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Abstract: In this work, the use of Machine Learning methods for robust Received Signal Strength
(RSS)-based Visible Light Positioning (VLP) is experimentally evaluated. The performance of
Multilayer Perceptron (MLP) models and Gaussian processes (GP) is investigated when using relative
RSS input features. The experimental set-up for the RSS-based VLP technology uses light-emitting
diodes (LEDs) transmitting intensity modulated light and a single photodiode (PD) as a receiver.
The experiments focus on achieving robustness to cope with unknown received signal strength
modifications over time. Therefore, several datasets were collected, where per dataset either the
LEDs transmitting power is modified or the PD aperture is partly obfuscated by dust particles.
Two relative RSS schemes are investigated. The first scheme uses the maximum received light
intensity to normalize the received RSS vector, while the second approach obtains RSS ratios by
combining all possible unique pairs of received intensities. The Machine Learning (ML) methods
are compared to a relative multilateration implementation. It is demonstrated that the adopted
MLP and GP models exhibit superior performance and higher robustness when compared to the
multilateration strategies. Furthermore, when comparing the investigated ML models, the GP model
is proven to be more robust than the MLP for the considered scenarios.

Keywords: Visible Light Positioning; robust; machine learning; multi layer perceptron; gaussian
processes

1. Introduction

Determining the location of oneself or mobile objects as accurately as possible has already been
a problem of interest for ages. Research efforts to facilitate Location-Based Services (LBS) are being
driven by its countless applications and economic potential [1,2]. These applications can be found in
industry with for example asset tracking in logistics, automation, and safety. Besides the economic
potential in industrial environments, there are also numerous applications for the consumer market.
This includes for example navigation assistance and clientele heat maps in retail. Contemporary
outdoor localization technologies are dominated by the Global Positioning System (GPS) because of
its high accuracy, reliability, and robustness [3]. However, in an indoor setting, GPS performance
degrades drastically due to reduced received signal quality and multi path propagation. For indoor
scenarios, there is not yet a prevailing technology available. Multiple technologies facilitating indoor
positioning are described in the literature [4–6] and one way to distinguish between them is that they
differ in the physical nature of the signals that are used. The most prominent ones deploy Radio
Frequency (RF) [7–9], acoustic [10], and light [11] signals.
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The fact that Light-Emitting Diodes (LEDs) have become the standard for lighting infrastructure
has been a driver for increased research interest in wireless communication systems using visible
light signals. LEDs can be switched at a rate much higher than the bandwidth of the human observer
allowing to perform wireless communication without compromising the illumination functionality [12].
One such promising technology for indoor localization is Visible Light Positioning (VLP) [13]. It relies
on optical wireless communication between modulated or unmodulated [14] artificial visible light
sources (typically LEDs) and a receiver sensor.

There are several methods described in the literature [15,16] to derive the position of a mobile
receiver using the information that is embedded in these light signals. Classical VLP schemes generally
deploy lateration [17], angulation [17], or fingerprinting [18] algorithms to retrieve the coordinates
of the receiver. Lateration requires estimations of the distance between the transmitters and receiver.
The most prominent strategies to obtain a distance estimate in the context of VLP are based on the
Received Signal Strength (RSS) or the Time Difference Of Arrival (TDOA). The angulation approach
depends on estimations of the angle of incidence of the transmitted signals. This strategy is generally
described as Angle Of Arrival (AOA). The fingerprinting method is based on matching measured data
with the contents of a large database that consists of calibration measurements to obtain a location
estimate. Depending on the VLP method, the sensor that is selected as a receiver generally is a
single Photodiode (PD), an array of photodiodes or because of good anti-interference properties a
camera/image sensor [19,20].

The classical VLP schemes have limitations, as often they require close to ideal behavior of the
propagation model and its parameters to perform well. Recently, however, it was demonstrated that
Machine Learning (ML) techniques like for example Artificial Neural Networks (ANNs) are capable of
delivering accurate localization results in the context of VLP [21–25], as they can handle noise naturally
and are not bounded by ideal physical behavior. Furthermore, linear interpolation techniques can be
used to reduce the amount of required measured data [26]. The adopted ML methods for location
estimation in the context of RSS-based VLP typically involve a supervised learning scheme that can be
based on measured training data, on data from existing propagation models, or on a mix of measured
and propagation model based data [27]. The methods using measured data eliminate the need of exactly
characterizing every parameter in the VLP system and eliminate errors introduced due to inaccuracies
such as aberrant radiation patterns [28] or flaws in the propagation model [29]. The methods based
on a theoretical propagation model require no prior measurements but include these inaccuracies.
Moreover, this approach also requires the quantification of the propagation model parameters.

