
sensors

Article

DynDSE: Automated Multi-Objective Design Space
Exploration for Context-Adaptive Wearable IoT
Edge Devices

Giovanni Schiboni *, Juan Carlos Suarez , Rui Zhang and Oliver Amft

Digital Health, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany;
juan.c.suarez@fau.de (J.C.S.); rui.rui.zhang@fau.de (R.Z.); oliver.amft@fau.de (O.A.)
* Correspondence: giovanni@schiboni.it

Received: 22 September 2020; Accepted: 21 October 2020; Published: 27 October 2020;
Corrected: 8 September 2022

����������
�������

Abstract: We describe a simulation-based Design Space Exploration procedure (DynDSE) for wearable
IoT edge devices that retrieve events from streaming sensor data using context-adaptive pattern
recognition algorithms. We provide a formal characterisation of the design space, given a set of system
functionalities, components and their parameters. An iterative search evaluates configurations according
to a set of requirements in simulations with actual sensor data. The inherent trade-offs embedded in
conflicting metrics are explored to find an optimal configuration given the application-specific conditions.
Our metrics include retrieval performance, execution time, energy consumption, memory demand,
and communication latency. We report a case study for the design of electromyographic-monitoring
eyeglasses with applications in automatic dietary monitoring. The design space included two spotting
algorithms, and two sampling algorithms, intended for real-time execution on three microcontrollers.
DynDSE yielded configurations that balance retrieval performance and resource consumption with an F1
score above 80% at an energy consumption that was 70% below the default, non-optimised configuration.
We expect that the DynDSE approach can be applied to find suitable wearable IoT system designs in a
variety of sensor-based applications.

Keywords: health monitoring; automatic dietary monitoring; physiological sensing; pattern spotting;
energy saving; embedded machine learning

1. Introduction

Autonomous wearable IoT devices are being used for physiological and behavioural
health-monitoring [1] and provide relevant health status information to their wearers [2,3]. Miniaturised
electronics embedded in wearable accessories, garments, etc., provide the resources to retrieve pattern
events from streaming sensor data and to interact with the wearer, which led to the concept of edge
computing [4]. Edge computing aims to process data at the devices end, rather than the cloud to reduce
network load and service response time. Furthermore, reducing communication bandwidth often lowers
energy consumption, as well as privacy, and security concerns. For example, in medical IoT monitoring
applications [5], a device may retrieve relevant events using embedded machine learning methods,
thus sending only abstract event information to the cloud. Nevertheless, resource constrains are a key
feature of IoT devices. A wearable IoT device typically consists of multiple sensors, a microcontroller (µC),
which runs data processing algorithms, memory, and a radio module for data communication (Figure 1).

Sensors 2020, 20, 6104; doi:10.3390/s20216104 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1588-9565
https://orcid.org/0000-0001-6811-3659
http://dx.doi.org/10.3390/s20216104
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/20/21/6104?type=check_update&version=5

Sensors 2020, 20, 6104 2 of 27

Therefore, the optimisation of resource-constrained IoT edge devices has high priority in the design
process [6].

The design of an IoT device can be interpreted as the selection of an optimal hardware and software
configuration from the wide design space of possible options. Certain system configurations may be not
compatible with specific system requirements, e.g., energy saving and retrieval performance.

Figure 1. DynDSE procedure for wearable IoT edge devices. X |E , Ω: design space; X |E, Ω: system
configuration; π benefit metrics set; ρ: cost metrics set; zπ : benefit requirement set; zρ: cost requirement
set; si,k: data sample i from channel k.

Available µCs present differences in terms of resource consumption, execution time, and energy
consumption. With the complex interplay of hardware and software components, it is a difficult task to
quantify resource use and to manually identify optimal configurations that fulfil system requirements
best. The size of the architectural design space often makes manual exploration of embedded systems
unfeasible. Automated Design Space Exploration (DSE) [7,8] provides a computational framework to
identify optimal configurations.

The design problem is exacerbated when the system does include functions that cannot be statically
approximated, and by those with a dynamic effect on the resource-performance trade-off. Sampling
strategies, e.g., context-adaptive sampling [9], are a basic dynamic function of wearable IoT devices.
A context-adaptive sampling is a dynamic sampling strategy that tunes the sensor’s sampling rate based
on a context measure, thus aiming at minimising energy consumption. The stochastic and variable nature
of human behavioural patterns induces variability into context-adaptive sampling behaviour, which,
in turn, drastically affects the resource-perfomance trade-off. Therefore, the main challenge for the design
of a context-adaptive wearable IoT device lies in the identification of viable configurations that fulfil the
system requirements under dynamically varying conditions. With DynDSE, we explicitly incorporate
context-adaptive system behaviour in the design exploration and simulate systems with actual sensor data.

In this paper, we provide the following contributions:

1. We present a simulation-based Design Space Exploration (DynDSE) procedure for wearable IoT
devices that employ context-adaptive pattern recognition algorithms for event retrieval, see Figure 1.
We provide a formal characterisation of the design space, given a set of system functionalities,
components, and their parameters. An iterative search evaluates configurations according to system
requirements. The inherent trade-off embedded in conflicting objectives are explored to find an
optimal configuration.

Sensors 2020, 20, 6104 3 of 27

2. We perform a wearable IoT application evaluation to analyse the resource-performance trade-off
considering static and dynamic design aspects through simulations with actual data of
Electromyography (EMG)-monitoring eyeglasses in automated dietary monitoring.

In the present work, we formally introduce the DynDSE exploration framework in Section 3 and
relevant optimisation metrics in Section 4. Subsequently, a comprehensive wearable IoT application case is
presented and analysed in Sections 5 and 6 to detail the potential of DynDSE.

2. Related Work

DSE frameworks are used for hardware/software co-design of heterogeneous multiprocessor and
system-on-chip architectures [10], embedded systems [11], or Field Programmable Gate Array (FPGA)
platforms [12]. In conventional DSE approaches, multiple metrics, e.g., energy consumption, memory
demand, and cost, must be optimised concurrently according to some application requirements.
The conflicting nature of objectives, which reflect many system characteristics, produces trade-offs inherent
to the overall system performance. A decision on the most adequate system configuration needs to be
taken according to a multi-objective optimisation process. The majority of DSE methods belongs to one
of three analysis and evaluation categories, i.e., prototype-based, analytics-based, and simulation-based.
The three categories differ in terms of a design time-modelling accuracy trade-off [8]. For example,
the prototype-based evaluation provides adequate modelling accuracy, but requires development time
with limited exploration capability. The analytics-based evaluation relies on analytical description of
component interactions, which allows designers to explore larger design space portions in acceptable time.
However, especially with complex architectures, the modelling accuracy of analytics-based evaluations
is limited. The simulation-based evaluation is the most versatile approach, as time-modelling accuracy
trade-offs of different designs can be achieved by tuning the simulation characteristics. For example,
a lower abstraction simulation level, i.e., simulating digital signals between registers and combinational
logic, yields higher accuracy but lowers simulation time for analysing software stacks. A higher abstraction
simulation level, i.e., simulating system components at the cycle level, computes more efficient simulation,
at the cost of averaging inter-cycle system state information. Moreover, simulation-based DSE enables
dynamic profiling at run time, which allows the designer to quantify and optimise complex dynamic
component interactions and workload.

In last two decades, many DSE approaches have been proposed to design wearable devices.
For example, Bharatula et al. [13] proposed a design method to achieve a resource-performance trade-off
for a highly-miniaturised multi-sensor context recognition system. Their evaluation showed that, through
variations of system design space, the optimisation method was able to extend the battery lifetime by
several hours. The same research group introduced multiple metrics to analyse the resource-performance
trade-off of a wearable system, i.e., an accelerometer, a microphone, a light sensor, and a TI MSP430F1611
µC [14]. The authors presented an experimental validation in which a manual multi-objective optimisation
was applied to find the best system configuration. In contrast to the works of Bharatula et al.,
we propose an analytical characterisation of the system architecture with the aim to automate the
DSE modelling. Anliker et al. [15,16] presented an automatic design methodology based on abstract
modules and task-dependent constraint sets. A multi-objective function incorporated recognition accuracy,
energy consumption, and wearability, applied to classification of three modes of locomotion. In contrast,
our simulation-based analysis is based on a realistic dataset collected in daily living. We evaluated the
relevant effects of the free-living settings on the metrics. Beretta et al. [17] presented a model-based design
optimisation to analytically characterise the energy consumption of a wearable sensor node. The authors
described a multi-objective exploration algorithm to evaluate system configurations and relative trade-off.
The method was application-driven with a fixed system architecture. Stäger et al. [18] took in account

Sensors 2020, 20, 6104 4 of 27

several system configuration options, including sensor types, sensor parameters, features, and classifiers.
A case study was described related to detection of interactions with household appliances by means of
a wrist worn microphone and accelerometer. Evidences were presented for an improvement in battery
lifetime by a factor 2–4 with only little degradation in recognition performance.

