
sensors

Article

Contribution to Speeding-Up the Solving of
Nonlinear Ordinary Differential Equations on
Parallel/Multi-Core Platforms for Sensing Systems

Vahid Tavakkoli *, Kabeh Mohsenzadegan, Jean Chamberlain Chedjou and
Kyandoghere Kyamakya

Institute for Smart Systems Technologies, University Klagenfurt, A9020 Klagenfurt, Austria;
kabehmo@edu.aau.at (K.M.); Jean.Chedjou@aau.at (J.C.C.); kyandoghere.kyamakya@aau.at (K.K.)
* Correspondence: vtavakko@edu.aau.at; Tel.: +43-463-2700-3540

Received: 18 September 2020; Accepted: 26 October 2020; Published: 28 October 2020
����������
�������

Abstract: Solving ordinary differential equations (ODE) on heterogenous or multi-core/parallel
embedded systems does significantly increase the operational capacity of many sensing systems in
view of processing tasks such as self-calibration, model-based measurement and self-diagnostics.
The main challenge is usually related to the complexity of the processing task at hand which
costs/requires too much processing power, which may not be available, to ensure a real-time
processing. Therefore, a distributed solving involving multiple cores or nodes is a good/precious
option. Also, speeding-up the processing does also result in significant energy consumption or sensor
nodes involved. There exist several methods for solving differential equations on single processors.
But most of them are not suitable for an implementation on parallel (i.e., multi-core) systems due
to the increasing communication related network delays between computing nodes, which become
a main and serious bottleneck to solve such problems in a parallel computing context. Most of the
problems faced relate to the very nature of differential equations. Normally, one should first complete
calculations of a previous step in order to use it in the next/following step. Hereby, it appears also
that increasing performance (e.g., through increasing step sizes) may possibly result in decreasing the
accuracy of calculations on parallel/multi-core systems like GPUs. In this paper, we do create a new
adaptive algorithm based on the Adams–Moulton and Parareal method (we call it PAMCL) and we do
compare this novel method with other most relevant implementations/schemes such as the so-called
DOPRI5, PAM, etc. Our algorithm (PAMCL) is showing very good performance (i.e., speed-up) while
compared to related competing algorithms, while thereby ensuring a reasonable accuracy. For a better
usage of computing units/resources, the OpenCL platform is selected and ODE solver algorithms are
optimized to work on both GPUs and CPUs. This platform does ensure/enable a high flexibility in the
use of heterogeneous computing resources and does result in a very efficient utilization of available
resources when compared to other comparable/competing algorithm/schemes implementations.

Keywords: ODE Solver; OpenCL; Parareal; parallel/multi-core computing; sensing systems;
heterogenous embedded systems

1. Introduction

The history of using differential equations has traces in calculus from the old Newton’s times.
Since then it has evolved so much, and it is extensively used in many different branches of science
and engineering. The numerical solving of differential equations with initial conditions is a classic
problem, which has emerged before the computer invention and has various different usages in
physics [1], engineering [2], chemistry [3], economics [4], biology [5], and several other disciplines.

Sensors 2020, 20, 6130; doi:10.3390/s20216130 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5675-4747
https://orcid.org/0000-0003-0773-9476
http://www.mdpi.com/1424-8220/20/21/6130?type=check_update&version=1
http://dx.doi.org/10.3390/s20216130
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 6130 2 of 17

Specifically in sensors, ODEs are involved in various processing endeavors such as to detect anomalies
in machines related sensor data [6], or to model nonlinear sensors like time-variant inductors [7] or
piezoelectrically actuated microcantilever sensors [8], and/or to study sensors’ behavior or to optimize
sensors’ performance. ODEs also used to find sensor’s optimal location [9]. Quorum sensing (QS),
which is based on bacterial communication, can also be modeled with differential equations. Furthers,
ODEs can also be used in self-organizing networks, self-diagnostic and environmental monitoring
systems [10]. Hence, finding new ways for solving ODEs in shorter time can help to save, besides
processing related energy consumption, both money and time, while using cheaper devices for better
performing applications.

Differential equations have many different forms. In this paper, we do focus on ordinary differential
equations (ODEs).

Equation (1) is showing an example of this type of differential equations:

.
y(t) = f (t, y(t)); y(t0) = y0, t ∈ [t0, te] (1)

where y is a vector valued function of t (time), y(t) : R→ Rn , n is dimension of problem, the time
derivative of y,

.
y(t), is a function of y and t, and the function f has the values domain f : Rn

→ Rn.
Further, y(t0) = y0 is called the initial value. Thus, we do have a so-called initial value problem (IVP))
and y0 is the starting point for calculations at t0. The solving of Equation (1) shall calculate the values
of y from t0 until te.

We need to determine the problem’s solutions (i.e., y(t)) for all values of t within the interval
[t0, te], this thus starting from the initial value y(t0) up to the final value of the y(te). The solution of
Equation (1) can be found by applying various appropriate methods, which are either numerical or
analytical. For those cases for which it is hard to find an analytical solution, one does usually then
involve numerical methods.

Regarding numerical methods, the simplest way to solve Equation (1) is to integrate the function f
for over the study area (i.e., [t0, te], provided the function f does satisfy the so-called Lipchitz conditions.
A numerical solving can be implemented through a discretized version of Equation (1), which is given
in Equation (2). In Equation (2), yt+1 is the result of the calculation of one step. The calculation of
one step is obtained by taking the previous value yt plus the integral of f (t, yt) from the previous
time t up to the current time t + 1. For calculating the integral, various traditional methods like Euler,
Runge-Kutta, etc. can be used:

yt+1 = yt +

∫ t+1

t
f (s, ys)·ds (2)

where s is time between t and t + 1, and ys is value of function f in time s.
In the case of a single computing core, there is no problem to achieve an efficient usage of

computing resources. In this one-core context, it is very easy and straight-forward to implement
Equation (2) and, after the calculation of one step is finished, one does move on calculating the next
step. The steps are solved in a serial manner and the result of each step is then be used for next steps’
calculations. However, when one works on a multi-core/parallel platform, that sequential model
cannot be used anymore, as other available resources/cores/nodes would have nothing to do.

There exists five different space-time parallel computing methods/schemes for implementing the
difference equation Equation (2) [10]. Those five schemes are the following ones: domain decomposing,
parallel solver, multiple shooting, direct time parallel, and multi grid.

In the domain decomposing scheme, one does separate, if possible, the problem into n sub-problems
and solve each of them separately. This can be realized by integrating the ‘domain decomposition’
and the so-called waveform relaxation [11,12]. Basically, in this solver type, the problem domain is
decomposed into overlapping sub-domains, and each domain is then solved separately [13]. Choosing
the correct way for decomposing is very important for increasing the overall performance. Also,
the ‘decomposing method’ can be varied due to the nature of Equation (1) [14,15].

Sensors 2020, 20, 6130 3 of 17

A further approach is to use a parallel integration method. This is however not possible for
single-step integration methods. See for example Equation (3), where the Euler method is presented.
As one can see, for calculating yt, one step is required, and this step cannot be separated (broken
down) into smaller tasks/sub-steps for a separate implementation on different cores of a parallel system.
The ∆t is the calculation step. A lower value of ∆t provides a higher accuracy for solving a given
problem but it does however thereby increase the resulting calculation time.

yt = ∆t ·
.
y(t) + yt−1 (3)

Therefore, this above-named further approach, i.e., a “parallel integration method”, is only possible
while using multi-steps methods such as Runge-Kutta or Adams-Bashforth integrators, which are
classified as larger group of Generalized Linear Model (GLM) solvers. GLM solvers are explained in
detail in Section 2.1.

Methods like Runge-Kutta are multi-steps iterated methods [16–19]; this means one can distribute
calculations of each step on different computing nodes. But at the end of each step, the different
computing nodes should send their results to one node to sum-up or combine them appropriately
and then calculate a new value. This last part of the lastly described scheme does visibly create a
bottleneck w.r.t. to the potential speeding-up of the solving of differential equations while using a
multi-step method.

In the shooting methods which were introduced by Nievergelt in 1964 [20], Equation (2) is
decomposed in the time direction into semi-linear boundary value problems. Smaller problems are
then solved with higher accuracy in parallel, but the error will then be corrected in a serial operation.
Although, this method is by definition sequential because of the integrated serial error correction.
However, it normally does cost much less than the high-accuracy calculation of results on hole
of integration area. Therefore, this brings real advantages in the perspective of solving any ODE
problem [21].