The localization accuracy of an indoor positioning system however is not the sole important
parameter that determines its practical applicability in industrial or other commercial use cases.
Another equally important characteristic is its robustness or reliability. An important aspect that
determines the robustness [27,30] of an indoor positioning system is its ability to cope with a non-static
environment where mobile users are to be localized. One has no control over all the ambient parameters
that affect the wireless channel and the localization algorithm should be able to compensate for
environment dynamics without drastically reducing accuracy. A situation where variation of the
surroundings in an RSS based VLP context occurs, is for example in a logistics use case where dust
accumulation manifests itself on the surface of the PD because the mobile node (e.g., forklift truck,
automated guided vehicle, etc.) is deployed in an industrial area such as a warehouse. The layer
of dust partly obscures the effective area of the PD and thus leads to the reduction of the received
light intensity.

In this work, an RSS-based VLP approach is considered that uses LEDs as transmitters and a
single photodiode as receiving sensor. The focus is on the usage of relative RSS based VLP schemes [31]
to provide robustness for varying environmental factors like dust accumulation on the surface of
the receiving PD and LED power decrease due to, e.g., aging and dimming. The relative RSS values
are used as features in a Multi Layer Perceptron (MLP) and Gaussian Process model (GP), having
a 2D location estimate as output. A GP is particularly suitable because it can naturally quantify
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noise and provide a smooth interpolation behavior. The performance of the ML techniques using
relative RSS input features is validated with measurements obtained from an experimental setup.
Five measurement sets were acquired to evaluate the robustness of the relative RSS schemes using ML
algorithms. The first three sets are measured with different LED currents and thus different emitted
optical power. The last two sets were measured with respectively chalk dust and saw dust scattered on
the surface of the photodiode. The localization results of the MLP and GP are compared to the results
of a relative RSS based multilateration implementation and show high accuracy and robustness.

The main contributions of this work are as follows.

• ML methods featuring GPs and ANNs which use relative intensities are adopted to obtain a more
robust RSS based 2D VLP solution. It is shown that relative intensities as inputs for the GP model
deliver superior results in terms of accuracy an robustness.

• The impact of unknown received signal strength variations on the ML methods and classical
multilateration is extensively studied by conducting experiments where the PD receiver aperture
is obfuscated by dust particles and by executing measurements where LEDs are dimmed by
reducing the driving currents.

The work is structured as follows. Section 2 describes the system model, where the MLP
and GP models are discussed and an analytical derivation of the relative multilateration schemes,
which act as the baseline for RSS based VLP methodology, is given. Next, Section 3 illustrates the
experimental set-up and discusses the results by comparing the performance of the ML models and
the multilateration strategies. Section 4, the conclusion, summarizes the most important results.

2. System Model

2.1. Propagation Model

In this work, a VLP set-up is considered consisting of four LEDs mounted in a horizontal plane at
a height h above the observation plane in which a mobile node is localized using a photodiode (PD) as
receiver. An individual LED l in the set-up transmits a power-switched optical intensity modulated
waveform according to

sl(t) =
Pt

2

[
1 + sgn

(
sin
(

2π f02lt + φl

))]
. (1)

Here, l ε {0, 1, 2, 3}, Pt is the transmitted optical power, f0 is the base frequency, and φl is a random
and unknown phase offset which is different for every LED in the system. The PD mounted on the
mobile node receives the sum of the channel attenuated transmitted signals sl(t), which is denoted by
r(t) and given by [32]

r(t) =
L−1

∑
l=0

αl Rpsl(t) + β + n(t). (2)

where Rp is the responsivity of the PD, L is the total number of LEDs, β is a DC contribution of ambient
light sources, n(t) is the noise component, and αl is the channel attenuation [33]:

αl =
Ar

d2
l

Gl (θl , ψl) cos γl , (3)

where Ar is the effective area of the PD and dl is the euclidean distance between an LED l and the PD,
while Gl (θl , ψl) describes the angular distribution of radiant output power of each LED l, where θl is
the inclination angle and ψl the azimuthal angle. γl is the angle of incidence at the receiver. No optical
filter or concentrator were used in the setup. At the PD, the signal can be demultiplexed because of the
Frequency division Multiple Access (FDMA) approach by assigning LED transmitting frequencies as
in Equation (1) [34]. The channel attenuation for every LED is extracted by evaluating the amplitude
and phase spectrum in the frequency domain, at the associated frequency bins.
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In this work, environmental dynamics are simulated by changing transmitter LED currents and by
scattering dust on the surface of the PD. The effect of dust accumulation on the received light intensity
is assumed to be equal for every LED’s contribution. It can thus be modeled by adding an extra factor
ηr ≤ 1 in the expression of the received light intensity in Equation (2) leading to Equation (4)

r(t) =
L−1

∑
l=0

ηrαl Rpsl(t) + β + n(t). (4)

At a certain location (x, y) after demultiplexing of the received signal, a set of L = 4 intensities
r = (r0, r1, r2, r3) is retrieved. In this work, two methods to obtain relative intensities from the set
r of absolute intensities are investigated. In the first approach, the relative signal strength rrel,max is
obtained by dividing r by the maximum value of r, thus resulting in three relative intensities and
intensity 1 at the index of the received maximum. The second approach considers all possible unique
paired combinations that can be drawn from the set r. This results for L = 4 in (4