The aforementioned DSE approaches focused on the evaluation and exploration of wearable device
architectures under static workloads. However, todays wearable systems may adopt opportunistic sensing
strategies to balance energy consumption and information acquired by a wearable or mobile systems.
For example, Rault et al. [19] provided an analysis of techniques for energy consumption reduction
in wearable sensors for healthcare applications. Opportunistic sensing strategies consider dynamic
effects on the resource consumption trade-off, not considered in a static DSE. For example, an adaptive
sampling scheme may reduce sampling rate according to a detected lower signal entropy. For instance,
Mesin [20] proposed an adaptive sampling scheme based on sample prediction, where a non-uniform
schedule increased the sampling rate only during bursts of physical activity. A multi-layer perceptron
predicted subsequent samples and their uncertainties, triggering a measurement when the uncertainty
of the prediction exceeded a threshold. In contrast, our approach employs a transparent state-based
reactive model to estimate relevance of future samples. Scarabottolo et. al. [21] presented a dynamic
sampling strategy for low-power embedded devices. The sampling rate tuning was based on the analysis
of the signal’s spectral content. Rieger and Taylor [22] proposed a low-power analog system for real-time
adaptive sampling rate tuning, proportional to the signal curvature. Different from our approach, a-priori
knowledge was required. Moreover, in contrast to Rieger and Taylor’s [22] low-power analog system,
we consider a pattern spotting problem to analyse performance that is frequently required in wearable
IoT systems.

3. Exploration Framework

3.1. Design Space Representation

The design space configurations consist of set X of functionalities, realised by a set E of components,
which are characterised by the set Ω of parameters. An example is provided at the end of this section.
Formally, the set of functionalities X is expressed as:

X = {Ξξ}ξ∈ξ ,

ξ = {ξ|ξ ∈ N1, ξ ≤ NΞ},
(1)

where the functionality Ξξ is the element of the set X , ξ is the index set to X , and NΞ is the number of
elements of ξ.

A functionality Ξξ is carried out by one or more components grouped in the set εξ , indexed by the
index set qξ , expressed as:

εξ = {εξ,q}q∈qξ
and

qξ = {q|q ∈ N1, q ≤ Nξ},
(2)

where the component εξ,q is the element of the set εξ , qξ is the index set to ε∼, and Nξ is the number of
components associated to the functionality ξ.

Sensors 2020, 20, 6104 5 of 27

Overall, the design space consists of a collection E of system components sets, indexed by the
collection Q of index sets, expressed as:

E = {εξ}ξ∈ξ and

Q = {qξ |ξ ∈ ξ}.
(3)

A component εξ,q is characterised by one or more component parameters grouped in the set ωξ,q, indexed
by the index set wξ,q, expressed as:

ωξ,q = {ωξ,q,w}w∈wξ,q and

wξ,q = {w|w ∈ N1, w ≤ Nξ,q},
(4)

where the component parameter ωξ,q,w is the element of the set ωξ,q, wξ,q is the index set to ωξ,q, and Nξ,q
is the number of component parameters associated to the functionality ξ and the component q. Overall,
the design space consists of a collection Ω of component parameters sets, indexed by the collection W of
index sets, expressed as:

Ω = {ωξ,q}(ξ,q)∈⋃ξ∈ξ(ξ×qξ)
and

W = {wξ,q|(ξ, q) ∈
⋃
ξ∈ξ

(ξ × qξ)}.
(5)

For example, a spotting algorithm Ξ1 is represented by a component ε1,1, e.g., a FFT-based algorithm,
characterised by a component parameter ω1,1,1, e.g., the data frame size. Data sampling Ξ2 is represented
by a component ε2,1, e.g., an uniform sampling. A processing unit Ξ3 is represented by a component ε3,2,
e.g., a Texas Instrument µC, characterised by a component parameter ω3,2,1, e.g., the µC’s clock frequency.
In a compact form, the design space is expressed as:

X |E , Ω. (6)

3.2. Configuration Generation

The configuration generation selects a design candidate to be evaluated in the simulation, i.e.,
see Section 3.3. The configuration generation is composed by two main stages. In the first stage, for each
functionality Ξξ , a component set εc

ξ , indexed by the index set qc
ξ , is selected as:

εc
ξ = {εξ,q}q∈qc

ξ
and

qc
ξ ⊆ qξ ,

(7)

where qc
ξ represents a subset of the the index set qξ . Overall, a configuration consists of a collection E of

system components sets, indexed by the collection Qc of index sets, expressed as:

E = {εc
ξ}ξ∈ξ and

Qc = {qc
ξ |ξ ∈ ξ},

(8)

Sensors 2020, 20, 6104 6 of 27

In the second stage, for each component εξ,q ∈ εc
ξ a component parameters set ωc

ξ,q, indexed by the
index set wc

ξ,q, is selected as:

ωc
ξ,q = {ωξ,q,w}w∈wc

ξ,q
and

wc
ξ,q ⊆ wξ,q,

(9)

where wc
ξ,q represents a subset of the the index set wc

ξ,q. Overall, a system configuration consists of a
collection Ω of system component parameters sets, indexed by the collection W c of index sets, expressed as:

Ω = {ωc
ξ,q}(ξ,q)∈⋃ξ∈ξ(ξ×qc

ξ)
and

W c = {wc
ξ,q|(ξ, q) ∈

⋃
ξ∈ξ

(ξ × qc
ξ)}.

(10)

In a compact form, a system configuration is expressed as:

X |E, Ω ⊆ X |E , Ω. (11)

3.3. Configuration Evaluation

A metric estimates benefits π or costs ρ of a configuration. The configuration evaluation is based on
two sets of metrics. The benefit metric set is defined as:

π = {πp(X |E, Ω)}p∈p with (12)

p = {p|p ∈ N1, p ≤ Np}, (13)

where the element πp(X |E, Ω) is a benefit metric and Np is the number of benefit metrics. The benefit
metric set π is subjected to the benefit requirement set as:

zπ = {zp
π}p∈p, (14)

Similarly, the cost metric set is defined as:

ρ = {ρr(X |E, Ω)}r∈r with (15)

r = {r|r ∈ N1, r ≤ Nr}. (16)

where the element ρr(X |E, Ω) is a cost metric and Nr is the number of cost metrics. The cost objective set
ρ is subjected to the cost requirement set as:

zρ = {zr
ρ}r∈r . (17)

Each πp(X |E, Ω) and ρr(X |E, Ω) maps a configuration X |E, Ω to the real space IR, i.e., X |E, Ω→ IR.
The overall optimisation process is formally described as follows. Given a design space X |E , Ω,

the goal of DynDSE is to find the configuration X |E, Ω, which maximises benefits π and minimises costs

Sensors 2020, 20, 6104 7 of 27

ρ, while respecting the respective set of requirements. The problem can be interpreted as a constrained
multi-objective optimisation:

max
X |E,Ω⊆X ,E|Ω

∑
p

πp(X |E, Ω)−∑
r

ρr(X |E, Ω)

s.t. zr
ρ ≤ 0 ∀r ∈ r,

zp
π ≥ 0 ∀p ∈ p.

(18)

The optimisation provides a set of mutually conflicting solutions, which reflects the trade-offs in the
design. To define optimality, one can usually exploit the concept of Pareto-dominance, i.e., a decision
maker prefers a configuration to another if it is equal or better in all objectives and strictly better in at least
one. As Künzli et al. [23] pointed out, several approaches exists to solve the multi-objective optimisation,
e.g., exploration by hand [24], exhaustive search [25], or reduction to a single objective [26], as done in
this work.

