardia begins in the ventricles, it is called VT. Bradycardia and
tachycardia can be easily detected by measuring the BPM.

2.3.2. Bigeminy and Trigeminy

Bigeminy is a heart-rhythm condition involving repeated heartbeats of short and long cycles [41].
Trigeminy refers to a three-heartbeat pattern in which one or two beats are irregular [42]. In bigeminy,
every other beat is a PVC. In trigeminy, every third beat is a PVC. Two consecutive PVCs are called
couplets [43].

Figure 6 shows the beat-to-beat (RR) interval features of bigeminy and trigeminy. RRS, RRM,
and RRL represent the average length of the short, middle, and long periods in observatin time, 1 min
in this paper. While bigeminy has the feature that (N(RRL) � N(RRS)) , N(RRM), trigeminy exhibits
a characteristic that N(RRL) � N(RRS) � N(RRM). The average of the difference between the sums of
the long and short periods RRLS is given as follows:

RRLS =

t+T∑
t

RRL −

t+T∑
t

RRS

/
(

N(RRL) + N(RRS)

2

)
, (5)
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where T represents the observation time (in seconds). The formula for determining the bigeminy and
trigeminy using Equation (4) is as follows:

IF ThBG_min < RRLS < ThBG_max and
∣∣∣N(RRL) −N(RRS)

∣∣∣ < DiffLS,
ECG = Bigeminy

IF RRS < RRM and RRM < RRL and
∣∣∣N(RRM) −N(RRS)

∣∣∣ < DiffMS,
ECG = Trigeminy

END
END

(6)

where ThBG_min and ThBG_max represent the minimum and maximum values among the differences
between the long and short periods for determining bigeminy.
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2.3.3. PVC, VT, and SVT

Figure 7 shows the features of PVCs, VT, and SVT. PVCs represent extra heartbeats that begin in
one of two ventricles [44]. A PVC typically has a wide QRS interval (QRS width > 120 ms). In VT,
the number of continuous PVCs is 3, 9, or greater, and typically the HR is ≥100 bpm. SVT includes
many forms of heart arrhythmias that originate above the ventricles (or supraventricular) in the atria or
AV node [45]. SVT is characterized by a very high HR between 150 and 250 bpm, as well as merged P
and T waves, as shown in Figure 7. A PVC can be determined with just one beat, but the identification
of VT and SVT requires at least 1 min of the signal. PVC, VT, and SVT can be detected by applying the
aforementioned arrhythmia characteristics.Sensors 2020, 20, x FOR PEER REVIEW 8 of 22 
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2.3.4. AF

AF represents an arrhythmia characterized by fast and irregular beating of atrial chambers [46].
It often starts as short periods of abnormal beating, which increases over time. It begins as an
atrial flutter, which then transforms into AF. AF is associated with an increased risk of heart failure,
dementia, and stroke and is a type of SVT. It can be characterized by an irregular rhythm, the absence
of a P wave and isoelectric baseline, and a variable ventricular rate. Its QRS complex is usually
<120 ms, except in cases of a preexisting bundle branch block, an accessory pathway, or rate-related
aberrant conduction [47]. Fibrillatory waves may be present and can be either fine (amplitude
< 0.5 mm) or coarse (amplitude > 0.5 mm). Additionally, fibrillatory waves may mimic P waves,
leading to misdiagnosis.

Figure 8 shows the five features used for AF detection. The proposed AF detection method is
applied to an ECG signal length of ≥1 min to avoid the degradation of the feature detection accuracy
due to noise and signal distortion. Because AF is characterized by no P wave or a very small P wave,
it can be used as a feature for AF detection. The first feature for AF detection is the atrial activity (AA),
which is measured as the P-wave area (PA). The P wave is defined by three points, i.e., the P-onset,
P-peak, and P-offset, and the AA is measured according to the PA using the three P-wave related points.
The second feature is the BPM, as AF has a high HR or BPM. Because the RR intervals of AF are irregular,
the multiplication of SD1 (standard deviation of long axis) and SD2 (standard deviation of short
axis) is used as the third feature in the poincaré plot. Additionally, irregular RR intervals reduce the
probability of the highest bin (PHB) in the RR histogram. The PHB can be calculated as the reciprocal
of the HRV triangular index (HTI). To simplify the calculations, the complement of 1 for the PHB
(CPHB) is obtained as (1–PHB) and is used as the fourth feature. The fifth feature is the high-frequency
amplitude of the fibrillatory wave. AF has a strong high-frequency component, because fibrillatory
waves are normally included in the non-QRS complex of AF. The high-frequency component of the
fibrillatory wave can be detected using Short-time Fourier Transform. In the spectrogram of Figure 7,
the horizontal and vertical axes represent the time and frequency, respectively, and the pseudo-color
represents the power. If the fibrillatory wave is severe, the power value increases. Lower values of the
AA and PHB and higher values of the BPM, the multiplication of the two standard deviations (MSD),
and the frequency of the fibrillatory wave correspond to more severe AF.Sensors 2020, 20, x FOR PEER REVIEW 9 of 22 
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According to the foregoing explanation, the five normalized features for AF detection are calculated
as follows: 