2) = 6 pairs, where the
vector of the ratios of the pairs yields rrel,all . The relative intensities are then used as input features in
an MLP model, GP model, and relative multilateration scheme, generating a location estimate (x̂, ŷ).
The accuracy of the obtained results is evaluated by using the euclidean distance error metric:

Ep =
√
(x̂− x)2 + (ŷ− y)2, (5)

where (x, y) are the ground truth coordinates. The models described in the coming sections will take
the relative or absolute intensities as features and the coordinates as outputs. The following ML models
were selected because they are naturally suited to model noisy data and exhibit smooth behavior,
in line with the physical properties of the system under consideration.

2.2. Multilayer Perceptron

When using physical models, it is not always straightforward how to deal with noise, unknown
(non-Lambertian) radiation patterns, obstruction of field of view, and dust. This is where data-driven
approaches can offer advantages. One of these models, used in the context of VLP, is the MLP
model [21,22], of which the structure is shown in Figure 1. An MLP consists of at least three layers:
an input layer (represented by vector z0) containing the features (relative intensities), one or more
hidden layers (represented by vector zi), and an output layer (represented by vector zo) (predicting the
position). Each layer is a transformation of the previous layer:

zi = σ(Wizi−1 + bi).

Here, Wi is a matrix (called the weights), bi is a vector (called the bias), and σ is an activation function
that is nonlinear except for the last layer. The activation function that is used here is the hyperbolic
tangent function. The sizes of the hidden layers are hyperparameters that are chosen upfront or
through cross-validation.

The weights Wi have to be optimized (trained) by minimizing a loss function. In this case, the loss
function is simply E2

p. To update the weights every iteration, the fast converging Levenberg–Marquardt
algorithm [35] is used. One of the drawbacks of this method is that it uses the Jacobian matrix,
which increases the computational complexity rapidly with neural network size. Additionally, in larger
datasets minibatching cannot be combined with this optimization strategy [36].
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Figure 1. Structure of an Artificial Neural Network (ANN), which consists of multiple nonlinear
transformations σ(Wizi−1) of the inputs z0.

2.3. Gaussian Processes

One drawback of MLPs is that they generally do not perform well when using small datasets,
and regularization is not obvious without hyperparameter tuning. The GP [37] is naturally suited to
tackle these issues. A Gaussian Process is a probabilistic generalization of an MLP with one hidden
layer, and assumes that the prior on the weights of the last layer are Gaussian. When taking the limit
to an infinite amount of nodes (dimension of hidden layer), it is possible to use the kernel trick [38],
which defines the GP.

More formally a GP is defined by a kernel function k(z, z′) and a mean function µ(z) such
that the probability of any finite set of input–output pairs {(zi, fi)}N

i=1 is distributed according to
a Gaussian distribution with a mean [µ(zi)]

N
i=1 and a covariance K. fi are vectors containing the

euclidean coordinates. Each entry of the covariance is defined by Kij = k(zi, zj). The mean function is
considered to be zero everywhere in this work.

The kernel function that is chosen here is isotropic because of the approximate symmetry of the
problem, more specifically, the Radial Basis Function (RBF) kernel is used:

k(z, z′) = σ2
k exp

(
‖z− z′‖2

2∆2

)
. (6)

The hyperparameters ζ = {σk, ∆} are determined by maximizing the log likelihood of the data:

ζ̂ = arg max
ζ

log p( f |ζ) (7)

= arg max
ζ
−1

2

(
log |2πK|+ f TK−1 f

)
(8)

It is possible to obtain a prediction for a new input z? by computing the conditional distribution,
which results in a Gaussian distribution with mean kT

?K−1 f and covariance k?? − kT
?K−1kT

? , where

(k?)i = k(z?, zi), (9)

k?? = k(z?, z?). (10)

Thus, additionally this provides a variance on the prediction, which can potentially be used to quantify
how certain we are about the position. This predictive distribution is illustrated in Figure 2.
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Figure 2. Predictions made by a Gaussian Process (GP). The data used to train the GP model are
indicated with the black markers. The predictive distribution consists of a mean, indicated with
the thick blue line, and a covariance of which the diagonal elements are used to calculate the 95%
confidence interval plotted around it. Since the prediction consists of a correlated Gaussian, it is
possible to sample from this distribution, as shown in the plot. Every one of those samples possibly
match with the real, underlying function.

2.4. Relative RSS Based Multilateration Scheme

In general, a planar multilateration problem is solved by finding a solution for the following set
of L equations, given by Equation (11) where (x̂, ŷ) is the unknown position of the mobile receiver.