Multigrid methods like the so-called “domain decomposition” can be used for solving non-linear
ODE’s. The problem is discretized with finite approximations into sparse linear systems of
equations. This linear system is later solved via stationary iterative schemes such as the Gauss-Seidel
method [22,23].

In lastly described approach, one tries to solve the problem directly without any iteration.
All iterations for solving n points will be put in one place in one matrix and the problem is then solved
together at once [24].

Furthers, it can be observed that several scientific works have been undertaken in order
to create new integration methods, which can provide ODE solvers with better possibilities for
an efficient implementation on parallel platforms. These efforts mostly focused on creating the
so-called Adams-Bashforth derivative methods such as parallel Adam-Bashford (PAB) and parallel
Adam-Moulton (PAM) [25,26]. These last methods have shown very good scalability performance
while increasing the number of computing nodes.

Today, most of modern computers have both n core CPUs (n-CPUs) and GPUs. The increasing
power of CPUs and GPUs is mostly reached by increasing the number of computing nodes. Although
the number of computing nodes has significantly increased in GPUs but also in n-CPUs, the need for
algorithms capable to efficiently use the multi-core computing resources is strong. It has been shown
that implementing “problem solvers” on parallel/multi-node platforms can speed-up the solving in
many scientific fields such as fluid dynamics [27], finite elements methods [28], molecular dynamics
research [29], applied physics [30], chemical kinetics [31], etc.

On the other hand, for writing programs which can efficiently run on different computing
architectures is not a trivial problem. For solving this concern, some middleware concepts/platforms
which do support different types of n-CPUs or GPUs architectures have been developed and introduced.
In this paper, we use the so-called OpenCL platform. It is possible, by using OpenCL, to run programs
directly on CPU or GPU. However, this programming framework, like other similar frameworks has also

Sensors 2020, 20, 6130 4 of 17

its own restrictions. In this paper, we do introduce a new solver type/concept which does well fit and
is integrated in the OpenCL platform. This novel ODE solver concept implemented through OpenCL
has been extensively tested and benchmarked with other related competing famous/well-known
algorithms from the most relevant literature.

This paper does present a very brief critical overview about related works in Section 2. Then,
our novel ODE parallel-solver concept is introduced in Section 3. The implementation system
architecture in OpenCL, which does support the running application of our novel solver concept is
explained in Section 4. Then, extensive experiments and a comprehensive benchmarking are presented
and discussed in Sections 5 and 6. To finish, comprehensive concluding remarks, which summarize
the quintessence of the results obtained, are presented in Section 7.

2. Related Works

As briefly explained above, we should search for multi-stage methods, which do have the
potential for solving each stage of the problem, possibly independently of each other [32]. For this
study, the knowingly best-performing multi-step algorithms have been selected for analysis and
possibly benchmarking too. One of those methods is derived from the Runge-Kutta family and we
call it “Iterated Runge-Kutta”. And two further methods are derived the from the Adams–Bashforth
family, which are respectively called “Parallel Adams–Bashforth (PAB)” and “Parallel Adams-Moulton
(PAM)” [25].

2.1. General Linear Methods

The General Linear Method (GLM) as proposed by Butcher in 1966 was defined to generalize and
integrate both Runge-Kutta (multi-stage) methods and linear multistep (multi-value) methods. During
each step of the calculation, one considers r numbers of previous values and s stages. At the start of
each step, we have input items from the previous steps as follows:

y[n]i , i = 1, 2, . . . , r (4)

And during calculation of stages in one step, we have stage derivatives as follows:

Yi, Fi , i = 1, 2, . . . , s (5)

Thus, this method has the following variables for calculating the next stage n + 1:

y[n] =

y[n]1

y[n]2
...

y[n]r

, y[n+1] =

y[n+1]

1

y[n+1]
2

...

y[n+1]
r

, Y =

Y1

Y2
...

Ys

, F =

F1

F2
...

Fs

 (6)

These quantities are related to each other by the following equation, see Equation (7):

Y = h(A⊗ I) F + (U ⊗ I) y[n]
y[n+1] = h(B⊗ I) F + (V ⊗ I)y[n]
F = f (Y)

(7)

where ⊗ is tensor product, h is the step-size in [tn, tn+1], and A, U, B and V are constant matrices
having the following respective dimensions:

A ∈ Rs×s, U ∈ Rs×r, B ∈ Rr×s, V ∈ Rr×r (8)

Sensors 2020, 20, 6130 5 of 17

In Equation (7), the result of the step (y[n+1]) is calculated based on the previous values (y[n]) and
the stage values (F, Y). F is calculated directly from Y based on the Equation (1) definition. For those
linear multistep methods for which previous values (y[n]) are required, the starting vector can be
calculated by one of the nth-order Runge-Kutta methods such as the so-called Dormand-Prince method
(DOPRI) which do not need previous values.

As Butcher explained [33], the customization of GLM is creating a different ODE solver, which can
be customized to have properties of either the Runge-Kutta method by setting r = 1 or the linear
multistep method by setting s = 1. For solving non-stiff ODE problems, some methods based on GLM
have been created by customizing the parameters r and s and/or the matrices A, U, B and V.

For example, the classical fourth order of Runge-Kutta can be expressed in GLM with the
following matrices:

A =

0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1 0

, U =

1
1
1
1

, B =
[

1
6

1
3

1
3

1
6

]
, V = [1] (9)

And in the case of the second order Adam-Bashforth method, A, U, B and V can expressed
as follows:

A = [0], U =
[

1 3
2 −

1
2

]
, B =

0
1
0

, V =

1 3

2 −
1
2

0 0 0
0 1 0

 (10)

By choosing a strictly diagonal or triangular matrix A, the stage calculation will be decoupled
into s independent sub-systems. Therefore, in this case, the implementation of the solver on a
parallel/multi-core system is much easier as the stage dependency is thereby significantly reduced.

For example, if we have following A matrix:

A =

0
x 0
x 0 0
x 0 0 0
x x x 0 0
x x x 0 0 0
x x x 0 0 0 0

(11)

(2,3,4) Stages and (5,6,7) Stages can be computed concurrently as those stage does not use value
from each other, Therefore they can be solved in parallel way. This pattern can be seen in the parallel
iterated Runge-Kutta (PIRK) or better in the step-independent methods like the PAB or the PAM [25]
methods, where A = [0]. In this paper, we do also use the GLM solver to create our new solver by
customizing the matrices A, U, B and V.

2.1.1. Parallel Iterated Runge-Kutta

This method is defined according to [34–36] and is also based on the GLM method (Equation (7)).
The matrices A and V have the following definition:

A =

1 0 · · · 0
...

... · · ·
...

1 0 · · · 0

, V = [1] (12)

The U matrix is calculated based on related Runge-Kutta method as explained in the previous
sections. This method is a very precise method. But it is not using all resources when we have only

Sensors 2020, 20, 6130 6 of 17

one ODE equation. The number of steps can be changed during each iteration. Therefore, one can
reach a significant speed-up while solving large problems needing too steps to calculate.

An implementation example of this model can be shown in Figure 1:

Sensors 2020, 20, x FOR PEER REVIEW 5 of 16

퐴 =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0
1
2

0 0 0

0
1
2

0 0
0 0 1 0⎦

⎥
⎥
⎥
⎥
⎤

, 푈 =

1
1
1
1

, 퐵 =
1
6

1
3

1
3

1
6

, 푉 = [1] (9)

And in the case of the second order Adam-Bashforth method, A, U, B and V can expressed as follows:

퐴 = [0], 푈 = 1
3
2

−
1
2

, 퐵 =
0
1
0

, 푉 =
1

3
2

−
1
2

0 0 0
0 1 0

 (10)

By choosing a strictly diagonal or triangular matrix 퐴, the stage calculation will be decoupled
into 푠 independent sub-systems. Therefore, in this case, the implementation of the solver on a
parallel/multi-core system is much easier as the stage dependency is thereby significantly reduced.