AA =
(
PAmax − PAavg

)
/
(
PAmax − PAmin)

HR = (BPMavg − BPMmin)/(BPMmax − BPMmin)

SD = (MSDavg −MSDmin)/(MSDmax −MSDmin)

CPHB = (CPHBavg −CPHBmin)/(CPHBmax −CPHBmin)

OSC = (OSCavg −OSCmin)/(OSCmax −OSCmin),

(7)

where OSC represents the average power of the spectrogram, and the subscript ‘avg’ denotes the
average of each feature obtained over a given time period. The minimum and maximum values
for normalizing each feature are as follows: PAmax = β−1

× (3α× F)(2α× F)/2, β = 10, α(= 0.4),
PAmin = 0, BPMmax = 100, BPMmin = 0, MSDmax =0.01, MSDmin = 0, CPHBmax = 1, CPHBmin = 0,
OSCmax = 15, and OSCmin = 0. α represents the time (in seconds) of one grid in the ECG graph
paper. In PAmax, the first and second parentheses indicate the base and height of a typical P wave,
respectively [48]. Half of the product of these values corresponds to the area of the P wave. β represents
the ratio control factor of the PA. The max of the BPM is set based on tachycardia, which means more
than 100 beats per minute. One standard deviation value of 0.1 was determined assuming that the
difference between the current and next RR intervals for a stable heart rate was 0.1 or less. As a result,
the max of the MSD was set at 0.01. Since the PHB is a probability between 0 and 1, the CPHB also
has a value in the same range. And the fibrillatory waves have the atrial rate from 300 to 600 waves
per minute with varying morphology and high frequency [49]. The limit of the high waves of the
fibrillation wave is occasionally set up to 650 [50]. Taking into account the waves per minute of the
fibrillation wave, the min and max values of the OSC were set.

3. Results

3.1. R-Peak Detection Performance Using MITDB

Figure 9 shows the R-point detection result, difference, max filter, and adaptive threshold for
various MITDB records. R peaks were detected normally for the normal sinus rhythm (N) of Record
100. Certain parts of Record 104 consisted of Paced (/) and a fusion of paced and normal (f). The “ ‘/’
rhythm exhibited a wide and high T wave, and the ‘f’ rhythm exhibited a spiked R peak. Examining
the difference between the original signal and the filtered signal reveals that the S and T waves of
the ” ‘/’ rhythm and the additional R wave of the ‘f’ rhythm were suppressed, while the R peak was
improved. An isolated QRS-like artifact (|) occurred between the 9th and 10th normal sinus rhythms of
Record 105, but the proposed method successfully suppressed the artifact. Additionally, Record 108
contained baseline wander (motion artifact), but R peaks were detected normally. The experimental
results confirmed that the proposed method is robust to artifacts such as deformation of S and T waves
and baseline wander.

To evaluate the performance of the detection algorithm, several indices were introduced,
including the number of true positives (TP, QRS complexes detected as QRS complexes), the number of
false negatives (FN, QRS complexes not detected as QRS complexes, number of incorrectly rejected QRS
complexes), number of false positives (FP, non-QRS complexes detected as QRS complexes, number of
incorrect QRS predictions). The sensitivity (Se = TP/(TP + FN)) is the percentage of true beats that
were correctly detected by the algorithm. The positive prediction (+P = TP/(TP + FP)) is the percentage
of beat detections that were true beats. The detection error (DER = (FP + FN)/(TP + FN)) is the ratio of
the number of false detections to the total number of detected heartbeats. The detection performance
for MITDB is shown in Table 2. An average QRS detection rate of 99.62%, a sensitivity of 99.82% and a
positive prediction of 99.80% are obtained against all recordings of MITDB.
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Figure 9. Detected R peaks for MITDB Records (a) 100, (b) 104, (c) 105, and (d) 108.