(x̂− xl)
2 + (ŷ− yl)

2 + h2 = d2
l , l = 0, .., L− 1. (11)

The coordinates (xl , yl) with l ∈ 0, . . . , L− 1 (L ≥ 2) are the fixed locations of the LED beacons
and the parameter dl is the euclidean distance between the LEDs and the receiver. In this work,
the distance estimation is based on the received signal strength [39]. For example, dust accumulation
on the surface of the PD will reduce the received light intensity, resulting in an erroneous distance
estimation δl =

dl√
ηr

. This link can be found by comparing the received intensities rd leading to dl
and rδ leading to δl using Equation (2) (after demultiplexing) and Equation (3), where it is given that
rδ = ηrrd. The aforementioned leads to a set of L equations:

(x̂− xl)
2 + (ŷ− yl)

2 + h2 = δ2
l , l = 0, .., L− 1. (12)

The first relative RSS multilateration scheme employed in this work normalizes the received intensities
with respect to the maximum intensity in a received set r. The equation featuring the smallest
estimated distance δl , and thus the maximum received intensity, is divided by the equations defined in
Equation (11). More formally the equation with distance δk = min {δ0, δ1, . . . , δL−1} is used to obtain
a new set of equations:

(x̂− xk)
2 + (ŷ− yk)

2 + h2

(x̂− xl)
2 + (ŷ− yl)

2 + h2
=

(
δk
δl

)2
= cl , l = 0.., k− 1, k + 1, .., L− 1. (13)

As a result of this operation, the unknown attenuation ηr is no longer present in the equation set to be
solved. If one selects any equation from Equation (13) with cn on the right hand side and rearranges
the terms the following relationship is found,

x̂2(1− cn)− 2x̂(xk − cnxn) + x2
k − cnx2

n+

ŷ2(1− cn)− 2ŷ(yk − cnyn) + y2
k − cny2

n+

h2(1− cn) = 0,

(14)
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Which finally leads to

(x̂− un)
2 + (ŷ− vn)

2 = ρ2
n, (15)

with

un =
xk − cnxn

1− cn
,

vn =
yk − cnyn

1− cn
,

ρ2
n =

cn

1− cn
R2

n −
1

1− cn
R2

k + u2
n + v2

n,

(16)

and

R2
n = (x2

n + y2
n + h2),

R2
k = (x2

k + y2
k + h2)

(17)

and
n = 0, .., k− 1, k + 1, L− 1

This approach results in a new set of L− 1 equations:

(x̂− ui)
2 + (ŷ− vi)

2 = ρ2
i , i = 0.., k− 1, k + 1, .., L− 1. (18)

Remark that this set of equations is again of the same form as the general multilateration set. However,
one equation has been sacrificed to eliminate unknown additional attenuation parameter ηr.

The second relative localization scheme employed in this work uses all possible unique
combinations which can be selected from the set of L equations, defined by Equation (11), and is
given by (L

2). This is a variation of the first scheme. Every combination (i, j) results in an equation as
in Equation (15) where

ci,j =

(
δi
δj

)2

ui,j =
xi − ci,jxj

1− ci,j

vi,j =
yi − ci,jyj

1− ci,j

ρ2
i,j =

ci,j

1− ci,j
R2

i,j −
1

1− ci,j
R2

i + u2
i,j + v2

i,j.

(19)

The location estimate (x̂, ŷ) of the above-described analytical multilateration method can finally be
obtained with least squares optimization [40]. The solution adopted in this work employs a non-linear
least squares approach, using the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [41], where the
objective is to minimize the cost function J(x̂, ŷ) given by Equation (20) using Equation (19) with p the
number of available equations.

J(x̂, ŷ) =
1

p− 1

p−1

∑
i=0

(ρ̂i − ρi)
2 . (20)
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3. Measurements and Results

3.1. Experimental Set-up

To evaluate the performance of the Relative RSS-based VLP schemes, an experimental setup
was constructed. An image of the setup is depicted in Figure 3 and a top view is shown in Figure 4.
It consists of 4 LEDs (Bridgelux BXRE-C3001-D24, Driver: Analog Devices LTM-8005 and board
DC2257A) in a quasi rectangular set-up at a height of h = 1.284 m and a PD (Thorlabs FDS100 Si
Photodiode)-based custom receiver that can move in a plane of 3 m × 3 m, thus covering a wide range
of angles of incidence γl at the receiver, as is depicted in Figure 5. The receiver module is depicted in
Figure 6. The main parameters of the setup are summarized in Table 1.

Figure 3. A photo of the complete experimental set-up with four light-emitting diodes (LEDs) at height
h = 1.284 m.
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Figure 4. A conceptual top view of the setup with four LEDs at a height h. The measured data from
the experimental set-up is sampled randomly in the receiver plane.
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Figure 5. A top view of the set-up with the angles of incidence γl at the photodiode (PD) highlighted
for a single LED. The wide range of angles of incidence results in a representative experimental set-up.