For example, if we have following 퐴 matrix:

퐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0
푥 0
푥 0 0
푥 0 0 0
푥 푥 푥 0 0
푥 푥 푥 0 0 0
푥 푥 푥 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (11)

(2,3,4) Stages and (5,6,7) Stages can be computed concurrently as those stage does not use value
from each other, Therefore they can be solved in parallel way. This pattern can be seen in the parallel
iterated Runge-Kutta (PIRK) or better in the step-independent methods like the PAB or the PAM [25]
methods, where 퐴 = [0]. In this paper, we do also use the GLM solver to create our new solver by
customizing the matrices A, U, B and V.

2.1.1. Parallel Iterated Runge-Kutta

This method is defined according to [34–36] and is also based on the GLM method (Equation
(7)). The matrices A and V have the following definition:

퐴 =
1 0 ⋯ 0
⋮ ⋮ ⋯ ⋮
1 0 ⋯ 0

, V = [1] (12)

The U matrix is calculated based on related Runge-Kutta method as explained in the previous
sections. This method is a very precise method. But it is not using all resources when we have only
one ODE equation. The number of steps can be changed during each iteration. Therefore, one can
reach a significant speed-up while solving large problems needing too steps to calculate.

An implementation example of this model can be shown in Figure 1:

Figure 1. Implementation of the parallel Runge-Kutta algorithm. Stage values (푌) can be calculated
in parallel but the step result needs to be calculated sequentially

Figure 1 is showing the calculation flow of the different steps. The stage values (푌) can be done
in a parallel way, but each processing unit needs to exchange information during the processing and
at the end of each stage. Again, each node requires to exchange information with another specific
node in order to sum up all steps and create the step value (푦[]).

For i = 1 to n

Calculate 푌 in parallel
Calculate 푦[] in sequential

Figure 1. Implementation of the parallel Runge-Kutta algorithm. Stage values (Y) can be calculated in
parallel but the step result needs to be calculated sequentially.

Figure 1 is showing the calculation flow of the different steps. The stage values (Y) can be done in
a parallel way, but each processing unit needs to exchange information during the processing and at
the end of each stage. Again, each node requires to exchange information with another specific node in
order to sum up all steps and create the step value (y[i+1]).

2.1.2. Parallel Adams-Bashforth

This method was introduced by v.d. Houwen and Messina in 1998 [25]. Since then it has been
further developed and optimized to be used in parallel platforms [37]. The Parallel Adams-Bashforth
(PAB) is based on the Adams–Bashforth corrector by customizing the GLM with A, U, B and V matrices
having the following values:

A = [0], V = a·bT, a =
[

1 1 . . . 1
]
, b =

[
0 . . . 0 1

]
(13)

The U matrix is calculated based on the related Adams-Baschforth method explained above in
the GLM section. It has been proved that by choosing those matrices in Equation (13), the PAB solver
becomes super-convergent to the real solution of an ODE problem. Implementing this method on
parallel system is not straight forward and requires a special scheduling. Figure 2 is showing a basic
scheduling for running this method on 3 processing units. In each iteration, after find the results (y[i]),
the F values which are to use for the next iteration will be calculated. Thus, each iteration calculation
can be done in a parallel way. But after finishing an iteration, each computing unit should exchange its
information with other processors in its respective group of processors. This process will be continued
until end of the calculation time (Figure 2).

The PAB method can result in an improvement of the speed-up when compared to the Runge-Kutta
method because, here, the communication between nodes can be done only at the beginning and at
the end of running a stage. Therefore, it is very efficient to implement the PAB method on a parallel
system. On the other hand, if we want to implement this method on an OpenCL platform, we do need
a very good synchronization. This because the last node having the larger amount of calculations,
the other nodes need to wait until it will finalize its calculations and only then let the other nodes
synchronize themselves with latest values.

Sensors 2020, 20, 6130 7 of 17

Sensors 2020, 20, x FOR PEER REVIEW 6 of 16

2.1.2. Parallel Adams-Bashforth

This method was introduced by v.d. Houwen and Messina in 1998 [25]. Since then it has been
further developed and optimized to be used in parallel platforms [37]. The Parallel Adams-Bashforth
(PAB) is based on the Adams–Bashforth corrector by customizing the GLM with A, U, B and V
matrices having the following values:

퐴 = [0] , 푉 = 푎. 푏 , 푎 = [1 1 … 1] , 푏 = [0 … 0 1] (13)

The U matrix is calculated based on the related Adams-Baschforth method explained above in
the GLM section. It has been proved that by choosing those matrices in Equation (13), the PAB solver
becomes super-convergent to the real solution of an ODE problem. Implementing this method on
parallel system is not straight forward and requires a special scheduling. Figure 2 is showing a basic
scheduling for running this method on 3 processing units. In each iteration, after find the results (푦[]),
the 퐹 values which are to use for the next iteration will be calculated. Thus, each iteration calculation
can be done in a parallel way. But after finishing an iteration, each computing unit should exchange
its information with other processors in its respective group of processors. This process will be
continued until end of the calculation time (Figure 2).

The PAB method can result in an improvement of the speed-up when compared to the Runge-
Kutta method because, here, the communication between nodes can be done only at the beginning
and at the end of running a stage. Therefore, it is very efficient to implement the PAB method on a
parallel system. On the other hand, if we want to implement this method on an OpenCL platform,
we do need a very good synchronization. This because the last node having the larger amount of
calculations, the other nodes need to wait until it will finalize its calculations and only then let the
other nodes synchronize themselves with latest values.

Figure 2. PAB execution and scheduling scheme on 3 processing units. The result value of each
iteration is calculated and then the F value for the next iteration is computed. Those values will be
propagated to the other processing units for the next iteration. In each iteration, 3 points of the
problem are solved.

2.2. Multiple Shotting Methods

In this type of methods, as explained previously in the introduction section, the space-time domain
is decomposed into smaller parts (sub-domains) and each subdomain is solved separately. The idea of
creating this method is coming from Nievergelt in 1964 [20]. Since then, the method has been developed
and extended by different researchers and it is mostly well-known as ‘Parareal’ algorithm [38–40].

The general implementation of this so-called “Parareal” algorithm is composed/constituted of
two propagation operators:

1. The “Coarse approximation,” which is 퐺(푡 , 푡 , 푦) with the initial conditions 푦 = 푦(푡)
with the step size ℎ .

F(y) F(y) F(y) F(y)F(y) F(y) F(y) F(y) F(y) F(y) F(y) F(y)

Iteration 0 Iteration 1 Iteration 2 Iteration 3

Figure 2. PAB execution and scheduling scheme on 3 processing units. The result value of each iteration
is calculated and then the F value for the next iteration is computed. Those values will be propagated
to the other processing units for the next iteration. In each iteration, 3 points of the problem are solved.

2.2. Multiple Shotting Methods

In this type of methods, as explained previously in the introduction section, the space-time domain
is decomposed into smaller parts (sub-domains) and each subdomain is solved separately. The idea of
creating this method is coming from Nievergelt in 1964 [20]. Since then, the method has been developed
and extended by different researchers and it is mostly well-known as ‘Parareal’ algorithm [38–40].

The general implementation of this so-called “Parareal” algorithm is composed/constituted of
two propagation operators:

1. The “Coarse approximation,” which is G(ti, ti+1, yi) with the initial conditions yi = y(ti) with the
step size hg.

2. The “Fine approximation,” which is F(ti, ti+1, yi) with the initial conditions yi = y(ti) with the
step size h f .

Where hg � h f , therefore the main difference between the above listed two propagation operators
is their respective accuracy and the amount of time they do need to find the result as the coarse
approximator has a larger step size.

The main algorithm consists of the following steps [12]:

1. Find the values of y1, . . . , yn by using yi+1 = G(ti, ti+1, yi) in a sequential way.
2. Copy the y1, . . . , yn values into g1, . . . , gn in parallel.
3. Find the f1, . . . , fn values by using fi+1 = F(ti, ti+1, yi) in parallel.
4. Update y1, . . . , yn in sequential with the following steps:

a. gni+1 = G(ti, ti+1, yi).
b. yi+1 = fi+1 + gni+1 − gi.