4. Optimisation Metrics

Table 1 lists the metrics introduced in this Section and their respective requirements.

Table 1. Our metrics and their relative system requirements. The table also indicates the elements which
affect the system requirements. T denotes the runtime duration and m the data frame length.

The Requirement Is Imposed by

Objective Abbreviation Description Requirement Value Task Battery life µC

π(X |E, Ω)
π1(X |E, Ω) P Precision z1

π ≥70%, X
π2(X |E, Ω) R Recall z2

π ≥80% X

ρ(X |E, Ω)
ρ1(X |E, Ω) ET Ex. time in real-time z1

ρ
Real-time: < m X X

Ex. time online Online: < T X X
ρ2(X |E, Ω) EC Energy Consumption z2

ρ ≤52.8 mWh X X
ρ3(X |E, Ω) MD Memory Demand z3

ρ Variable (see Table 5) X

4.1. Retrieval Performance Metric

The retrieval performance of an event retrieval algorithm is expressed through Precision-Recall
metric [27], as follows:

Precision P = π1(X |E, Ω),

Recall R = π2(X |E, Ω).
(19)

From the application perspective, the algorithm must be able to keep an adequate level of retrieval
performance. The retrieval performance requirements is usually defined by expert knowledge and we
refer to it as z1

π and z2
π .

4.2. Execution Time Metric

A measure of computational complexity denotes the execution time of an algorithm, by pairing the
algorithm module and the processing module. An algorithm’s abstraction is the decomposition of an
algorithm in distinct stages, in which each stage is composed by one or more functions. Each function
f is broken down by counting additions and subtractions (Add), multiplications (Mult), divisions (Div),
square roots (Root), exponentials (Exp), and comparisons (Comp).

Sensors 2020, 20, 6104 8 of 27

The number of machine cycles ncyc
f to compute a function f on a µC is defined as:

ncyc
f =(nop

f ,Add × ncyc
Add) + (nop

f ,Mult × ncyc
Mult)+

(nop
f ,Div × ncyc

Div) + (nop
f ,Root × ncyc

Root)+

(nop
f ,Exp × ncyc

Exp) + (nop
f ,Comp × ncyc

Comp),

(20)

where nop
f ,x is the number of executions related to an arithmetical operation x to compute a function f and

ncyc
x is the number of cycles to execute an arithmetical operation x on a µC. To estimate the execution

time ET f of a function f , the number of machine cycles ncyc
f is divided by the clock frequency ν of the µC,

as follows:

ET f =
ncyc

f

ν
. (21)

The definition of the execution time ET depends on the runtime mode. When the runtime mode is
real time, ET is computed as:

ET = ρ1(X |E, Ω) = ∑
f

ET f . (22)

When the runtime mode is online, ET is computed as:

ET = ∑
f r

∑
f

ET f , (23)

where f r is a data frame process. We refer to the system requirements for ET as z1
ρ.

4.3. Energy Consumption Metric

µC energy consumption: Most µCs support an active state and a stand-by state. The average energy
consumption in active state ECµC

f , related to the computation of a function f , is proportional to the ET f
and defined as:

ECµC
f = ET f × PµC

act , (24)

where ECµC
f is expressed in Wh, PµC

act is the power consumption of the µC in active mode expressed in W,
and ET f is expressed in hours.

The average energy consumption in stand-by state ECµC
stb is modelled as:

ECµC
stb = Tstb × PµC

stb , (25)

where Tstb is the time period of inactivity expressed in hours, and PµC
stb is the power consumption in

stand-by mode expressed in W.
The µC energy consumption was calculated as:

ECµC = ∑
f r

∑
f

ECµC
f + ECµC

stb, (26)

where ∑ f r ∑ f ECµC
f denotes the active state energy.

Sensors 2020, 20, 6104 9 of 27

Sensor energy consumption: The average instantaneous energy consumption ECs
t for a single sensing

component is computed by applying the following equations:

Is
t = Is

act × Dt + Is
stb × (1− Dt),

ECs
t = Is

t ×V × tr,
(27)

where Is
act is the sensor’s average current in active state, Is

stb is the sensor’s average current in stand-by
state, Dt is the instantaneous duty cycle rate, ECs

t is expressed in Wh, V is the voltage level of the sensing
component, and tr is the temporal resolution expressed in hours.

The sensor energy consumption was calculated as:

ECs = ∑
t

ECs
t . (28)

fFlash/Non-Volatile Memory Energy Consumption: To estimate the flash and programmable
memory, we formulated an energy model inspired by Konstantakos et al. [28]. Writing energy consumption
was determined by:

ECm
w = ∑

b
Im
write ×V × tw, (29)

where b indicates a block, Im
write is the average current consumption in writing mode, and write time tw is

the time required to write a memory block. The energy required to read a memory block was neglected.
A static memory energy consumption term was computed as:

ECm
s = Im

stb ×V × (T −∑
b

tw), (30)

where Im
b is the stand-by state current value, and T is the total simulation time.

The memory energy consumption was calculated as:

ECm = ECm
w + ECm

s . (31)

Radio transmission energy consumption measure: To estimate the energy consumption of the
wireless communication, we relied on the energy model described by Prayati et al. [29]. The model
considered the following three stages for transmission: (1) initialisation of transmission and transferring of
the frame data from memory to the radio chip FIFO buffer, (2) back-off timeout, and (3) packet transmission
via the wireless channel.

In order to calculate the energy consumption to transmit a packet, the following formula was applied:

ECr
p = Itrans ×V × ttrans, (32)

where Itrans is the transmission current, p indicating packets, and ttrans is the time requested to prepare and
send a packet. As ECr

p is expressed in Wh, ttrans must be converted in hours. In this work we considered
Itrans = 21.7 mA, when a transmission power threshold 0 dBm is chosen, and ttrans = 16 ms is the time
requested to prepare and send a packet size of 114 Bytes.

The radio transmission energy consumption was calculated as:

ECr = ∑
p

ECr
p. (33)

Sensors 2020, 20, 6104 10 of 27

Total energy consumption: The energy consumption metric EC is computed as follows:

EC = ρ2(X |E, Ω) =

ECµC + ECs + ECm + ECr.
(34)

The application context imposes an energy budget requirement to the behavioural monitoring.
For example, while monitoring dietary behaviour, the wearable system should be able to work
uninterruptedly for the entire day, in order to not miss relevant activities. The system requirement
z2

ρ for EC indicates the energy required to deploy the application for the entire runtime. We defined z2
ρ as

the quantity in mW calculated as:

z2
ρ =

BC
RT
· φ, (35)

where BC is the battery capacity in mWh, RT is the required runtime of the application expressed in hours,
e.g., 16 h, and the factor 0 < φ ≤ 1 considers the effect of external factors, which can affect the battery life.
In this work we considered φ = 0.9.

4.4. Memory Demand Metric

The memory demand MD is an upper bound of the memory required by the system to execute an
event retrieval. MD is computed by considering four terms, i.e., the code memory mc, the data memory
md, the processing memory m f , and the event memory me.

The memory demand is defined as:

MD = ρ3(X |E, Ω) = mc + md + ∑
f

m f + me,

with m f = m f ,Int + m f ,Float,

and me = me,Int + me,Float,

(36)

where m f ,Int and me,Int are the memory required to store integer values, and m f ,Float and me,Float are the
memory required to store float values. We refer to the system requirement for MD as z3

ρ, which represents
the maximum amount of memory available to store information on a certain µC.

4.5. Communication Latency Metric

The communication latency is the time span between the event-related raw sensor data measurements
and the delivery moment at the receiver of the retrieved event information. The communication latency
metric CL is computed as follows:

CL = ρ4(X |E, Ω) = ∑
f

ET f +
me

νtr
, (37)

with νtr =
MPS

connInterval
, (38)

where MPS is the transmitter’s maximum payload size, e.g., 216 bits for Bluetooth Low Energy (BLE),
connInterval defines the time of connection events, i.e., ranges from 7.5 ms to 4.0 s with steps of 1.25 ms
for BLE, and νtr is the transmission data rate. We refer to the system requirement for CL as z4

ρ, which
represents the communication latency tolerance for the application.