Figure 6. Image of the custom designed receiver in the experimental setup, the device on the top is the
Visible Light Positioning (VLP) receiver and the device on the bottom is the mobile node of the acoustic
ground truth system (Marvelmind Robotics Super-NIA-3D).

The receiver features a Programmable System On Chip (PSOC)(Cypress Semiconductor PSOC
5lp, Component: CY8C5868LTI-LP039) that implements most of the analog signal processing on-chip
and has a high resolution Sigma-Delta Analog-to-Digital Converter (ADC)(On-chip component PSOC)
for signal digitization. A block schematic representation of the receiver circuit is given in Figure 7.

Figure 7. A block schematic representation of the receiver circuit.
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Table 1. The system parameters of the experimental set-up .

System Parameters Parameter Value

Room Dimensions 3 m × 3 m
Height h 1.284 m
Number of LEDs 4
LED Lambertian order m 1

The photo current generated by the photodiode is coupled into a Transimpedance Amplifier
(TIA)(On-chip component PSOC) to be converted to a voltage. Next, the output of the TIA is coupled
into a passive first-order Low-Pass Filter (LPF). The output signal of the LPF is AC-coupled to remove
the ambient light and DC-biased at 50% of the ADC range because the circuit operates with single
positive supply components. The signal is then used as input in a high gain amplifier with offset
compensation. This amplified signal is coupled into the ADC where it is converted to the digital
domain with a precision of 14 bit. A summary of the receiver circuit parameters is given by Table 2.

Table 2. Parameters of the VLP receiver in the experimental set-up.

Receiver Parameters Parameter Value

Photodiode area size 13 mm2

TIA Gain 40 k
DC-bias voltage 1.024 V
LPF cut off frequency 36 kHz
Sampling frequency 128 kHz
ADC-range 2.048 V
ADC precision 14 bit

After ADC conversion, the measured samples are first buffered in memory and then transferred
via Direct Memory Access (DMA) to the ARM (https://developer.arm.com/ip-products/processors/
cortex-m/cortex-m3) Cortex M3 Micro Controller Unit (MCU) on the PSOC chip where a hardware
interrupt is triggered when the DMA-transfer is completed. Next, the software on the MCU handles
the data transfer to the connected Raspberry Pi (https://www.raspberrypi.org/products/raspberry-
pi-3-model-b/) SBC over a USB interface.

A highly accurate (±2 cm differential) acoustic ground truth system(Marvelmind Super-NIA-3D)
is used to acquire the coordinates of the measurement locations. Both the ground truth system
and the custom VLP receiver are interfaced with a Single Board Computer(Raspberry Pi 3B) (SBC)
which simultaneously acquires the coordinates of the measurement locations and the associated light
intensities as depicted in Figure 8.

In this work, the SBC is only used for signal demultiplexing and data logging but it can easily be
configured to deliver real time location updates based on the measured received light intensities.

During the experimental evaluation, the following measurements were executed. In total,
five datasets are acquired by randomly moving in the horizontal observation plane, both inside
and outside the rectangular frame composed by the LEDs, logging ground truth location coordinates
and linked light intensities. The first three sets were measured with different LED driving currents,
which are 250 mA (Set C), 300 mA (Set B), and 350 mA (Set A). The last two sets were measured at a
LED current of 350 mA with chalk dust (Set D) and saw dust (Set E) randomly scattered onto the PD
surface area thus obscuring the PD aperture as is shown in Figure 9. Set A is to be considered as the
installation configuration. The LEDs are transmitting the Table 3 gives an overview of the nature and
the size of the measured datasets and provides a reference name for each set.

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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Figure 8. A block schematic representation of the receiver on a system level.

(a) The receiver aperture obscured by
white chalk dust, this corresponds with
the measurements in dataset D.

(b) The receiver aperture obscured by
saw dust, this corresponds with the
measurements in dataset E.

Figure 9. Dust particles scattered on the aperture on the receiver, representing possible changes in the
environment during operation of the VLP system where robustness is required.

Table 3. Summary of the acquired datasets with their reference name and the context describing the
experiment circumstances.

Dataset Size Context

A 177 Set measured with LED current of 350 mA. This dataset is used as training set for the ML methods.
B 165 Set measured with LED current of 300 mA.
C 127 Set measured with LED current of 250 mA.
D 174 Set measured with white chalk dust scattered on the PD surface, LED current 350 mA.
E 162 Set measured with sawdust scattered on the PD surface, on the PD surface, LED current 350 mA.

The receiver configuration parameters in terms of signal processing and ADC parameters is the
same for every dataset. For both machine learning algorithms, three models are trained with set A.
One model is trained using the absolute RSS values r, while the other two other models are trained
using the relative intensity schemes rrel,max and rrel,all . For the absolute RSS case, the models are
trained with a subset of set A and their performance is evaluated on an independent validation set,
sampled from set A. For the relative RSS cases, the models are trained with set A and the performance
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is determined using the other datasets. For the ML models trained with relative intensities, the size
of the training set (set A) is varied as well to compare their performance in terms of data efficiency,
where data efficiency is defined as model performance per number of training data points. The models
are tuned separately for each different training set. The MLP and GP model performances are finally
compared to the relative RSS multilateration implementations.