5. Copy the gn1, . . . , gnn values into g1, . . . , gn.
6. Go to the step 3 until you reach required precision.

This above-described algorithm is also sequential; for each iteration we do also need the values
from the previous iteration. Thus, there is no real parallel-time integration as the sequential nature of
the process is not removed. But the most expensive part is done in parallel (see Step 3) and solving
that most expensive part in parallel will bring a significant advantage when increasing the number of
computing nodes. One main disadvantage is, however, that this algorithm needs too many computing
nodes to reach a good speed-up. Consequently, it is not efficient to implement it for a small number of
computing nodes in the ranges like less than 8 or 16.

Sensors 2020, 20, 6130 8 of 17

2.3. Summary of the Main Previous/Traditional Methods

By comparing the properties of the above presented methods, there is one big difference amongst
them. The GLM methods are optimized to be efficiently used in the context of parallel systems’
contexts having specified properties like “running schedule” and “number of processing units”.
We implemented all these three above listed methods on an OpenCL framework in order to carefully
analyze their respective performance along with related respective observed implementation restrictions.
One restriction (weak point) is related to the poor scalability w.r.t. to the increasing number of cores.
One does observe a very poor performance scaling of the algorithms while increasing the number of
involved nodes for solving a problem. On the other hand, the Parareal method is showing a very good
advantage when increasing number of cores; however, it is showing a very poor scaling performance
in presence of a small number of cores (e.g. 8 cores or 16 cores).

This observed gap has motivated us to create a new method based on both the Parallel Adam
Bashforth method and the Parareal algorithm by using the advantages of both methods with a
significantly higher compatibility with the OpenCL framework.

3. Our Novel Concept, the Parallel Adam-Moulton OpenCL

Our novel method, that we call the Parallel Adam-Moulton OpenCL method (we abbreviate it in
PAMCL) is a modified version of the Adams-Bashforth method, which has a scheduling scheme like
the PAB method (see Figure 2). This method is defined through the following equation for each group
of computing units:

A = [0], V = a·bT, a =
[

1 2 . . . g
]
, b =

[
0 . . . 0 1

]
(14)

where g is the group size of processors, and the number of previous values is g. Therefore, based on
the number of processors in a group, the requirements to the previous values are different. The matrix
U is calculated based on the related Adams-Baschforth method as explained in the GLM section.

The starting vector for this algorithm is calculated by a suitable scheme like the DOPRI5 method [41],
and each value of F is approximated by using the previous steps of the solution vectors by using the
Equation (7). For each calculation stage, we have a (h × g) step size advantage w.r.t. to h. On the
other hand, with a growing size of the “processing units group”, we need a higher order method
for calculating the result values (y[n+1]) by using an Adams-Bashforth algorithm. In this way, we do
increase our accuracy without losing in performance.

After calculating the result, we do need a corrector function based on the Adam-Moulton formula
to correct the calculations of the previous steps.

Based on both the predictor (see Adams-Bashforth) and the corrector (see Adam-Moulton), we can
calculate the values of the local error truncation, which leads to the calculation of the optimal step-size
for each of the g steps for the local group, and the global step-size can change by synchronizing the
groups after m steps calculation, where m is typically larger than g.

A sample implementation of the explained algorithm based on Equations (7) and (14) can be
described as follows:

1. Define the number of CPUs in group (g) based on current hardware restrictions.
2. Define both work group step size and work item step size.
3. Solve the starting points by using for example “DOPRI 5” and save them in X1, X1, . . . , Xg,

and their corresponding derivations as F1, F2, . . . , Fg.
4. Update Xi+1, Xi+2, . . . , Xi+g in parallel through the following steps:

a. Calculate the derivation F by using Equation (7), Equation (14) and save in Fi+1.
b. Wait for all values of Fi+1, . . . , Fi+g.
c. Update the Xi+1, Xi+2, . . . , Xi+g.

Sensors 2020, 20, 6130 9 of 17

d. Calculated the error for each computing unit and then update the global step size.
e. Synchronize all computing units and update value in global variable.

5. Go to the step 4 until all values calculated.

In previous, our implementation will be divided into 4 different parts:

(1) Calculating the gradient values for the next estimation points.
(2) Transferring the gradient vectors into the global memory.
(3) Estimating the next solution vector through an adapted Adams-Bashforth algorithm base on

Equation (14) weights.
(4) Calculate local truncation error to adjust the step-size.

After these above listed main 4 steps, all local groups will be in synch (i.e., synchronized) for
starting the next step. As we can see, most of the complexity of this algorithm is related to the
correct usage of local and global variables, and most of the calculations will be solved in steps 3 and 4
depending on the problem size and the number of groups members.

An important effort in each calculation is to make the steps completely independent and create
tasks with the same size in order to decrease the synchronization time between work groups.

Furthermore, by increasing the number of computing units to more than 32, we found out that this
method then becomes inaccurate. For increasing the accuracy, the previous method is combined with
an algorithm which is explained in Section 2.2, where the propagation factors G and F are replaced
by a new suggested propagator factor. Therefore, the explained previous algorithm will run on local
groups of processing units and grouped together does create a Parareal solver.

4. System Architecture

This computing system is designed based on the OpenCL platform. OpenCL is a heterogeneous
computing platform, which is a framework for writing programs that are executed across heterogeneous
platforms consisting of CPUs, GPUs, and other processors.

OpenCL includes a language (based on C99) for writing kernels (functions that execute on OpenCL
devices) and APIs that are used to define and then control the platforms. OpenCL supports parallel
computing by using a data-based and task-based parallelism. OpenCL has been adopted by Intel, AMD,
NVidia, and ARM. Academic researchers have investigated the possibility of automatically compiling
OpenCL programs into application-specific processors running on field programmable gate arrays
(FPGA) [42]. Also, commercial FPGA vendors are developing tools to translate OpenCL to run on
their FPGA devices. This feature of OpenCL motivates us to use this platform for implementing ODE
solvers. But it is not possible to use this platform directly for different programming languages and web
applications. Therefore, for the sake of expandability of the system, one application cloud, as shown
in Figure 4, has been designed. This cloud application is creating a computing platform/network for
solving ODE problems across a network of computing units.

Figure 3 is showing our global system architecture. It is composed of 3 main components.
The ODE Computing platform OpenCL (we call it ODECCL) connectors are responsible for connecting
the manager to the interfaces and getting/collecting tasks originating from different applications and
destined to ODECCL.

Sensors 2020, 20, 6130 10 of 17

Sensors 2020, 20, x FOR PEER REVIEW 9 of 16

But it is not possible to use this platform directly for different programming languages and web
applications. Therefore, for the sake of expandability of the system, one application cloud, as shown in
Figure 4, has been designed. This cloud application is creating a computing platform/network for
solving ODE problems across a network of computing units.

Figure 3 is showing our global system architecture. It is composed of 3 main components. The
ODE Computing platform OpenCL (we call it ODECCL) connectors are responsible for connecting
the manager to the interfaces and getting/collecting tasks originating from different applications and
destined to ODECCL.

Figure 3. Solver system architecture. The interfaces provide the possibility of define specific tasks for
the ODE solver. The ODE Computing platform OpenCL (we call it ODECCL) is composed of three
parts. The manager will be assigning/allocating resources depending on their availability. Tasks are
defined based on the different interfaces of ODECCL.

After a task has been validated in the system, it will be sending message(s) to the ODECCL
manager. The ODECCL Manager is responsible for managing, scheduling and supervising tasks.
Each task is scheduled based on its respectively needed computing unit’s calculation power (Flops)
and the communication cost. Computing units have the responsibility to execute tasks on the
available OpenCL resources; therefore, it is possible to execute tasks both on CPU, n-CPU, and GPU
at the same time (i.e. within the same parallel computing networked infrastructure).

Figure 4 does show the task scheduling concept in the ODECCL system. The scheduling is done
between m groups and each group has g computing units (group units). After each stage, the
computing units do exchange information in order to update their respective states and calculate the
next gradient value.

푋 푋 푋

푋 푋 푋 Initial Values

Communication Between Nodes

푋 푋 푋

Communication Between Groups

Figure 3. Solver system architecture. The interfaces provide the possibility of define specific tasks for
the ODE solver. The ODE Computing platform OpenCL (we call it ODECCL) is composed of three
parts. The manager will be assigning/allocating resources depending on their availability. Tasks are
defined based on the different interfaces of ODECCL.