Record 105 is a tape that makes it difficult to detect the R peak owing to heavy noise and is widely
used for comparison and verification of algorithms. Table 3 presents a comparison of the existing
algorithms and the proposed method using Record 105. The proposed method ranks second among
the published results of other algorithms, confirming its excellent performance.

The time cost of the proposed method was analyzed for several records from the MITDB (360 Hz)
using MATLAB R2020B in Windows 10 with an Intel i9 4-core central processing unit and 128 GB.
Figure 10 shows the calculation time per 1000 iterations over 11 s of Records 100, 104, 105, and 108.
The respective average processing time was 22.36 ms for Record 100, 22.05 ms for Record 104, 22.36 ms
for Record 105, and 21.71 ms for Record 108. The total processing average time for an 11-s period
was approximately 22.12 ms, indicating that the proposed method is suitable for real-time ECG
signal processing.
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Table 2. Performance evaluation of the proposed method using the MITDB.

Tape Total FN FP Se
[%]

+P
[%]

DER
[%] Tape Total FN FP Se

[%]
+P
[%]

DER
[%]

100 2273 0 0 100 100 0 201 1963 7 3 99.64 99.85 0.51
101 1865 2 5 99.89 99.73 0.38 202 2136 4 5 99.81 99.77 0.42
102 2187 1 1 99.95 99.95 0.09 203 2980 18 21 99.40 99.30 1.31
103 2084 0 1 100 99.95 0.05 205 2656 7 3 99.74 99.89 0.38
104 2229 3 12 99.87 99.46 0.67 207 1862 9 7 99.52 99.62 0.86
105 2572 11 18 99.57 99.30 1.13 208 2955 13 5 99.56 99.83 0.61
106 2027 5 6 99.75 99.70 0.54 209 3004 4 5 99.87 99.83 0.30
107 2137 2 5 99.91 99.77 0.33 210 2650 14 6 99.47 99.77 0.75
108 1774 7 27 99.61 98.49 1.92 212 2748 3 5 99.89 99.82 0.29
109 2532 3 4 99.88 99.84 0.28 213 3251 2 5 99.94 99.85 0.22
111 2124 4 3 99.81 99.86 0.33 214 2265 2 2 99.91 99.91 0.18
112 2539 0 1 100 99.96 0.04 215 3363 1 3 99.97 99.91 0.12
113 1795 2 4 99.89 99.78 0.33 217 2209 5 2 99.77 99.91 0.32
114 1879 2 5 99.89 99.73 0.37 219 2154 2 5 99.91 99.77 0.32
115 1953 0 1 100 99.95 0.05 220 2048 1 1 99.95 99.95 0.10
116 2412 9 5 99.63 99.79 0.58 221 2427 5 2 99.79 99.92 0.29
117 1535 2 3 99.87 99.80 0.33 222 2483 7 2 99.72 99.92 0.36
118 2278 0 1 100 99.96 0.04 223 2605 5 1 99.81 99.96 0.23
119 1987 1 3 99.95 99.85 0.20 228 2053 6 8 99.71 99.61 0.68
121 1863 4 2 99.79 99.89 0.32 230 2256 3 2 99.87 99.91 0.22
122 2476 0 1 100 99.96 0.04 231 1571 1 2 99.94 99.87 0.19
123 1518 3 1 99.80 99.93 0.26 232 1780 3 4 99.83 99.78 0.39
124 1619 2 1 99.88 99.94 0.19 233 3079 5 1 99.84 99.97 0.19
200 2601 1 7 99.96 99.73 0.31 234 2753 3 2 99.89 99.93 0.18

Total 109510 194 219 99.82 99.80 0.38Sensors 2020, 20, x FOR PEER REVIEW 12 of 22 
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Table 3. Performance comparison with other algorithms using Record 105.

Method FP FN DER (%) Ref

Linear adaptive filter 40 22 2.41 [12]
Bandpass filter 67 22 3.46 [10]

Generic algorithm 86 5 3.54 [16]
Wavelet transform 31 13 1.17 [17]
Wavelet denoising 5 78 3 [18]

3M method 19 7 1.01 [19]
Derivative-max filter 20 13 1.28 [20]

Proposed method 18 11 1.13

3.2. Arrhythmic Feature Detection Using Various ECG Data

Various ECG data were used to detect arrhythmic features. Bigeminy is the signal measured
by VP-100, while trigeminy, VT, and SVT were generated by the MS 400 simulator. Additionally,
Record 114 containing PVC was used for the PVC detection experiment. Figure 11 shows the R-peak
detection results for these arrhythmias. In the case of Bigeminy, RR intervals of 0.6 s and approximately
0.9 s were repeated, whereas in trigeminy, RR intervals of 0.55, 0.78, and 0.90 s were repeated.
Bigeminy and trigeminy contain PVCs, which have very low negative R peaks.