Sensors 2020, 20, 6104 11 of 27

5. IoT Application Evaluation

5.1. Smart Eyeglasses to Monitor Eating in Free-Living

We implemented our DynDSE for the design optimisation of 3D-printed regular-looking eyeglasses,
which accommodate processing electronics, EMG electrodes, antenna, and power supply. Smart eyeglasses
are particularly suited for automated dietary monitoring to unobtrusively detect intake and eating
events from activities around the head throughout everyday life, thus replacing classic food journaling
and supporting disease management [30,31]. As typical wearable IoT devices, smart eyeglasses could
process data locally and provide estimates to other body-worn devices, e.g. smartphones. Furthermore,
the monitoring task is a typical example of wearable IoT applications in remote health assistance.

Two pairs of electrodes were symmetrically integrated at the eyeglasses frame, located around the
temple ear bends. Contraction of temporalis muscles was monitored bilaterally resulting in two EMG
signal channels.

The EMG sensor data stream was segmented into eating and non-eating periods by pattern spotting
algorithms. The spotting algorithms were designed to extract features in continuous EMG sensor data and
perform one-class classification to identify eating events (i.e., time span between the start and the end of
an eating activity), see Section 5.2.1.

5.2. Design Space Representation

We considered Nξ = 4 system functionalities: Ξ1, an algorithm for event retrieval, Ξ2, a data sampling
strategy, Ξ3, a µC and Ξ4, a runtime mode.

Table 2 presents the design space considered in this work. Our design space included two spotting
algorithms, i.e., ε1,1 and ε1,2, which were considered for execution on three µCs, i.e., ε3,1, ε3,2 and ε3,3.
Moreover, two data sampling strategies, i.e., ε2,1 and ε2,2, were considered, while applying two runtime
modes, i.e., ε4,1 and ε4,2.

Table 2. Design space for the EMG-monitoring eyeglasses.

Functionality
(Ξξ)

Algorithm
(Ξ1)

Data Sampling
(Ξ2)

Microcontroller
(Ξ3)

Runtime Mode
(Ξ4)

Component
(εξ,q)

FFT-based
(ε1,1)

Uniform
(ε2,1)

PSoC1 M8C
(ε3,1)

Real time
(ε4,1)

WPD-based
(ε1,2)

Adaptive
(ε2,2)

TI MSP430F1611
(ε3,2)

Online
(ε4,2)

ARM CortexM3
(ε3,3)

Parameter
(ωξ,q,w)

Data frame size m
(ω1,1,1)

Data frame size m
(ω1,2,1)

Context measure’s
upper bound θh (ω2,2,1)

Dim. feature space
d (ω1,2,2)

Sensors 2020, 20, 6104 12 of 27

To deal with the requirements in this case study, we relaxed the optimisation problem of Equation (18)
into one of maximisation as follows:

max
X |E,Ω⊆X |E ,Ω

∑
p

πp(X |E, Ω)

s.t. zr
ρ ≤ 1 ∀r ∈ r,

zp
π ≥ 1 ∀p ∈ p.

(39)

The above constrained optimisation problem was solved by a grid search-based approach, evaluating
a grid of possible configurations with an exhaustive search. At each iteration, a system configuration
was generated and the sensor data processed through the simulation. The metrics were estimated and
compared with the respective requirements.

5.2.1. Algorithm (Ξ1)

FFT-based spotting: The first pattern spotting method was introduced by Zhang and Amft [32] in
order to identify eating moments. An online non-overlapping sliding window segmentation with length m
expressed in seconds was used to extract features in continuous EMG data. A one-class classification was
performed by a one-class SVM (oc-SVM). Details of the feature extraction and one-class classification can
be found in [32]. The ocSVM was trained applying the leave-one-participant-out (LOPO) cross-validation
strategy. Hyperparameter optimisation was performed using grid search approach.

WPD-based spotting: We designed the second pattern spotting method inspired by the classification
task presented in [33]. An online non-overlapping sliding window segmentation with length m expressed
in seconds was used. From each segmented frame, the maximum sample value was extracted and
compared to a threshold experimentally found. When the sample value was lower than the threshold,
the frame was not fed to the spotting pipeline. In the pre-processing module, the EMG signals were passed
through a notch filter of 50 Hz to remove power line’s interferences, likely to occur in free-living, also
de-trended by a digital high pass filter of 20 Hz and rectified. In the feature extraction module, the signal
was passed through a Wavelet Packet Decomposition (WPD), to extract c features, i.e., the WPD coefficients,
in the time-frequency domain. The depth level of the tree decomposition was kept constant, i.e., l = 2.
A principal component analysis (PCA) was subsequently used to reduce the number of features from c to
d. After normalisation, the features were used as discriminant of the target class by using a ocSVM, with
number of support vectors v = 1500.

The ocSVM was trained applying the LOPO cross-validation strategy. Hyperparameter optimisation
was performed using grid search approach.

Table 3 presents a breakdown of the spotting algorithms.

Sensors 2020, 20, 6104 13 of 27

Table 3. Analytical breakdown of the two spotting algorithms. Each function f belongs to an algorithm
stage κ. The variable m denotes the length of the window size. For the WPD-based feature extraction,
the variable c denotes the number of WPD coefficients, l denotes the depth level of the WPD decomposition
tree, and d denotes the dimensionality of the feature space after applying PCA. For spotting, the variable v
is the number of support vectors. The operations for pre-processing, feature extraction, and spotting are
calculated on each sliding window’s instance.

Algorithm Stage (κ) Function (f) N. Arithmetical Operations Memory Demand

Add Mult Div Root Comp Exp Integers Floats

Both Pre-processing Low-pass filtering m - - - - - - 1

FFT-based Feature extraction

Standard deviation 3m− 1 m 2 1 - - 1 -

Fast Fourier trasform 3m · log2m 2m · log2m - - - - - k

Maximum - - - - m− 1 - 1 -

L2-norm d− 1 d - 1 - - 1 -

WPD-based Feature extraction

WPD ∑l
i
(m/2i)−1

2+1 · 2i ∑l
i
(m/2i)+1

4 · 2i - - - - - 4 + d

PCA d · (c− 1) d · c - - - - - c · d
L2-norm d− 1 d - 1 - - 1 -

Both Spotting
Kernel SVM v + 1 2v - - 1 - v v · (d + 1)

+ Radial basis kernel v · (2d− 1) v · (d + 1) - - 1 v - 1

5.2.2. Data Sampling (Ξ2)

A context-adaptive sampling algorithm needs two main components, i.e., a context measure and a
response model, to adapt the sampling rate depending on an estimation of relevance of future samples. As a
context measure, we employed a basic representation of EMG signal energy. A feedforward state-based
model that alternates between attentive and sleep states was adopted as response model. Our sampling
strategy was based on the n-shots measure paradigm: the sensor wakes up, takes n samples, and goes to
sleep again. The energy content from the n samples was used to compute the context measure as:

ek =
∑n

i=1 si,k

n
, θt = max

(
e1, . . . , ek, . . . , eK

)
, (40)

where ek is the signal energy for the kth channel, si,k is the ith value sampled from the n-shots measurement,
θt is the context measure, t is the time-step, K is the number of channels that connect to the same system.
A linear mapping function converted θt to a candidate duty cycle rate D∗t+1:

D∗t+1 = Dl +

[
Dh − Dl
θh − θl

· θt − θl

]
, (41)

where Dl is the minimum duty rate set to θl , which was estimated from the signals noise. A maximum
duty rate Dh was set to θh. We adjusted the model’s sensitivity by tuning θh.

The behaviour of the response model is described by Equation (42).
The computation of the duty cycle rate for the next period was based on a comparison between the

candidate duty cycle rate D∗t+1 and the threshold value DTH .
As the D∗t+1 exceeds the threshold DTH , the response model switches from inattentive state to attentive

state. The attentive state is characterised by a monotonically increasing duty cycle rate. As the D∗t+1 drops

Sensors 2020, 20, 6104 14 of 27

below the threshold DTH and the attention time τ expires, the response model switches back from attentive
state to inattentive state. The duty cycle rate’s decision rules for the two states were computed as follows:

(1) Inattentive state

If (D∗t+1 < DTH) and τ elapsed) :

Dt+1 = D∗t+1

(2) Attentive state

If (D∗t+1 > DTH) :

Dt+1 =

{
Dt, D∗t+1 ≤ Dt

D∗t+1, D∗t+1 > Dt.