3.2. Localization Results

3.2.1. Performance Comparison Relative vs. Absolute Intensities as Features

First, the performance of the ML methods where relative intensities are used as features is
investigated and compared to the absolute RSS case. To achieve this, dataset A is divided in a training
set (60%) and a validation set (40%) and the localization accuracy obtained from the validation set
is used as the performance metric. When the absolute RSS values are used as input features in the
MLP and GP models, the MLP results in a p50 localization error of 1.99 cm and a p95 localization error
of 7.17 cm while the GP results in a p50 error of 1.92 cm and a p95 error of 6.41 cm. The Cumulative
Distribution Function (CDF) of the localization error in the absolute RSS case is depicted in Figure 10.

Next, the relative RSS scheme using rrel,max to obtain the input features is investigated. For this
scheme, the MLP results in a p50 localization error of 2.36 cm and a p95 error of 7.41 cm, while the GP
results in a p50 localization error of 2.03 cm and a p95 error of 7.19 cm. The CDF of the localization
error for this scheme is depicted in Figure 11.
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Figure 10. Cumulative distribution of the error evaluated on set A for the Machine Learning (ML)
methods in the case the absolute intensities r are used as features.
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Figure 11. Cumulative distribution of the error evaluated on set A for the ML methods in the case the
relative intensities rrel,max are used as features.

The second relative RSS approach uses rrel,all to obtain input features. For this strategy, the MLP
results in a p50 localization error of 2.13 cm and a p95 error of 7.37 cm while the GP results in a p50
error of 2.35 cm and a p95 error of 6.86 cm. The CDF of the localization error for this scheme is depicted
in Figure 12.
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Figure 12. Cumulative distribution of the error evaluated on set A for the ML methods in the case the
relative intensities rrel,all are used as features.
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For comparison, both the relative multilateration schemes and an absolute implementation are
also applied to dataset A. In the case the absolute values are used, this results in a p50 localization
error of 3.28 cm and a p95 error of 8.17 cm. Next, the relative scheme using rrel,max, results in a in a p50
localization error of 4.09 cm and a p95 error of 46.06 cm. The second scheme, using rrel,all , results in
a p50 error of 4.33 cm and a p95 error of 41.03 cm. The CDF of the localization error for the absolute
approach and both relative lateration schemes are respectively depicted in Figures 13 and 14. The p50
and p95 values are summarized in Table 4.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ep (cm)

0

20

40

60

80

100

CD
F

MLAT p50 = 3.28
MLAT p95 = 8.14

Figure 13. Cumulative distribution of the error evaluated on set A for the absolute multilateration
scheme using r as input.
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Figure 14. Cumulative distribution of the error evaluated on set A for the relative multilateration
schemes using rrel,max and rrel,all .
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Table 4. The p50 and p95 errors expressed in (cm) for the evaluated schemes on dataset A.

Performance on Dataset A
Input r Input rrel,max Input rrel,all

Configuration p50 p95 p50 p95 p50 p95

MLP 1.97 6.87 2.34 7.72 2.15 7.55
GP 1.92 6.41 2.03 7.19 2.23 7.17
MLAT 3.28 8.17 4.09 46.06 4.33 41.03

If one compares the results of the ML models to the multilateration approach when relative
intensities are used, one can see that GP and MLP both outperform the analytical lateration strategy.
Specifically, the p95 performance of the ML models is about 6x better than that of the multilateration
strategy which makes the ML models superior candidates to achieve a more robust localization solution
as will be demonstrated in Section 3.2.2. From these results one can also conclude that using relative
intensities as input features in the MLP and GP models, performs similarly well as in the case with the
absolute intensities used as features.

3.2.2. Cross-Validation between Datasets

To demonstrate the robustness of the relative RSS schemes, the ML models that are trained with
set A are cross-validated with the remaining datasets. Furthermore, to assess the data efficiency, the
size of the training set is varied to be N ∈ (50, 75, 100, 125, 177), where the last value is the full size
of set A. For reference, the p50 and p95 localization results of a classical RSS-based multilateration
implementation are included in Table 5. The classical RSS-based lateration solution uses absolute
intensities and does not account for changes in the environment in any way. It can be seen from Table 5
that the localization accuracy deteriorates drastically when there is no mechanism that compensates
the modified environment.

Table 5. The p50 and p95 percentiles of the error expressed in (cm) for the classical multilateration algorithm.

Classical Multilateration Model Using the Absolute Intensities r as Features
Data p50 p95

B 10.36 27.30
C 25.82 54.86
D 16.42 35.38
E 32.68 58.47

For the ML models, the relative RSS scheme using rrel,max is investigated first and compared to
the performance of the second relative RSS scheme, where rrel,all is used as input features. The results
in terms of the p50 and p95 localization accuracy are summarized in Table 6 for the GP models and in
Table 7 for the MLP model.