The normal R peak in these signals is difficult to detect because it has a smaller difference value
than the PVC in the difference signal. Nevertheless, the normal R is also detected owing to the lower
R-peak detection threshold via the adaptive threshold method of the proposed technique. The normal
R of Record 114 containing PVCs was not difficult to detect, in contrast to the cases of bigeminy
and trigeminy. In VT and SVT, the R-peak detection threshold was increased owing to the high
HR, and the R peak was normally detected. The merged P-T waves in SVT were normally detected,
whereas fragmented P-T waves were not detected.

Table 4 shows the performance evaluation of the arrhythmias tested in Figure 11. The evaluation
of MITDB 114 was excluded because it is already indicated in Table 2. There was no false R detection for
all arrhythmias (FP = 0). While there were R peaks that were not detected in bigeminy and trigeminy,
the R peaks of VT and SVT were almost completely detected. This is due to the non-detection of the
weakly negative R peak at bigeminy and the lower two R peaks at trigeminy in one sliding window.
It can be seen that the R peaks of bigeminy and trigeminy are not easy to detect completely due to R
peaks of various heights.

Table 4. Performance evaluation of test arrhythmias.

Arrhythmias Length No. of Beats FN FP Se(%) +P(%) DER(%)

Bigeminy 56 sec 72 7 0 90.28 100 9.72
Trigeminy 56 sec 79 10 0 87.34 100 12.66

VT 59 sec 149 1 0 99.33 100 0.67
SVT 59 sec 191 2 0 98.95 100 1.05

3.3. HRV Analysis of Various ECG Signals

The HRV can be measured via time- and frequency-domain methods for evaluating the
sympathovagal balance [51]. Table 5 presents the variables related to time- and frequency-domain
HRV measurements. The HRV is measured by the variation in the RR interval. This variation is
controlled by a primitive part of the nervous system called the autonomic nervous system [52]. RMSSD,
NN50, and pNN50 represent the short-term cardiac variability, indicate parasympathetic nerve activity,
and are closely associated with sudden death and AF in epilepsy [53]. In frequency analysis, the low-
and high-frequency components represent the activity of the sympathetic and parasympathetic nerves,
respectively. Low sympathetic nerve activity indicates increases in the blood pressure and HR, and low
parasympathetic activity indicates reductions in the blood pressure and HR.



Sensors 2020, 20, 6144 13 of 21
Sensors 2020, 20, x FOR PEER REVIEW 13 of 22 

 

  

(a) (b) 

 

(c) 

  

(d) (e) 

Figure 11. R-peak detection results for (a) bigeminy, (b) trigeminy, (c) MITDB 114 including PVC, (d) 
VT, and (e) SVT. 

The R peak in these signals is difficult to detect because it has a smaller difference value than 
the PVC in the difference signal. Nevertheless, the normal R is also detected owing to the lower  
R-peak detection threshold via the adaptive threshold method of the proposed technique. The normal 
R of Record 114 containing PVCs was not difficult to detect, in contrast to the cases of bigeminy and 
trigeminy. In VT and SVT, the R-peak detection threshold was increased owing to the high HR, and 
the R peak was normally detected. The merged P-T waves in SVT were normally detected, whereas 
fragmented P-T waves were not detected. 

Table 4 shows the performance evaluation of the arrhythmias tested in Figure 11. The evaluation 
of MITDB 114 was excluded because it is already indicated in Table 2. There was no false R detection 
for all arrhythmias (FP = 0). While there were R peaks that were not detected in bigeminy and 
trigeminy, the R peaks of VT and SVT were almost completely detected. This is due to the non-
detection of the weakly negative R peak at bigeminy and the lower two R peaks at trigeminy in one 

Figure 11. R-peak detection results for (a) bigeminy, (b) trigeminy, (c) MITDB 114 including PVC,
(d) VT, and (e) SVT.