After a task has been validated in the system, it will be sending message(s) to the ODECCL
manager. The ODECCL Manager is responsible for managing, scheduling and supervising tasks.
Each task is scheduled based on its respectively needed computing unit’s calculation power (Flops)
and the communication cost. Computing units have the responsibility to execute tasks on the available
OpenCL resources; therefore, it is possible to execute tasks both on CPU, n-CPU, and GPU at the same
time (i.e., within the same parallel computing networked infrastructure).

Figure 4 does show the task scheduling concept in the ODECCL system. The scheduling is
done between m groups and each group has g computing units (group units). After each stage,
the computing units do exchange information in order to update their respective states and calculate
the next gradient value.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 16

But it is not possible to use this platform directly for different programming languages and web
applications. Therefore, for the sake of expandability of the system, one application cloud, as shown in
Figure 4, has been designed. This cloud application is creating a computing platform/network for
solving ODE problems across a network of computing units.

Figure 3 is showing our global system architecture. It is composed of 3 main components. The
ODE Computing platform OpenCL (we call it ODECCL) connectors are responsible for connecting
the manager to the interfaces and getting/collecting tasks originating from different applications and
destined to ODECCL.

Figure 3. Solver system architecture. The interfaces provide the possibility of define specific tasks for
the ODE solver. The ODE Computing platform OpenCL (we call it ODECCL) is composed of three
parts. The manager will be assigning/allocating resources depending on their availability. Tasks are
defined based on the different interfaces of ODECCL.

After a task has been validated in the system, it will be sending message(s) to the ODECCL
manager. The ODECCL Manager is responsible for managing, scheduling and supervising tasks.
Each task is scheduled based on its respectively needed computing unit’s calculation power (Flops)
and the communication cost. Computing units have the responsibility to execute tasks on the
available OpenCL resources; therefore, it is possible to execute tasks both on CPU, n-CPU, and GPU
at the same time (i.e. within the same parallel computing networked infrastructure).

Figure 4 does show the task scheduling concept in the ODECCL system. The scheduling is done
between m groups and each group has g computing units (group units). After each stage, the
computing units do exchange information in order to update their respective states and calculate the
next gradient value.

푋 푋 푋

푋 푋 푋 Initial Values

Communication Between Nodes

푋 푋 푋

Communication Between Groups

Figure 4. Scheduling scheme within/by the ODECCL system. Inside a group of processors, a stage will
be processed, and between groups, steps will be calculated and synchronized.

From a technical perspective, ODECCL has been implemented using Visual Studio C++ and the
OpenCL library provided by Nvidia has been included to the project. Each solver which is used in the
experiments has been implemented as a kernel.

For example, if the use of the overshooting algorithm is not required, our system does use
kernels without the overshooting parts. The manager part of the application is responsible to load the

Sensors 2020, 20, 6130 11 of 17

correct kernels for each problem and it is also responsible to create the groups and assign the required
processing units to the created groups. The manager is also providing facility (i.e., infrastructure) to
retrieve data from the different interfaces and load/download them from/to the kernels.

5. Numerical Experiments

For testing our computing system described in Section 4, we select three different types of ODEs.
These three equations are shown in Equations (15)–(17). This does correspond to respectively solving
Rayleigh (see Equation (15)), Rössler (see Equation (16)), and JACB (see Equation (17)) dynamic models.

The Rössler function is sensitive to inputs; see Equation (16). The parameters of the Rössler
function are selected to have a chaotic behavior. This shall test our system in presence of small changes
in initial conditions; thereby we can show significant variation in the observed behavior. This is also
good to show the accuracy of the algorithm(s) while considering different computing units. Furthers,
Equations (16) and (17) are selected as stiff ODE problems to test the system stability and for comparing
our results with those from other related scientific works. They are very sensible to errors and a small
error will/can change their respective final result.

d2x
dt2 − ε1

[
1− (dx

dt
2
)
]
(

dx
dt

)
+ωx + k sin(2π f1) = 0

ε1 = 2.3 , ω = 1 , k = 2.398 , f1 = 0.004
X0 = [−0.5, 0.1] , t ∈ [0, 20s]

(15)

dx
dt = −y− z
dy
dt = x + ay
dz
dt = b + z (x− c)

a = 0.2, b = 0.2, c = 5.7

X0 = [1, 1, 0], t ∈ [0, 20s]

(16)

dx
dt = y·z
dx
dt = −x·z
dz
dt = −0.51 x.y

X0 = [0, 1, 1], t ∈ [0, 7.5s]

(17)

All models have been implemented on the following platform: Windows 10 PC with Intel Core i7
7700K as CPU, double Nvidia GeForce GTX 1080 TI with 8GB RAM as GPU and 64GB RAM. The Intel
Core i7 7700K has 4 cores or 8 logical threads. The Nvidia GeForce GTX 1080 TI has 3584 cores which
can be used for parallel computing.

Table 1 does show the respective kernel configuration for each of the solvers considered. As one
can see, our model (PAMCL) does integrate two different solvers. The first solver has no overshooting
algorithm and the second one has this ability of overshooting to fill up the problem of using a large
number of cores. Regarding the first solver, the workgroup size is the same like the one of PIRK and
PAM, and the number of working items is dependent on the number of available cores. But in the
second solver of PAMCL the number of workgroups is variable and we always keep the number of
internal working items of each workgroup to be 8, as this number is the most efficient solver w.r.t to
the number of cores (as this is illustrated in Table 2).

Sensors 2020, 20, 6130 12 of 17

Table 1. The kernel configuration for each of the solvers. * The PAMCL solver has two different types
of kernels, the first one without overshooting and the second one with overshooting. If the number of
cores is more than 32, the second kernel type is the one to be used.

Solver/Parameter Work- Groups Work Item Kernel Type Number

PIRK 1 Depends on available cores 1
PAM 1 Depends on available cores 1

PAMCL Variable Depends on available cores divided by
the number of Work-Groups 2 *

The computing time results of testing of our novel algorithm can be seen in Table 2, where they
are provided for different differential equations to be solved. One can see by adding more cores results
in increasing the performance of the system. But after 16 cores the performance increase is no more
exponential, on one hand, and the overhead of the algorithm does significantly increase. Indeed,
the decrease in computing time performance consecutive to increasing the number of cores 8 times,
namely changing it from 8 cores and 64 cores, is just of 3 times, although one has added 8 time more
cores. This poor gain in the resulting performance through adding more cores is even worser in when
the number of cores is much higher.

Table 2. The execution time of PAMCL for different selected differential equations. The increase in
number of cores does result in a decrease of the respective processing time. But by increasing the
number of cores, this does result in more communication overhead amongst the cores.

Number of Cores on GPU RAYLEIGH (ms) JACB (ms) RöSSLER (ms)

1 238.0 257.1 338
2 122.0 131.1 174.46
8 35.0 36.7 48.1

64 12.4 13.1 15.2
512 7.4 7.8 8.5

6. Comparison of the Novel Concept (PAMCL) with Previous/Related Methods

As explained in the previous sections, we define the speed-up by considering equal tasks on
different cores. Therefore, our speed-up concept is not directly comparable to that of DOPRI or that of
other algorithms, because most of them are rather running on a single-core computing unit. But for
the sake of a better understanding, we calculate an “equivalent speed-up” performance w.r.t. one
single computing unit. Figure 5 has been generated accordingly. As we can see, the PAMCL algorithm
(i.e., our novel concept) can provide a much better speed-up depending on available free cores, either
GPU or n-CPU. This speed-up, for 500 GPU cores, can reach up to 60x faster than the normal DOPRI5
algorithm, which is used in commercial ODE solvers like Matlab on the same computer/CPU.

In Figure 6, for our novel method PAMCL, the evolution of the processing time w.r.t. the CPU
number is shown. As could be expected, according to the Gustafson’s law [43], the system performance
is not increasing linearly and the speed-up does reach a saturation after 16 computing units.

Further, in case of more complex equations, the advantage of our novel algorithm will increase,
because the ratio between processing time and communication time to other processing units is higher.

Sensors 2020, 20, 6130 13 of 17

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16

Figure 5. Comparison of the execution times of different problems while using different algorithms.
The maximum computation error to stop the computing process is 0.001. All algorithms are executed
on GPU for solving the Rössler equation. DOPRI5 , PIRK, PAB/PAM and PAMCL are using 1, 8, 16
and 500 GPUs.