(42)

Table 4 presents a break down of the context-adaptive sampling algorithm. More details can be found
in our previous work [34].

Table 4. Analytical breakdown of the context-adaptive sampling algorithm. The variable n denotes the
number of samples taken during the n-shots measure, and g denotes the number of channels. The function
is executed at any n-shot measure.

Function (f) N. Arithmetical Operations Memory Demand

Add Mult Div Root Comp Exp Integers Floats

Context measure 2n · g - 2 - n− 1 - - 1

Response output 4 1 1 - - - - 4

Attention time - - - - 2 - - 2

5.2.3. µC (Ξ3)

The processing module simulates the behaviour of an energy-efficient µC while computing the
algorithm’s functions at a certain clock frequency. We considered three commonly widely used µCs, i.e.,
PSoC1 M8C, TI MSP430F1611, and ARM CortexM3. A Li-Ion polymer battery provided energy to the
system. Each µC was provided with memory for local data processing, i.e., Flash and non-volatile memory.
Table 5 shows the number of machine cycles ncyc

x related to the arithmetical operation x for different µCs.

Table 5. Number of machine cycles ncyc
x for the arithmetical operation x and memory specifications for the

considered µCs.

Number of Machine Cycles per Operation Memory spec. [kB]

ncyc
Add ncyc

Mult ncyc
Div ncyc

Root ncyc
Comp ncyc

Exp ROM/Flash RAM

µC

PSoC1 M8C 544 560 912 1344 80 2672 32 2

TI MSP430F1611 177 153 405 668 37 334 48.25 10

ARM CortexM3 60 50 80 380 12 210 512 96

5.2.4. Runtime mode (Ξ4)

Two runtime modes were considered in this work, i.e., online and real time. In our application, real
time mode implies that as soon as a data frame has been recorded, the output of the data processing must

Sensors 2020, 20, 6104 15 of 27

be available. With online data processing, the temporal requirement is more relaxed, as the output of the
data processing must be available by the end of the runtime.

5.3. Configuration Evaluation

5.3.1. Sensor Dataset

Ten healthy volunteers (4 females, 6 males) aged between 20 and 30 years wore the EMG-monitoring
eyeglasses for one day. The application data used in the simulation were sensor data collected at uniform
sampling rate, i.e., 256 Hz. The eyeglasses were attached after getting up in the morning and kept on
till bed time. When a risk of contamination with water existed, the participants were allowed to remove
the eyeglasses. Participants manually logged the occurrence of eating events in a diet journal with a one
minute resolution.

5.3.2. Multi-Objective Computation

Our framework is based on a simulation which reproduces the functionalities of a wearable IoT
system. The sensor’s and µC’s behaviour can be emulated with a finite-state machine approach, e.g.,
Buschhoff et al. [35], in order to reproduce dependencies between the system components and between
hardware and software.

We evaluated the algorithm’s retrieval performance considering the total number of samples of all
eating events according to ground truth labels, the total number of samples of all retrieved eating events,
and the sum of the number of samples correctly retrieved belonging to eating events segments.

The number of machine cycles for an instance of a oc-SVM for the WPD-based spotting algorithm,
with hyper-parameters (m = 256, d = 20), applying Equation (20), is computed as:

• Kernel SVM:
[v · 60] + [2v · 50] + [1 · 12] ≈ 24× 104 cycles, where v = 1500, is the number of support vectors;

• Radial basis function:
[v(2d− 1) · 60] + [v(d− 1) · 50] + [1 · 12] + [v · 210] ≈ 525× 104 cycles.

For simplicity, we assumed that all operations were performed using float data type.
Accordingly to Equation (21), the ET f is computed from the number of machine cycles ncyc

f , as
inversely proportional to the clock frequency ν of a considered µC. Table 6 lists the clock frequencies of
the three candidate µCs.

Time ET f to execute the oc-SVM on a ARM CortexM3 was 114.3 ms.

Accordingly to Equation (24), the ECµC
f is computed multiplying the ET f and the µC energy

consumption PµC
act . The µC switching behaviour is regulated by the time constraints given by the ET

and the sensor data frequency. Table 6 lists the current consumptions IµC
act in active state, IµC

stb in stand-by

state, and the voltage level V, of the three candidate µCs. For example, the energy consumption ECµC
f to

execute an instance of the oc-SVM on a ARM CortexM3 was 0.732 µWh.

Sensors 2020, 20, 6104 16 of 27

Table 6. Component electrical characteristics to estimate the EC and MD measures via simulation. All
values were extracted from datasheets. The following symbology is used. Iact: current consumption in
active mode; Istb: current consumption in stand-by mode; V: voltage; ν: frequency; Res.: resolution; Cap.:
capacity; Mb: data block’s size; Im

write: current consumption for memory writing; twrite: time for writing a
data block.

Functionality Component Electric Characteristics

Memory Write Operation

Iact[mA] Istb[mA] V ν[MHz] Res.[bit] Cap.[mWh] Mb[Byte] Im
write[µA] twrite[ms]

µC (Ξ3)

PSoC1 M8C (ε3,1) 8.0 0.025 3.3 24 8 - 64 619.5 1.5

TI MSP430F1611 (ε3,2) 0.57 0.05 3 8 16 - 60 2300 23.0

ARM CortexM3 (ε3,3) 7.0 0.55 3.3 48 32 - 256 500 3.28

Data Sampling (Ξ2) EMG sensing 4.0 0.008 3.3 256× 10−6 - -

Power supply Li-Ion polymer battery - - 3.7 - - 925

Figure 2a,b show the linear relation between ∑ f ET f and ∑ f ECµC
f , for the individual spotting stage

κ. A log scale for the y axes was defined in order to make the plot more readable. A tuning effect of
the spotting parameters on the execution time and on the energy consumption, is evident. The higher
complexity of a parameter combination, the more machine cycles ncyc

f , execution time ET f , and energy
consumption EC f .

Figure 2. (a) FFT-based spotting: Relation between execution time and energy consumption. Some of the
spotting parameters were omitted for readability. The spotting parameter m represents the data frame
size. (b) WPD-based spotting. Relation between execution time and energy consumption. The spotting
parameter m represents the data frame’s size and d represent the reduced feature space’s dimension.

Tables 5 and 6 list the memory specifications and the data resolution for the three candidate µCs.
Each µC had a RAM memory and a larger flash support, and their capacity represented a system constraint.

By switching runtime mode, i.e., real-time mode or online mode, md was defined as follows.
In real-time mode, the md was defined as the amount of data memory for a window size m. In online mode,
the md was estimated as the peak of memory footprint required to process the data stream continuously
without data loss, using a ring buffer.

Depending on their characteristics, the considered µCs had a certain latency that shaped the
distribution of their memory footprint. For example, Figure 3 shows the distribution of the memory
md footprint related to a daylong processing. The BLE transmission’s specifications defined the maximum
νtr as 305 kbps and the MPS as 215 bits [36]. Equation (38) defines the actual νtr by tuning the connInterval
parameter, which ranged from 7.5 ms to 4.0 s with steps of 1.25 ms. For example, a retrieved eating event

Sensors 2020, 20, 6104 17 of 27

was represented by two time stamps, which represent the start and end of an eating event. A time stamp
can be represented as an unsigned short variable type in 2 bytes (i.e., 5 bits for day, 5 bits for hour, and 6
bits for minute). The communication latency CL to deliver an event retrieved by the FFT-based spotting
(m = 13) on a ARM CortexM3 was 886 ms, according to Equation (37).

Considering the typical event frequencies in human daily behaviour and the negligible memory
footprint for event information, communication latency was omitted from the following analyses.

Figure 3. Memory md foot-print for the online data buffer while executing the WPD-based spotting.
Each colour is related to a specific µC.

5.3.3. Multi-Objective Visualisation

To visualise whether the metrics lie within the system requirements’ boundary conditions or not,
we exploited radar plots. Radar plots support the representation of the trade-off across the design space.
Each y-axes is related to an objective, i.e., P, R, EC, ET, and MD, and normalised for the respective
requirements, yielding a feasibility region within the unitary axes. Thus, a radar plot point beyond the
unitary axes indicates unacceptable configurations. The unitary axes represents an upper bound regarding
the requirements.