The HRV results for MITDB and various arrhythmias are presented in Figure 12 and Table 6
The ECG signals used in the experiment were MITDB (each 10 min long), bigeminy (approximately
56 s), trigeminy (approximately 56 s), PVC (9 min 30 s, MITDB 114), VT (1 min), and SVT (1 min)
signals. In Table 4, the bold blue numbers indicate abnormal values that must be examined carefully.
Compared with arrhythmias, the records used in the MITDB exhibited relatively normal behavior
in HRV visualization. For example, in the case of Record 100, owing to the constant RR intervals,
points corresponding to the RR intervals were concentrated in one place in the histogram and poincaré
plot. However, overall, Record 104 with partial tachycardia and Record 108 with bradycardia exhibited
higher RMSSD, NN50, and pNN50 values than the other MITDB records used in the experiment.
Record 108 exhibited the highest HTI and TINN among the MITDB records, indicating that the RR
intervals were highly irregular compared with the other signals.
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Table 5. Variables related to time- and frequency domain- HRV measurements.

Variables Units Meaning

Ti
m

e
do

m
ai

n

Mean HR [s] -
HR std. [s] -

RR mean [s] Average RR interval in the window of measurement
NN50 [count] Number of adjacent RR intervals that varied by more than 50 ms

pNN50 [%] Percentage of adjacent RR intervals that varied by more than 50 ms
RMSSD [s] Root mean square of difference between coupling intervals of adjacent RR intervals

HTI - Reciprocal of probability of the highest bin of histogram of RR intervals
TINN - The baseline width of the distribution measured as a base of a triangle

Fr
eq

ue
nc

y
do

m
ai

n VLF power [ms2] Power from very low frequency (0 Hz~0.04 Hz)
LF power [ms2] Power from low frequency (0.04 Hz~0.15 Hz)
HF power [ms2] Power from high frequency (0.15 Hz~0.40 Hz)

VLF [%] (VLF Power/Total Power) × 100
LF [%] (LF Power/Total Power) × 100
HF [%] (HF Power/Total Power) × 100

LF/HF - Sympathovagal balance

Table 6. HRV results for MITDB records and various arrhythmias.

HRV
MITDB Arrhythmias

100 104 105 108 Bigeminy Trigeminy
(gen.*)

PVC
(mitdb114)

VT
(gen. *)

SVT
(gen. *)

RR mean 0.79 0.73 0.70 1.03 0.79 0.74 1.04 0.40 0.32
RR std. 0.05 0.17 0.11 0.17 0.17 0.15 0.18 - -

Heart rate mean 75.86 82.43 86.17 58.89 65 69 58 148 189
Heart rate

std. 1.95 3.65 2.71 2.37 - - 3.64 - -

RMSSD 0.05 0.19 0.15 0.20 0.33 0.25 0.25 0.01 0.00
NN50 23 118 49 142 31 45 144 - -

pNN50 3.96 20.31 8.43 24.44 48.44 66.18 26.23 - -
HTI 7.66 8.56 6 11.64 3.42 2.88 12.50 1.02 1

TINN 0.21 0.25 0.11 0.39 0.06 0.03 0.31 0.06 0.03

LF power 22.91 29.33 25.08 32.41 37.12 10.39 16.25 15.43 27.34
HF power 77.09 70.67 74.92 67.59 62.88 89.61 83.73 84.57 72.66

LF 2.93 5.18 4.12 5.34 0.61 0.08 2.91 0.25 0.20
HF 9.84 12.48 12.29 11.13 1.03 0.66 14.98 1.35 0.52

LF/HF 0.30 0.42 0.33 0.48 0.59 0.12 0.19 0.18 0.38

gen. *: generated.

In contrast to the aforementioned MITDB, the arrhythmias exhibited abnormal distribution
characteristics in the HRV visualization. First, in bigeminy, a short RR interval of 0.6 s and a long RR
interval of 0.9 s (on average) were repeated. In the RR interval trend, the short periods were constant,
and the long periods changed irregularly. In trigeminy, a short period of 0.55 s, an intermediate period
of 0.78 s, and a long period of 0.90 s were repeated. For bigeminy and trigeminy, there were two or three
independent groups of RR interval points on the histogram and poincaré plot, owing to their periodicity.
MITDB Record 114 was a bradycardia signal with 47 PVCs out of a total of 1879 beats, and these PVCs
were responsible for scattered RR interval points on the histogram and poincaré plot [54]. Because the
VT and SVT signals were generated by simulators with very short periods, they yielded very small
RR intervals that were concentrated at one point on the poincaré plot. In particular, SVT exhibited a
very high mean HR. Among the arrhythmias, bigeminy and trigeminy exhibited the highest pNN50.
Record 114 exhibited the highest NN50 but a low pNN50, because the number of NN50 was low
compared with the overall signal length.