Figure 6. Effect of the number of processing units on the computing performance (for our novel
approach PAMCL) for solving the Rössler attractor in GPU. The maximum error is 0.01.

While comparing CPU and GPU performance for solving differential equations, we do further
observe that an implementation of the DOPRI algorithm on CPU is much faster than on GPU.
However, while using the PAMCL algorithm, it does provide again more advantages w.r.t. a normal
execution of the DOPRI algorithm on CPU (see Table 3).

For each model which has been explained previously, one has created a respective own kernel.
The main problem regarding Runge-Kutta and PAM is that both methods have restrictions related to
the number of cores as the number of cores increases beyond 8, both lastly named methods become
worse w.r.t. reaching the required accuracy. Therefore, in order to reach the required error level, they
will need more (i.e. additional) iterations, which does result logically in more computing time.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

DOPRI5 PIRK (2019) PAB/PAM (2019) PAMCL

Ex
ec

ut
io

n
Ti

m
e(

m
s)

Algorithm Type

Rössler

Rayleigh

JACB

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128 256 512

Pr
oc

es
si

ng
 T

im
e(

m
s)

CPU Number

Rössler

Rayleigh

JACB

Figure 5. Comparison of the execution times of different problems while using different algorithms.
The maximum computation error to stop the computing process is 0.001. All algorithms are executed
on GPU for solving the Rössler equation. DOPRI5, PIRK, PAB/PAM and PAMCL are using 1, 8, 16 and
500 GPUs.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16

Figure 5. Comparison of the execution times of different problems while using different algorithms.
The maximum computation error to stop the computing process is 0.001. All algorithms are executed
on GPU for solving the Rössler equation. DOPRI5 , PIRK, PAB/PAM and PAMCL are using 1, 8, 16
and 500 GPUs.

Figure 6. Effect of the number of processing units on the computing performance (for our novel
approach PAMCL) for solving the Rössler attractor in GPU. The maximum error is 0.01.

While comparing CPU and GPU performance for solving differential equations, we do further
observe that an implementation of the DOPRI algorithm on CPU is much faster than on GPU.
However, while using the PAMCL algorithm, it does provide again more advantages w.r.t. a normal
execution of the DOPRI algorithm on CPU (see Table 3).

For each model which has been explained previously, one has created a respective own kernel.
The main problem regarding Runge-Kutta and PAM is that both methods have restrictions related to
the number of cores as the number of cores increases beyond 8, both lastly named methods become
worse w.r.t. reaching the required accuracy. Therefore, in order to reach the required error level, they
will need more (i.e. additional) iterations, which does result logically in more computing time.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

DOPRI5 PIRK (2019) PAB/PAM (2019) PAMCL

Ex
ec

ut
io

n
Ti

m
e(

m
s)

Algorithm Type

Rössler

Rayleigh

JACB

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128 256 512

Pr
oc

es
si

ng
 T

im
e(

m
s)

CPU Number

Rössler

Rayleigh

JACB

Figure 6. Effect of the number of processing units on the computing performance (for our novel
approach PAMCL) for solving the Rössler attractor in GPU. The maximum error is 0.01.

While comparing CPU and GPU performance for solving differential equations, we do further
observe that an implementation of the DOPRI algorithm on CPU is much faster than on GPU. However,
while using the PAMCL algorithm, it does provide again more advantages w.r.t. a normal execution of
the DOPRI algorithm on CPU (see Table 3).

For each model which has been explained previously, one has created a respective own kernel.
The main problem regarding Runge-Kutta and PAM is that both methods have restrictions related to
the number of cores as the number of cores increases beyond 8, both lastly named methods become
worse w.r.t. reaching the required accuracy. Therefore, in order to reach the required error level,
they will need more (i.e., additional) iterations, which does result logically in more computing time.

Sensors 2020, 20, 6130 14 of 17

Table 3. Comparison of the “average computation times” on CPU and GPU while using different solver
algorithms for solving the Rössler equation.

Method/
Algorithm

Error 0.01 Error 0.001 Error 0.0001

Time (ms)
on CPU

Speedup (i.e.,
on GPU)

Time (ms)
on CPU

Speedup (i.e.,
on GPU)

Time (ms)
on CPU

Speedup (i.e.,
on GPU)

Dopri5 593.11 1x 4171.01 1x 41860.01 1x
PIRK (2019) 169.23 3.50x 1301.02 3.22x 15013.89 2.79

PAM/PAB (2019) 129.12 4.26x 1210.73 3.41x 11540.44 3.62
PAMCL 6.93 69.43x 51.83 80.47x 439.82 95.17x

As we can see in Table 4, the increasing performance which are demonstrated in previous table is
due to the fact of using more global and local memory. Indeed, our model used respectively more
memories compare to other methods.

Table 4. Comparison of “memory usage” w.r.t the target error while involving different solver
algorithms for solving the Rössler equation.

Method/
Algorithm

Error 0.01 Error 0.001 Error 0.0001

Global
Memory

Local
Memory

Global
Memory

Local
Memory

Global
Memory

Local
Memory

Dopri5 18 KB 500 B 200 KB 500 B 2.1 MB 500 B
PIRK (2019) 19 KB 1.5 KB 210 KB 1.5 KB 2.2 MB 1.5 KB

PAM/PAB (2019) 22 KB 2.5 KB 250 KB 2.5 KB 2.6 MB 2.3 KB
PAMCL 32 KB 4 KB 350 KB 4 KB 4.8 MB 4 KB

As explained previously, for extending the PAMCL to a higher number of cores, we use the Parareal
algorithm. This algorithm has its own drawback, as one needs to define the required iteration numbers
needed to reach a convergence to the correct answer (see Figure 7). Thus, increasing the speed-up of
PAMCL by using/integrating the Parareal algorithm will also have its own similar drawback.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 16

Table 3. Comparison of the “average computation times” on CPU and GPU while using different
solver algorithms for solving the Rössler equation.

Method/
Algorithm

Error 0.01 Error 0.001 Error 0.0001

Time (ms)
on CPU

Speedup (i.e.
on GPU)

Time
(ms)

on CPU

Speedup (i.e.
on GPU)

Time
(ms)

on CPU

Speedup
(i.e. on
GPU)

Dopri5 593.11 1x 4171.01 1x 41860.01 1x
PIRK
(2019)

169.23 3.50x 1301.02 3.22x 15013.89 2.79

PAM/PAB
(2019)

129.12 4.26x 1210.73 3.41x 11540.44 3.62

PAMCL 6.93 69.43x 51.83 80.47x 439.82 95.17x

As we can see in Table 4, the increasing performance which are demonstrated in previous table
is due to the fact of using more global and local memory. Indeed, our model used respectively more
memories compare to other methods.

Table 4. Comparison of “memory usage” w.r.t the target error while involving different solver
algorithms for solving the Rössler equation.

Method/
Algorithm

Error 0.01 Error 0.001 Error 0.0001
Global

Memory
Local

Memory
Global

Memory
Local

Memory
Global

Memory
Local

Memory
Dopri5 18 KB 500 B 200 KB 500 B 2.1 MB 500 B
PIRK
(2019)

19 KB 1.5 KB 210 KB 1.5 KB 2.2 MB 1.5 KB

PAM/PAB
(2019)

22 KB 2.5 KB 250 KB 2.5 KB 2.6 MB 2.3 KB

PAMCL 32 KB 4 KB 350 KB 4 KB 4.8 MB 4 KB

As explained previously, for extending the PAMCL to a higher number of cores, we use the
Parareal algorithm. This algorithm has its own drawback, as one needs to define the required iteration
numbers needed to reach a convergence to the correct answer (see Figure 7). Thus, increasing the speed-
up of PAMCL by using/integrating the Parareal algorithm will also have its own similar drawback.

Figure 7. Showing the effect of iterations on the convergence towards the solution of the Rössler
Equation (17). The green line is showing the expected solution, and the red dots are showing the
PAMCL estimation at different iteration steps. For all 3 sub-figures (i.e., from left to right), the same
parameter settings were used but 25 points are used in Sub-Figure (a), 50 points are used in Sub-
Figure (b), and 100 points are used in Sub-Figure (c). Those points are calculated in a parallel way. It
is visible that the estimation of model is changing from the expected results and an increasing number
of does increase the model accuracy, but does also increase the calculation time.