5.3.4. Multi-Objective Analysis

For FFT-based, by tuning the parameter m, the precision’s variation ranged from 48.8% for m = 1,
to 95.7% for m = 33. The recall R variation ranged from 62.9% for m = 29, to 99.2% for m = 1. The F1-score
variation ranged from 63.3% for m = 1, to 85.2% for m = 9. For WPD-based, by tuning the parameters
m and d the precision P variation ranged from 38.7% for m = 0.25, d = 50, to 95.7% for m = 0.5, d = 15.
The recall R variation ranged from 52.7% for m = 0.25, d = 28, to 86.2% for m = 1, d = 40. The F1-score
variation ranged from 49.1.0% for m = 0.25, d = 50, to 85.9% for m = 1, d = 40. The system requirements
z1

π and z2
π are indicated as horizontal lines. It is evident that only a subset of spotting parameters respects

the requirements.
Figure 4a,b show the results of the cross-validated FFT-based and WPD-based spotting algorithms

in uniform sampling mode, when tuning their spotting parameters. Specifically, precision P, recall R,
and F1-score, are reported for all spotting parameters combinations. The degree of sampling reduction was
changed by tuning θh in order to find a balance between retrieval performance and resource consumption.
Figure 5a,b show the trade-off between F1-score and sampling reduction for the FFT-based and WPD-based
spotting algorithms. It is clear that we can keep the retrieval performance up over 80% while performing a
sampling reduction over 70%, in both methods. Comparing the two methods, the WPD-based spotting

Sensors 2020, 20, 6104 18 of 27

appears to be more robust against the down-sampling effect, presenting a lower degradation of retrieval
performance for a given sampling reduction degree.

Figure 4. (a) FFT-based spotting. Average retrieval performance when varying the spotting parameters in
uniform sampling mode. Bars were sorted by increasing retrieval performance. The spotting parameter m
represents the data frame size. (b) WPD-based spotting. Average retrieval performance when varying the spotting
parameters in uniform sampling mode. Bars were sorted by increasing retrieval performance. The spotting
parameter m represents the data frame’s size and d represent the reduced feature space’s dimension.

Figure 5. (a) FFT-based spotting. Average retrieval performance vs. sampling reduction when varying θh.
Individual lines correspond to the spotting parameters, which respect P and R requirements in Table 1.
The F1-score requirement is derived by the same P and R requirements. The used parameters for the
context-adaptive sampling were: Dh = 1, Dl = 0.1, DTH = 0.6, n = 4, τ = 3 s, θl = 10 mV. (b) WPD-based
spotting. Average retrieval performance vs. sampling reduction when varying θh. Individual lines
correspond to the spotting parameters that respect P and R requirements in Table 1. The F1-score
requirement is derived from the same P and R requirements. The used parameters for the context-adaptive
sampling were: Dh = 1, Dl = 0.1, DTH = 0.6, n = 4, τ = 3 s, θl = 10 mV.

From Figures 6–11, the trade-off across the metrics are shown for different system configurations.
Figures 6 and 7 show results for the FFT-based spotting in real-time for uniform and context-adaptive
sampling. In uniform sampling, i.e., Figure 6, the largest requirement breach on any µC was due to
the energy consumption EC. In context-adaptive sampling, i.e., Figure 7, the reduction of the energy
consumption EC determined a set of feasible configurations on the ARM Cortex M3. In both sampling
modalities, the execution time ET fulfilled the real-time requirements on any µC, although the memory
demand MD compromised the feasibility of the configurations on the PSoC1 M8C.

Sensors 2020, 20, 6104 19 of 27

Figure 6. FFT-based spotting and uniform sampling. Resource-performance trade-off for real-time mode,
including different µCs: ARM CortexM3 (left), TI MSP430F1611 (center), PSoC1 M8C (right). List of
objectives: P = precision, R = recall, EC = energy consumption, ET = execution time, MD = memory
demand.

Figure 7. FFT-based spotting and context-adaptive sampling. Resource-performance trade-off for real-time
mode, including different µCs: ARM CortexM3 (left), TI MSP430F1611 (center), PSoC1 M8C (right). List of
metrics: P = precision, R = recall, EC = energy consumption, ET = execution time, MD = memory demand.
Context-adaptive sampling parameters are: Dh = 1, Dl = 0.1, DTH = 0.6, n = 4, τ = 3 s, θl = 10 mV,
θh = 180 mV.

Figures 8 and 9 show results for the WPD-based spotting in real-time for uniform and context-adaptive
sampling. In uniform sampling, i.e., Figure 8, the largest requirement breaches on any µC were due to
the execution time ET and the energy consumption EC. In context-adaptive sampling, i.e., Figure 9,
the reduction of the execution time ET determined a set of feasible configurations on the ARM Cortex
M3. Overall, the memory demand MD was neglectable in all configurations, as only a data frame had to
be stored.

Sensors 2020, 20, 6104 20 of 27

Figure 8. WPD-based spotting and uniform sampling. Resource-performance trade-off for real-time mode,
including different µCs: ARM CortexM3 (left), TI MSP430F1611 (center), PSoC1 M8C (right). List of
metrics: P = precision, R = recall, EC = energy consumption, ET = execution time, MD = memory demand.

Figure 9. WPD-based spotting and adaptive sampling. Resource-performance trade-off for real-time mode,
including different µCs: ARM CortexM3 (left), TI MSP430F1611 (center), PSoC1 M8C (right). List of
metrics: P = precision, R = recall, EC = energy consumption, ET = execution time, MD = memory demand.
The used parameters are: Dh = 1, Dl = 0.1, DTH = 0.6, n = 4, τ = 3 s, θl = 10 mV, θh = 180 mV.

Figures 10 and 11 show results for the WPD-based spotting in online mode for uniform and
context-adaptive sampling. The online mode required a more intensive memory use, due to the longer
ring buffer, that in turn made the z3

ρ a more stringent requirement. In uniform sampling, i.e., Figure 10,
the largest requirement breaches on any µC were due to the energy consumption EC and the memory
demand MD. In context-adaptive sampling, i.e., Figure 11, the reduction of the energy consumption EC
determined a set of feasible configurations on the ARM Cortex M3.

Sensors 2020, 20, 6104 21 of 27

Figure 10. WPD-based spotting and uniform sampling. Resource-performance trade-off for online mode,
including different µCs: ARM CortexM3 (left), TI MSP430F1611 (center), PSoC1 M8C (right). List of
metrics: P = precision, R = recall, EC = energy consumption, ET = execution time, MD = memory demand.

Figure 11. WPD-based spotting and context-adaptive sampling. Resource-performance trade-off for online
mode, including different µCs: ARM CortexM3 (left), TI MSP430F1611 (center), PSoC1 M8C (right). List of
metrics: P = precision, R = recall, EC=energy consumption, ET = execution time, MD = memory demand.
The used parameters are: Dh = 1, Dl = 0.1, DTH = 0.6, n = 4, τ = 3 s, θl = 10 mV, θh = 180 mV.

Figure 12 depicts the energy consumption estimated from the best system configuration, related to
the individual participants. For three participants, the boundary conditions are not respected, implying a
reduced application’s runtime with respect to the system requirements.

Figure 12. Estimated energy consumption (EC) for the individual participants on the TI MSP430F1611.
Left: FFT-based spotting with m = 13. Right: WPD-based spotting with (m = 256, d = 20).

Sensors 2020, 20, 6104 22 of 27

6. Discussion

The simulation-based DynDSE presented here targets wearable IoT device design, which run
time-variable recognition algorithms on the device. Processing a large volume of data locally and
enabling local inference is key to a scalable IoT network. Furthermore, manual tuning of hardware
and algorithms in a physical implementation is tedious. The DynDSE simulation-based approach can
cover a wide configuration space to identify a balance between resources and event retrieval performance.
Our case study demonstrated interactions and dependencies among hardware and algorithm components,
and justified the need for co-designing and developing of associated functionalities. We chose two example
retrieval algorithms to illustrate different effects on the optimisation result (cf. Figures 9–12). FFT-based
oc-SVM spotting was published before [32]. The WPD-based spotting showed performance improvements
P and R, but also implications for execution time ET, thus further illustrating the design trade-off features
of our methodology. The processing functionality (Ξ3) affected the execution time ET, due to the µC type
and speed, and the memory demand MD, due to its memory capacity. The µC’s energy consumption
EC heavily depended on the algorithmic complexity, see Figure 12. Executing the WPD-based spotting,
the µC’s energy consumption EC was comparable with the sensor’s energy consumption EC. As the
computational complexity was shrunk by employing the FFT-based spotting, the energy consumption EC
became neglectable. The algorithm (Ξ1) and data sampling (Ξ2) functionality were the most influencing
configuration elements on the system’s metrics. Tuning the algorithm parameters affected precision P
and recall R, and the required memory demand MD. Data sampling had the highest impact on the energy
consumption EC and the tuning of the algorithm parameters had the lowest.