Table 6. The p50 and p95 percentiles of the error expressed in (cm) for the Gaussian process model.

Gaussian Process Model Using rrel,max
N = 50 N = 75 N = 100 N = 125 N = 176

Data p50 p95 p50 p95 p50 p95 p50 p95 p50 p95

B 5.30 19.45 4.56 15.73 4.14 15.99 3.89 12.38 3.61 11.52
C 8.91 20.91 8.61 19.19 8.38 19.32 8.11 18.49 7.77 18.39
D 10.55 24.25 10.12 22.46 9.95 21.89 9.83 20.92 9.99 20.53
E 14.25 29.47 14.05 26.96 13.95 26.2 14.01 24.03 13.88 22.95

If one observes the rows B and C From Table 6, one can see that the GP model is capable of
delivering reliable positioning results, even in the case when there is only a small amount of training
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data available. For set B at N = 50, the GP already performs well with a p50 localization error of
5.30 cm and a p95 error of 19.45 cm. Increasing the training set to N = 176, being the full size of set A,
improves the P95 error significantly to 11.52 cm and the p50 error to 3.61 cm. The localization accuracy
of the GP model cross validated on set C, where the LEDs are further dimmed, is negatively impacted
for both the p50 and p95 values. The best results are found when N = 176 with a p50 localization error
of 7.77 cm and a p95 error of 18.39 cm.

It should, however, be noted that the receiver parameters are unchanged for all measured datasets,
thus resulting in non-ideal gain settings for the lower light intensity level corresponding with set C.
It is expected that employing an adaptive gain control scheme to optimize the dynamic range usage of
the ADC would again improve the results, while because of the use of relative intensities as features,
no model retraining would be required. Datasets D and E represent possible environment dynamics
in industrial logistics environments where dust accumulation could obscure the receiver aperture.
For set D, where chalk dust is scattered on the PD aperture, the best performance for the GP model
is again achieved when N = 176 with a p50 localization error 9.99 cm and a p95 error of 20.53 cm.
Finally, for set E where saw dust is scattered on the PD surface, the GP model remains capable of
providing robust positioning results with a best case p50 error of 13.88 cm and a p95 error of 22.95 cm.
When one differentiates between the LED dimming scenarios B and C and the aperture obfuscation
situations D and E, one can see that the p50 and p95 errors are higher in the latter cases. A possible
cause for the increase in error is that the aperture blockage factor ηr of the PD with dust particles is not
fully independent of the angle of incidence γl .

Table 7. The p50 and p95 percentiles of the error expressed in (cm) for the Multilayer Perceptron model.

Multi Layer Perceptron Model Using rrel,max
N = 50 N = 75 N = 100 N = 125 N = 176

Data p50 p95 p50 p95 p50 p95 p50 p95 p50 p95

B 5.41 39.62 4.31 19.68 4.12 18.69 3.75 15.98 3.59 15.23
C 8.77 27.26 8.25 21.78 8.11 20.86 7.69 19.68 7.98 18.72
D 10.65 32.65 10.22 22.15 9.88 22.12 9.83 22.12 9.76 20.33
E 14.18 55.07 14.00 30.26 13.79 30.95 13.88 27.39 13.93 27.74

From Table 7, it can be seen that the MLP model is also capable of delivering reliable localization
results in a non-static environment. However, when comparing the performance of the GP and MLP
models, it can be seen that the GP is much more data efficient than the MLP model. The P95 localization
error in the lower training data regimes is much higher in the case of the MLP. This effect decreases with
increasing training set size and at N = 176 the MLP and GP deliver similar results, with the difference
that the GP model provides slightly more robust localization. This can be observed by considering the
p50 and p95 values in Tables 6 and 7 where N = 176. The error distributions for all datasets, examining
the ML models performance in function of the dataset size, are given in Figures 15–18.
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Figure 15. Cross-validation with set C where the rrel,max input features are used.
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Figure 16. Cross-validation with set B where the rrel,max input features are used.
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Figure 17. Cross-validation with set D where the rrel,max input features are used.
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Figure 18. Cross-validation with set E where the rrel,max input features are used.

The results for the second relative RSS scheme are summarized in Table 8 for the GP and in Table 9.
Similar conclusions can be drawn for this scheme when comparing the GP model with the MLP model.
Both models succeed in delivering robust localization with a worst case result occurring when cross
validating with set E, yielding a p50 and p95 error of 13.66 cm and 25.52 cm, respectively, for the GP
and a p50 and p95 error of 13.82 cm and 27.55 cm, respectively, for the MLP.

Table 8. The p50 and p95 percentiles of the error expressed in (cm) for the Gaussian process model for
the second relative RSS scheme.