(a) (b) (c)

Figure 7. Showing the effect of iterations on the convergence towards the solution of the Rössler
Equation (17). The green line is showing the expected solution, and the red dots are showing the
PAMCL estimation at different iteration steps. For all 3 sub-figures (i.e., from left to right), the same
parameter settings were used but 25 points are used in Sub-Figure (a), 50 points are used in Sub-Figure
(b), and 100 points are used in Sub-Figure (c). Those points are calculated in a parallel way. It is visible
that the estimation of model is changing from the expected results and an increasing number of does
increase the model accuracy, but does also increase the calculation time.

Sensors 2020, 20, 6130 15 of 17

7. Possible Extension of the PAMCL Model for also Solving PDE’s

The suggested model (PAMCL) can also be used for solving PDE models. The main difference
in solving PDE’s lies essentially in the fact that in a PDE one has more dimensions. Therefore, it is
possible to use/involve concepts such as Domain Decomposition, Waveform Relaxation [44] or multiple
shooting method [45,46], which are used for solving either ODEs and PDE problems.

Regarding the Domain Decomposition approach, we can separate our domain into sub-domains.
Then, in this case, we can solve each subdomain separately and combine the results of each domain to
get the final solution.

As we have seen in previous sections, our model is not compatible with such a way of solving
the problem and we use the multiple-shooting method for solving the ODE. Therefore, the best way
to solve PDE problems in our model is to keep the domain and create subdomains in time (Multiple
shooting method). This process can be expressed into the following steps:

1. Converting PDE problem into ODE problem. Customize solver to solve PDE in parallel on
n-CPUs/GPUs groups.

2. Define the step-size of both coarse and fine estimators to find the solution of PDE between groups.
3. Solving the PDE sequentially using the coarse estimator in the overall time span.
4. Solving the PDE in parallel using fine estimator in each of the split time spans.
5. Update the values in each of the split time spans by using the coarse estimator sequentially.
6. Go to step 3 until we reach the required precision.

In step 1, we need to approximate/transform the PDE problem into an ODE problem.
The approximated ODE problem now can be solved on our platform. This step normally requires
setup parameters, calculates boundary conditions, and solves matrix solutions. Therefore, we need
custom the solver for PDE solving. Each step of the PDE will be processed on group of CPUs\GPUs.
In step 2, we a have similar implementation of PAMCL, we used both fine and coarse estimators to
reach the final solution. First results are approximated, and later, by using the fine estimator they will
be corrected. This process can be continued until the overall model reaches the required precision.

8. Conclusions

Using our novel PAMCL method for solving ODEs on an OpenCL framework does increase
the performance. Compared to other solvers, our novel algorithm (PAMCL) is displaying very good
behavior and does converge always to the exact solution. By choosing the correct interpolations and
adjusting the weights, the algorithm can perform much faster calculations with the required precision.
But still, the communication between computing units requires more optimization, and more unused
resource do still exist in the system.

Solving these problems can provide much better performance w.r.t to the current status of the
system. Also, as we see in the implementation part, defining equal tasks (by definition within the
PAMCL algorithm) can increase the overall performance by decreasing task scheduling amongst nodes
and does also increase the performance on a GPU like architecture, as an execution of branches on
such structures are costly.

Also, by increasing the number of multi-stages, the calculation becomes more complex and it
requires more resource to calculate values. This phenomenon occurs in all multi-step algorithms and it
is required to provide load balancing between local workgroups and global workgroups.

Author Contributions: Conceptualization, V.T. and K.K.; Methodology, J.C.C. and K.K.; Software, V.T. and K.M.;
Validation, V.T., K.M., J.C.C. and K.K.; Formal Analysis, V.T. and K.M.; Investigation, V.T.; Resources, V.T. and
K.M.; Data Curation, V.T. and K.M.; Writing-Original Draft Preparation, V.T. and K.M.; Writing-Review & Editing,
J.C.C. and K.K; Visualization, V.T. and K.M.; Supervision, J.C.C and K.K.; Project Administration, K.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2020, 20, 6130 16 of 17

References

1. Sánchez-Garduño, F.; Pérez-Velázquez, J. Reactive-Diffusive-Advective Traveling Waves in a Family of
Degenerate Nonlinear Equations. Sci. World J. 2016, 2016, 1–21. [CrossRef]

2. Neumeyer, T.; Engl, G.; Rentrop, P. Numerical benchmark for the charge cycle in a combustion engine. Appl.
Numer. Math. 1995, 18, 293–305. [CrossRef]

3. Bajcinca, N.; Menarin, H.; Hofmann, S. Optimal control of multidimensional population balance systems for
crystal shape manipulation. IFAC Proc. Vol. 2011, 44, 9842–9849. [CrossRef]

4. Baumgartner, H.; Homburg, C. Applications of structural equation modeling in marketing and consumer
research: A review. Int. J. Res. Mark. 1996, 13, 139–161. [CrossRef]

5. Ilea, M.; Turnea, M.; Rotariu, M. Ordinary differential equations with applications in molecular biology. Rev.
medico-chirurgicala a Soc. de Medici si Nat. din Iasi 2012, 116, 347–352.

6. Yadav, M.; Malhotra, P.; Vig, L.; Sriram, K.; Shroff, G. ODE—Augmented Training Improves Anomaly
Detection in Sensor Data from Machines. In Proceedings of the NIPS 2015 Time Series Workshop, Montreal,
QC, Canada, 11 December 2015.

7. Wang, X.; Li, C.; Song, D.-L.; Dean, R. A Nonlinear Circuit Analysis Technique for Time-Variant Inductor
Systems. Sensors 2019, 19, 2321. [CrossRef] [PubMed]

8. Mahmoodi, S.N.; Jalili, N.; Daqaq, M.F. Modeling, Nonlinear Dynamics, and Identification of a
Piezoelectrically Actuated Microcantilever Sensor. IEEE/ASME Trans. Mechatron. 2008, 13, 58–65. [CrossRef]

9. Omatu, S.; Soeda, T. Optimal Sensor Location in a Linear Distributed Parameter System. IFAC Proc. Vol.
1977, 10, 233–240. [CrossRef]

10. Pérez-Velázquez, J.; Hense, B.A. Differential Equations Models to Study Quorum Sensing. Methods Mol. Biol.
2018, 1673, 253–271.

11. Gander, M.J. Schawarz methods over the course of time. Electron. Trans. 2008, 31, 228–255.
12. Gander, M.J. The origins of the alternating Schwarz method. In Domain Decomposition Methods in Science and

Engineering XXI.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 487–495.
13. Niemeyer, K.E.; Sung, C.-J. GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems.

In Numerical Computations with GPUs; Springer: Berlin/Heidelberg, Germany, 2014; pp. 159–182.
14. Liang, S.; Zhang, J.; Liu, X.-Z.; Hu, X.-D.; Yuan, W. Domain decomposition based exponential time differencing

method for fluid dynamics problems with smooth solutions. Comput. Fluids 2019, 194. [CrossRef]
15. Desai, A.; Khalil, M.; Pettit, C.; Poirel, D.; Sarkar, A. Scalable domain decomposition solvers for stochastic

PDEs in high performance computing. Comput. Methods Appl. Mech. Eng. 2018, 335, 194–222. [CrossRef]
16. Van Der Houwen, P.; Sommeijer, B.; Van Der Veen, W. Parallel iteration across the steps of high-order

Runge-Kutta methods for nonstiff initial value problems. J. Comput. Appl. Math. 1995, 60, 309–329. [CrossRef]
17. Seen, W.M.; Gobithaasan, R.U.; Miura, K.T. GPU acceleration of Runge Kutta-Fehlberg and its comparison

with Dormand-Prince method. AIP Conf. Proc. 2014, 1605, 16–21.
18. Qin, Z.; Hou, Y. A GPU-Based Transient Stability Simulation Using Runge-Kutta Integration Algorithm. Int.

J. Smart Grid Clean Energy 2013, 2, 32–39. [CrossRef]
19. Pazner, W.; Persson, P.-O. Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid

simulations. J. Comput. Phys. 2017, 335, 700–717. [CrossRef]
20. Nievergelt, J. Parallel methods for intergrating ordinary differential equations. Commun. ACM 1964, 7,

731–733. [CrossRef]
21. Wu, S.-L.; Zhou, T. Parareal algorithms with local time-integrators for time fractional differential equations.