We found that our context-adaptive sampling strategy kept the performance of the spotting pipeline
at a average F1-score over 80% while reaching almost 70% reduction in resource consumption.

DynDSE requirements in the application evaluation were set according to Table 1. While in our
analysis, retrieval performances (P, R) larger than 80% were reached for optimised parameter settings,
our requirements z1

π and z2
π followed literature recommendations [37] suggesting that even 70% in

retrieval performance has relevant application value. Energy consumption requirement z2
ρ was set

considering the capacity and size of standard lithium-ion batteries, and the application runtime, according
to Equation (35). Execution time and memory demand requirements z1

ρ and z3
ρ were dictated by the

algorithm and the µC characteristics, respectively. While the retrieved system configurations and their
performances appear relevant, a direct comparison to prior work is not feasible, due to the diversity in
analysis goals, applications, and dataset characteristics. First, many investigations optimise for a fraction
of the DynDSE metrics only, e.g., recognition performance. Second, sensor and algorithm choice span a
wide value space for performance metrics. Our investigation aimed at defining a generalisable procedure,
which provides trade-off indicators across a variety of design space options and could thus assist designers
in taking decisions and investigate details depending on application relevance.

Figures 7 and 8 show the analysis of the variance in the resource-perfomance trade-off. Under the
same P and R, higher sampling reduction can be achieved, which corresponds to lower energy consumption
EC. In context-adaptive sampling mode, the resource consumption is proportional to the event frequency
and the duration of event patterns. Consequently, for one configuration, resource saving varies according
to individual behaviour. Population-averaged models do not guarantee to fulfil the system requirements
for every individual. In our case study, a homogeneous study group of university students was included,
however the resource consumption estimation did not respect the boundary conditions for all participants,
as shown in Figure 12.

Personalising models increases computational complexity and entails more complicated deployment.
A reasonable approach is to take into account the heterogeneity of the population by defining
subpopulations having similar behaviour and include a safety margin.

Sensors 2020, 20, 6104 23 of 27

We derived approximate machine cycle numbers, which limit accuracy of execution time estimation.
The exact number of cycles is highly dependent on the algorithm implementation and compiler. Thus,
our analysis could be integrated with extended target-dependent hardware and machine instruction
simulators. Another source of inaccuracy are the energy consumption measures, as we did not
consider overhead of the electronic circuits. We considered for simplicity only floating point operations.
Differentiating between integer and floating point operations would result in higher modelling accuracy.
Also, differentiating the range of variables and datatypes may improve the modelling.

The metric set serves as mapping between the design space and the application specifications,
whose definition largely depends on the application requirements. Therefore, a direct comparison of
metric outcomes is limited. However, depending on the defined metric set, well-determined functional
implications and system properties can be identified and compared.

For example, Bharatula et al. [14] defined four conflicting metrics and analysed the inherent trade-off
on an activity recognition task: Flexibility, which included estimation of memory demand and µC’s
operating frequency, electronic packaging, relative recognition performance, and energy consumption
measures. The conflicting nature of the four metrics was highlighted as orthogonal, meaning that
optimising all the four metrics at the same time is not feasible. Similar to our work, the authors embedded
recognition algorithm characteristics in the trade-off analysis, namely classification accuracy. However,
we included execution time ET to highlight dynamic design aspects that appear during runtime. The ET
metric linked the algorithmic computational complexity with the hardware µC characteristics in time.
Understanding of the system temporal constraints enables DynDSE to leverage dynamic system behaviour
for context-adaptivity. Azariardi’s [38] DSE included ET and classification accuracy in the metric set
but omitted energy consumption. The authors were able to estimate temporal constraints for SVM
processing and investigated how the DSE solution matches with application requirements and free-living
user. However, assumptions were needed to compensate for the missing energy consumption (EC)
metric. The application of Beretta et al. [17] consisted of a wearable node transmitting sensor data using
compressive sensing. Objectives were the node’s energy consumption, the percentage root-mean-square
difference (PRD) to approximate the information loss due to compression, the communication delay and
the packet error rate (PER) of the radio transmission. The solution space was compared with the one
reported by Kumar et al. [39], which optimised only energy consumption and communication delay. Under
the same energy consumption and communication delay solution, the PRD and PER were significantly
higher. Moreover, Kumar et al. were able to discover only the 2.3% of the solution space with respect to
Beretta’s work.

From the above comparison, it appears that the descriptive power of the trade-off analysis in DSE
depends on a careful selection of the metrics. Neglecting metrics may result in misleading results.
The same conclusion can be drawn with regard to our work. For example, consider Figures 9 and 10:
When omitting EC, it may seem that the choice of sampling mode does not affect the system behaviour.
As the EC is included in our trade-off analysis, it becomes evident how the uniform sampling mode
does not provide any feasible configuration. DSE frameworks that consider hardware-software co-design,
in principle, achieve higher system performances as a consequence of the flexibility given by a finer
model granularity. For example, Shoaib et al. [40] optimised the individual processing stages of a SVM
pipeline by exploring hardware architectures based on custom instructions and coprocessor computations.
The authors reported a reduction in energy consumption of almost three orders of magnitude compared
to that of a low-power µC, as targeted by our work. The energy consumption metric was computed as
the sum of several real measurements related to hardware components involved in the SVM processing
stage. The design space solutions included specific hardware to run kernel-based classification in varying
contexts. The optimisation potential of hardware-software co-design comes at the cost of an expensive

Sensors 2020, 20, 6104 24 of 27

design, which includes custom-made platforms, and design space and metrics definition that rely on
hardware-specific knowledge.

Overall, dynamic system configurations have been rarely considered in DSE for wearable systems.
The inclusion of data sampling strategies into the design space enabled us to adapt system designs to
context. Moreover, memory demand has been infrequently included into the DSE objective set, although
memory limitations are common in µCs and represent a bottleneck for embedded recognition algorithm
deployment, as evident from Figures 9 and 10. We argue that memory demand should be considered in
the design phase.

This work focuses on one typical wearable IoT application in order to derive a detailed analysis of the
design space spanned by two retrieval algorithms, three µCs, and two sampling procedures introducing
dynamic variations. Nevertheless, we kept the DynDSE design space formalism general, such that a
wide variety of other components, system architectures, metrics, and IoT applications could be explored,
including other hardware, data, and recognition algorithms. Thus, the DynDSE approach does not depend
on the particular application considered nor does the method require modifications for other applications.
Rather, we deem it essential to match the DynDSE approach with appropriate sensor data to drive the
simulation.

For larger design spaces than the one considered here, DynDSE may require approximate rules.
Nevertheless, the exhaustive search deployed here remains a suitable option for coarse design selections
before investigating further design variables in subsequent, local explorations.

7. Conclusions and Future Work

We introduced a general methodology for multi-objective DynDSE applied to context-adaptive
wearable IoT edge devices, which retrieve events from streaming sensor data using pattern recognition
algorithms. We provided a formal characterisation of the configuration space given a set of system
functionalities, components and their parameters. A constrained optimisation problem was formulated to
identify an optimal system configuration according to application-dependent system requirements. The
simulation can provide crucial information about the compatibility of system components. The method is
particularly suitable to analyse design options at an early stage of the development process, to approximate
key system design aspects, e.g., size of wireless battery powered devices, to confirm software and hardware
choices under given design constraints, and to review designs under varying data patterns.

Further investigations may consider automated, on-demand resource distribution between functions
of an embedded system that incorporates the DynDSE methodology. Dynamic resource management may
result in wearable IoT systems that reconfigure themselves at runtime according to dynamic conditions.
Furthermore, the increasing ubiquity and interconnection among wearable IoT devices rise concerns about
security and privacy, as malicious interactions are more likely to happen. System security objectives
could be incorporated into the dynamic optimisation to represent varying privacy concerns. Nevertheless,
further research is needed to effectively quantify security and privacy concerns in metrics.