On the PSD, arrhythmias excluding Record 114 exhibited a higher HF power and very low LF and
HF percentages compared with the other MITDB records. This indicates that these arrhythmias reflect
very low activity of the sympathetic and parasympathetic nerves. The LF/HF ratios for Trigemini, PVC,
and VT were <0.4, indicating that the degree of balance of autonomic nerves is low.
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3.4. AF Detection

Excluding records with problems with data length and data loading, the partial records of AFDB
were used to extract the AF features. In these signals, the normal beat period and the AF period were
alternately repeated. In the AF signal used in the experiment, a length of 24 min after 46 s was used,
and Figure 13 shows the beginning 12 s of these AF signals. Figure 14 presents the normalized feature
values of the AF signals in polar coordinates. Figure 14 shows the visualization of VT and SVT using
AF detection technology. It can be seen that arrhythmias other than AF do not show a large area in
AF visualization. Also, the normal signal will have a very small area in its visualization. As shown,
more severe AF corresponded to larger AF feature values in the polar coordinates. The severity of
the AF is visually displayed. Records 04126 and 06995 exhibited better HRs. Record 06426 and 07161
show the concentrations of the RR intervals in the poincaré plot than the other signals. Record 06426
and 08378 were considered to be the most severe AF visually. For Records 07162, the high-frequency
component in the spectrogram was small. Record 08405 exhibited better AA than the other signals.
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Table 7 presents the five normalized feature values for the AF signals. Among the AF signals
used in the experiment, Record 04043 for HR, Record 04746, 06995, 07162, 07910, and 08215 for AA,
Record 06426 and 07162 for CPHB and SD, and Record 06426 and 08378 for OSC exhibited the highest
(worst) feature values. An AF analysis revealed that the AF severity was in the following order:
Records 06426, 08378, 06995, 05121, 04126, 04043, 07162, 05261, 08405, 05091, 07910, 07879, 04746,
and 08215. The test AF signals used in the experiment show high average values from 0.61 to 0.91 in
normalized AF features. In addition, each normalized AF feature value for test AF signals shows a
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range of 0.63 to 0.94. It can be inferred that the proposed features can be used for AF detection through
these experiments.
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4. Discussion

Recently, ECG measuring devices having various sampling rates from smart bands to 12-channel
ECG measuring devices have been developed. One type of ECG measuring device is connected to
a database server of a hospital for storing and analyzing biological signals. However, heart-disease
patients may use different measuring devices according to their symptoms, disease names,
and measurement periods. Additionally, various ECG compression techniques [55–57] are being
developed to increase the transmission efficiency of the measured ECG signals. During the compression
process, the sampling rate of the original ECG signal may change. In this ECG measurement and
transmission environment, the ECG processing and analysis algorithm must respond to various
sampling rates, for which the proposed method offers a solution.

The proposed R detection and HRV analysis technology can be directly utilized for real-time heart
rate monitoring through a wearable ECG measuring device [58]. In addition, HRV parameters related
to autonomic and non-autonomous nervous systems can be used as additional parameters for blood
pressure estimation using photoplethysmography [59].

Previous arrhythmia studies have been limited to the field of detection, and HRV analysis for
arrhythmia has been insufficient. The HRV analysis results for the arrhythmias discussed in this
paper can be used to increase the accuracy of arrhythmia detection. Currently, the HRV is analyzed in
the time and frequency domains according to the time difference in the time domain of the detected
R peak. However, the height information of the R peak is also an important parameter. Therefore,
research on a new HRV based on the height difference in the range domain of the detected R peak
must be performed.

In this study, AF was visualized using polar coordinates. The visualization of major arrhythmias
can be useful for the early detection of arrhythmias and is an efficient method for analyzing the heart
conditions of heart-disease patients. According to the results of present study, other major arrhythmias
can also be visualized using their own features. Visualization studies involving arrhythmia can
significantly affect the development of applications for heart-condition analysis of arrhythmia patients.

5. Conclusions

This paper proposes an R-peak detection method for processing ECG signals measured by
ECG measuring devices with different sampling rates. Additionally, a method for detecting major
arrhythmia was presented, and an HRV analysis was performed. A visualization method for AF
was suggested according to its characteristics. In the future, various measurement devices may be
connected to one hospital database server for efficiently measuring biometric signals. In this case,
the proposed method can be universally employed regardless of the connected measuring device.
Furthermore, the visualization of arrhythmia will be accelerated in the development of applications for
heart-disease patients in the future.
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