J. Comput. Phys. 2018, 358, 135–149. [CrossRef]
22. Boonen, T.; Van Lent, J.; Vandewalle, S. An algebraic multigrid method for high order time-discretizations of

the div-grad and the curl-curl equations. Appl. Numer. Math. 2009, 59, 507–521. [CrossRef]
23. Carraro, T.; Friedmann, E.; Gerecht, D. Coupling vs decoupling approaches for PDE/ODE systems modeling

intercellular signaling. J. Comput. Phys. 2016, 314, 522–537. [CrossRef]
24. Bin Suleiman, M. Solving nonstiff higher order ODEs directly by the direct integration method. Appl. Math.

Comput. 1989, 33, 197–219. [CrossRef]
25. Van Der Houwen, P.; Messina, E. Parallel Adams methods. J. Comput. Appl. Math. 1999, 101, 153–165.

[CrossRef]

http://dx.doi.org/10.1155/2016/5620839
http://dx.doi.org/10.1016/0168-9274(95)00059-4
http://dx.doi.org/10.3182/20110828-6-IT-1002.03109
http://dx.doi.org/10.1016/0167-8116(95)00038-0
http://dx.doi.org/10.3390/s19102321
http://www.ncbi.nlm.nih.gov/pubmed/31137535
http://dx.doi.org/10.1109/TMECH.2008.915823
http://dx.doi.org/10.1016/S1474-6670(17)66839-3
http://dx.doi.org/10.1016/j.compfluid.2019.104307
http://dx.doi.org/10.1016/j.cma.2017.09.006
http://dx.doi.org/10.1016/0377-0427(94)00047-5
http://dx.doi.org/10.12720/sgce.2.1.32-39
http://dx.doi.org/10.1016/j.jcp.2017.01.050
http://dx.doi.org/10.1145/355588.365137
http://dx.doi.org/10.1016/j.jcp.2017.12.029
http://dx.doi.org/10.1016/j.apnum.2008.03.004
http://dx.doi.org/10.1016/j.jcp.2016.03.020
http://dx.doi.org/10.1016/0096-3003(89)90051-9
http://dx.doi.org/10.1016/S0377-0427(98)00214-3

Sensors 2020, 20, 6130 17 of 17

26. Godel, N.; Schomann, S.; Warburton, T.; Clemens, M. GPU Accelerated Adams–Bashforth Multirate
Discontinuous Galerkin FEM Simulation of High-Frequency Electromagnetic Fields. IEEE Trans. Magn. 2010,
46, 2735–2738. [CrossRef]

27. Siow, C.; Koto, J.; Afrizal, E. Computational Fluid Dynamic Using Parallel Loop of Multi-Cores Processor.
Appl. Mech. Mater. 2014, 493, 80–85. [CrossRef]

28. Plaszewski, P.; Banas, K.; Maciol, P. Higher order FEM numerical integration on GPUs with OpenCL.
In Proceedings of the International Multiconference on Computer Science and Information Technology,
Wisla, Poland, 18–20 October 2010.

29. Halver, R.; Homberg, W.; Sutmann, G. Benchmarking Molecular Dynamics with OpenCL on Many-Core
Architectures. In Parallel Processing and Applied Mathematics; Springer: Cham, Switzerland, 2018.

30. Rodriguez, M.; Blesa, F.; Barrio, R. OpenCL parallel integration of ordinary differential equations: Applications
in computational dynamics. Comput. Phys. Commun. 2015, 192, 228–236. [CrossRef]

31. Stone, C.P.; Davis, R.L. Techniques for Solving Stiff Chemical Kinetics on Graphical Processing Units. J.
Propuls. Power 2013, 29, 764–773. [CrossRef]

32. Markesteijn, A.; Karabasov, S.; Glotov, V.; Goloviznin, V. A new non-linear two-time-level Central Leapfrog
scheme in staggered conservation–flux variables for fluctuating hydrodynamics equations with GPU
implementation. Comput. Methods Appl. Mech. Eng. 2014, 281, 29–53. [CrossRef]

33. Butcher, J. General linear methods. Comput. Math. Appl. 1996, 13, 105–112. [CrossRef]
34. Van Der Veen, W.; De Swart, J.; Van Der Houwen, P. Convergence aspects of step-parallel iteration of

Runge-Kutta methods. Appl. Numer. Math. 1995, 18, 397–411. [CrossRef]
35. Fischer, M. Fast and parallel Runge–Kutta approximation of fractional evolution equations. SIAM J. Sci.

Comput. 2019, 41, A927–A947. [CrossRef]
36. Fathoni, M.F.; Wuryandari, A.I. Comparison between Euler, Heun, Runge-Kutta and

Adams-Bashforth-Moulton integration methods in the particle dynamic simulation. In Proceedings of the
4th International Conference on Interactive Digital Media (ICIDM), Bandung, Indonesia, 1–5 December 2015.

37. Bonchiş, C.; Kaslik, E.; Roşu, F. HPC optimal parallel communication algorithm for the simulation of
fractional-order systems. J. Supercomput. 2019, 75, 1014–1025. [CrossRef]

38. Saha, P.; Stadel, J.; Tremaine, S. A parallel intergration method for solar system dynamics. Astron. J. 1997,
114, 409–415. [CrossRef]

39. Bellen, A.; Zennaro, M. Parallel algorithms for intial-value problems for difference and differential equations.
J. Comput. Appl. Math. 1989, 25, 341–350. [CrossRef]

40. Lions, J.; Maday, Y.; Turinici, G. A parareal in time descretization of PDEs. CR. Acad. Sci. Paris 2001, I,
661–668. [CrossRef]

41. Cong, N.H. Continuous variable stepsize explicit pseudo two-step RK methods. J. Comput. Appl. Math. 1999,
101, 105–116. [CrossRef]

42. Jaaskelainen, P.O.; De La Lama, C.S.; Huerta, P.; Takala, J.H. OpenCL-based Design Methodology for
application-specific processors. In Proceedings of the 2010 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, Samos, Greece, 19–22 July 2010.

43. Gustafson, J.L. Reevaluating Amdahl’s law. Commun. ACM 1988, 31, 532–533. [CrossRef]
44. Gander, M.J. 50 years of time parallel time integration. In Multiple Shooting and Time Domain Decomposition

Methods; Springer: Berlin/Heidelberg, Germany, 2015.
45. Wu, S.-L. A second-order parareal algorithm for fractional PDEs. J. Comput. Phys. 2016, 307, 280–290.

[CrossRef]
46. Pesch, H.J.; Bechmann, S.; Frey, M.; Rund, A.; Wurst, J.-E. Multiple Boundary-Value-Problem Formulation

for PDE-constrained Optimal Control Problems with a Short History on Multiple Shooting for ODEs. 2013.
Available online: https://eref.uni-bayreuth.de/4501 (accessed on 3 August 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMAG.2010.2043655
http://dx.doi.org/10.4028/www.scientific.net/AMM.493.80
http://dx.doi.org/10.1016/j.cpc.2015.02.013
http://dx.doi.org/10.2514/1.B34874
http://dx.doi.org/10.1016/j.cma.2014.07.027
http://dx.doi.org/10.1016/0898-1221(95)00222-7
http://dx.doi.org/10.1016/0168-9274(95)00063-Z
http://dx.doi.org/10.1137/18M1175616
http://dx.doi.org/10.1007/s11227-018-2267-z
http://dx.doi.org/10.1086/118485
http://dx.doi.org/10.1016/0377-0427(89)90037-X
http://dx.doi.org/10.1016/S0764-4442(00)01793-6
http://dx.doi.org/10.1016/S0377-0427(98)00199-X
http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1016/j.jcp.2015.12.007
https://eref.uni-bayreuth.de/4501
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	General Linear Methods
	Parallel Iterated Runge-Kutta
	Parallel Adams-Bashforth

	Multiple Shotting Methods
	Summary of the Main Previous/Traditional Methods

	Our Novel Concept, the Parallel Adam-Moulton OpenCL
	System Architecture
	Numerical Experiments
	Comparison of the Novel Concept (PAMCL) with Previous/Related Methods
	Possible Extension of the PAMCL Model for also Solving PDE’s
	Conclusions
	References