Gaussian Process Model Using rrel,all
N = 50 N = 75 N = 100 N = 125 N = 176

Data p50 p95 p50 p95 p50 p95 p50 p95 p50 p95

B 4.00 17.09 3.36 13.77 3.25 12.74 3.20 11.60 3.02 10.82
C 8.27 20.44 7.96 19.09 8.03 18.81 7.85 17.59 7.68 18.80
D 10.10 20.77 9.89 19.61 9.90 19.67 9.65 19.40 9.27 19.54
E 14.02 26.38 14.14 25.27 14.33 25.56 14.11 25.31 13.66 25.52

Table 9. 50 and 95 percentile of the error expressed in (cm) for the Multilayer Perceptron model for the
second relative RSS scheme.

Multi Layer Perceptron Model Using rrel,all
N = 50 N = 75 N = 100 N = 125 N = 176

Data p50 p95 p50 p95 p50 p95 p50 p95 p50 p95

B 5.43 40.57 4.30 30.25 3.70 21.92 3.53 16.43 3.49 15.48
C 8.59 45.16 7.88 25.37 7.67 22.29 7.76 19.23 7.65 20.58
D 10.80 39.6 9.95 27.13 9.73 21.21 9.68 19.77 9.52 19.81
E 14.05 54.54 13.62 40.59 13.99 32.97 13.78 27.93 13.82 27.55

The error distributions for all datasets, comparing the ML models performance in function of the
dataset size, are given in Figures 19–22.
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Figure 19. Cross-validation with set C where the rrel,all input features are used.
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Figure 20. Cross-validation with set B where the rrel,all input features are used.
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Figure 21. Cross-validation with set D where the rrel,all input features are used.
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Figure 22. Cross-validation with set E where the rrel,all input features are used.

If one analyzes the performance of the ML models for both the relative RSS schemes, one can
conclude that both schemes lead to accurate localization and increased robustness but the second
scheme based on rrel,all overall, slightly outperforms the first scheme.

When the cross-validation results for the ML schemes are compared to the outcome of the classical
multilateration algorithm from Table 5, one can see that the ML-methods drastically outperform the
lateration method. When one considers set D for example, the GP model from Table 8 results in an
improvement of the p50 error of 43.5% and an improvement of the p95 error of 44.8% when compared
to Table 5. For set E, the GP model from Table 8 results in an improvement of the p50 error of 58.2%
and an improvement of the p95 error of 56.4%.

3.2.3. Comparison of ML Models and Relative Multilateration

In this section, the performance of the relative RSS multilateration schemes, described in Section 2,
is discussed and compared to the classical multilateration implementation and with the ML models.
The results for the relative multilateration schemes are summarized in Table 10.

Table 10. The p50 and p95 percentiles of the error expressed in (cm) for the relative multilateration schemes.

Multilateration Cross Validation
rrel,max Features rrel,all Features

Data p50 p95 p50 p95

B 4.10 112 4.49 125.67
C 6.56 35.77 6.74 47.47
D 8.83 62.79 9.16 62.98
E 13.39 82.48 13.19 57.15

The p50 error of the relative multilateration strategies ranges from 4.10 cm in the case of LED
dimming to 13.39 cm in the case of aperture obfuscation, thus resulting in an improved median accuracy
compared to the classical lateration method from Table 5. However, with a p95 error exceeding 1 m
in some cases, this does not perform as is desired in a robust localization system. If one additionally
compares the ML methods to the relative multilateration schemes, one can clearly see that MLP and
GP significantly outperform the analytical methods, even at small training set sizes. When considering
rrel,max for set B for example, the GP model results in an improvement of the p50 of 12% and an
improvement of 90% of the p95 error.

When comparing the performance on set E of the GP with the relative multilateration approach
when using rrel,all , one can see that the multilateration algorithm performs slightly better in terms of
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p50 which is 3.4% lower, but the GP delivers significantly more robust results with an improvement of
the p95 error of 55.3%. From these results, it can be concluded that the ML methods clearly outperform
the multilateration strategies and are substantially more suited to cope with the environment dynamics
scenarios investigated in this work.

4. Conclusions

In this work, an experimental evaluation of ML methods for robust RSS-based VLP has
been executed. The methods use relative RSS-based input features to provide a more reliable
localization system when unknown changes in received signal strength occur due to PD aperture
obfuscation or LED dimming. Both ML models deliver accurate localization in the scenario without
environmental changes when using absolute intensities with a p50 of 1.97 cm and 1.92 cm for the MLP
and GP, respectively. Using relative intensities as features, however, is an added value because it
renders independence to the investigated changing system parameters. It was demonstrated that
ML methods using relative intensities as features significantly outperform similar multilateration
schemes in terms of localization accuracy and robustness in the investigated environmental dynamics
scenarios. The scenario where rrel,all is used as input vector is demonstrated to be the most robust.
Furthermore, it can be stated that the GP model is better suited than the MLP model because it is more
data efficient and provides superior results in terms of p50 and p95 errors on the measured datasets.
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