Author Contributions: G.S. and O.A. devised the methodology. R.Z. performed data curation. G.S. and J.C.S.
implemented the algorithms. O.A. provided feedback throughout the implementation phase. G.S. and O.A. prepared
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the EU H2020 MSCA ITN ACROSSING project (GA no. 616757).

Acknowledgments: The present study was performed in (partial) fulfillment of the requirements for obtaining the
degree “Dr. rer. biol. Hum”.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results’.

Sensors 2020, 20, 6104 25 of 27

Abbreviations

The following abbreviations are used in this manuscript:

µC Microcontroller
BLE Bluetooth Low Energy
CL Communication latency
DSE Design space exploration
EC Energy consumption
ECG Electrocardiography
EEG Electroencephalography
EMG Electromyography
ET Execution time
FFT Fast Fourier transform
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
IoT Internet of things
IP Intellectual Property
LOPO Leave-one-participant-out
MPS Maximum payload size
ocSVM One-class support vector machines
P Precision
PCA Principal component analysis
R Recall
SVM Support vector machines
WPD Wavelet packet decomposition

References

1. Amft, O. How wearable computing is shaping digital health. IEEE Pervasive Comput. 2018, 17, 92–98. [CrossRef]
2. Verma, P.; Sood, S.K. Fog assisted-IoT enabled patient health monitoring in smart homes. IEEE Internet Things J.

2018, 5, 1789–1796. [CrossRef]
3. Tokognon, C.A.; Gao, B.; Tian, G.Y.; Yan, Y. Structural health monitoring framework based on Internet of Things:

A survey. IEEE Internet Things J. 2017, 4, 619–635. [CrossRef]
4. Sittón-Candanedo, I.; Alonso, R.S.; Corchado, J.M.; Rodríguez-González, S.; Casado-Vara, R. A review of edge

computing reference architectures and a new global edge proposal. Future Gener. Comput. Syst. 2019, 99, 278–294.
5. Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review.

SN Appl. Sci. 2020, 2, 139. [CrossRef]
6. Jayakumar, H.; Raha, A.; Kim, Y.; Sutar, S.; Lee, W.S.; Raghunathan, V. Energy-efficient system design for IoT

devices. In Proceedings of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC),
Macau, China, 25–28 January 2016; pp. 298–301.

7. Belwal, M.; Sudarshan, T. A survey on design space exploration for heterogeneous multi-core. In Proceedings of
the 2014 International Conference on Embedded Systems (ICES), Coimbatore, India, 3–5 July 2014; pp. 80–85.

8. Pimentel, A.D. Exploring exploration: A tutorial introduction to embedded systems design space exploration.
IEEE Des. Test 2016, 34, 77–90. [CrossRef]

9. Schiboni, G.; Amft, O. Saving energy on wrist-mounted inertial sensors by motion-adaptive duty-cycling in
free-living. In Proceedings of the 2018 IEEE 15th International Conference on Wearable and Implantable Body
Sensor Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018; pp. 197–200.

10. Brandolese, C.; Fornaciari, W.; Pomante, L.; Salice, F.; Sciuto, D. Affinity-driven system design exploration for
heterogeneous multiprocessor SoC. IEEE Trans. Comput. 2006, 55, 508–519.

http://dx.doi.org/10.1109/MPRV.2018.011591067
http://dx.doi.org/10.1109/JIOT.2018.2803201
http://dx.doi.org/10.1109/JIOT.2017.2664072
http://dx.doi.org/10.1007/s42452-019-1925-y
http://dx.doi.org/10.1109/MDAT.2016.2626445

Sensors 2020, 20, 6104 26 of 27

11. Streichert, T.; Glaß, M.; Haubelt, C.; Teich, J. Design space exploration of reliable networked embedded systems.
J. Syst. Archit. 2007, 53, 751–763. [CrossRef]

12. Haubelt, C.; Schlichter, T.; Keinert, J.; Meredith, M. SystemCoDesigner: Automatic design space exploration and
rapid prototyping from behavioral models. In Proceedings of the 45th Annual Design Automation Conference.
ACM, Anaheim, CA, USA, 8–13 June 2008; pp. 580–585.

13. Bharatula, N.B.; Stäger, M.; Lukowicz, P.; Tröster, G. Empirical study of design choices in multi-sensor context
recognition systems. In Proceedings of the IFAWC 2nd International Forum on Applied Wearable Computing,
Zurich, Switzerland, 17–18 March 2005; pp. 79–93.

14. Bharatula, N.B.; Anliker, U.; Lukowicz, P.; Tröster, G. Architectural tradeoffs in wearable systems. In Proceedings
of the International Conference on Architecture of Computing Systems, Anaheim, CA, USA, 8–13 June 2008;
pp. 217–231.

15. Anliker, U.; Beutel, J.; Dyer, M.; Enzler, R.; Lukowicz, P.; Thiele, L.; Troster, G. A systematic approach to the
design of distributed wearable systems. IEEE Trans. Comput. 2004, 53, 1017–1033.

16. Anliker, U.; Junker, H.; Lukowicz, P.; Tröster, G. Design methodology for context-aware wearable sensor
systems. In Proceedings of the International Conference on Pervasive Computing, Berlin, Germany, 8 May 2005;
pp. 220–236.

17. Beretta, I.; Rincon, F.; Khaled, N.; Grassi, P.R.; Rana, V.; Atienza, D.; Sciuto, D. Model-based design for wireless
body sensor network nodes. In Proceedings of the 2012 13th Latin American Test Workshop (LATW), Quito,
Ecuador, 10–13 April 2012; pp. 1–6.

18. Stäger, M.; Lukowicz, P.; Tröster, G. Power and accuracy trade-offs in sound-based context recognition systems.
Pervasive Mob. Comput. 2007, 3, 300–327.

19. Rault, T.; Bouabdallah, A.; Challal, Y.; Marin, F. A survey of energy-efficient context recognition systems using
wearable sensors for healthcare applications. Pervasive Mob. Comput. 2017, 37, 23–44. [CrossRef]

20. Mesin, L. A neural algorithm for the non-uniform and adaptive sampling of biomedical data. Comput. Biol. Med.
2016, 71, 223–230. [CrossRef] [PubMed]

21. Scarabottolo, I.; Alippi, C.; Roveri, M. A spectrum-based adaptive sampling algorithm for smart sensing.
In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and
Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8
August 2017; pp. 1–8.

22. Rieger, R.; Taylor, J.T. An adaptive sampling system for sensor nodes in body area networks. IEEE Trans. Neural
Syst. Rehabil. Eng. 2009, 17, 183–189. [CrossRef] [PubMed]

23. Künzli, S.; Thiele, L.; Zitzler, E. Modular design space exploration framework for embedded systems. IEEE
Proc.-Comput. Digit. Tech. 2005, 152, 183–192. [CrossRef]

24. Gajski, D.D.; Vahid, F.; Narayan, S.; Gong, J. System-level exploration with SpecSyn. In Proceedings of the 35th
Annual Design Automation Conference, San Francisco, CA, USA, 15–19 June 1998; pp. 812–817.

25. Zhuge, Q.; Shao, Z.; Xiao, B.; Sha, E.H.M. Design space minimization with timing and code size optimization for
embedded DSP. In Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, Newport Beach, CA, USA, 1–3 October 2003; pp. 144–149.

26. Rajagopal, S.; Cavallaro, J.R.; Rixner, S. Design space exploration for real-time embedded stream processors.
IEEE Micro 2004, 24, 54–66. [CrossRef]

27. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and
correlation. Mach. Learn. Technol. 2011, 2, 37–63.

28. Konstantakos, V.; Chatzigeorgiou, A.; Nikolaidis, S.; Laopoulos, T. Energy consumption estimation in embedded
systems. IEEE Trans. Instrum. Meas. 2008, 57, 797–804. [CrossRef]

29. Prayati, A.; Antonopoulos, C.; Stoyanova, T.; Koulamas, C.; Papadopoulos, G. A modeling approach on the
TelosB WSN platform power consumption. J. Syst. Softw. 2010, 83, 1355–1363. [CrossRef]

30. Zhang, R.; Amft, O. Monitoring chewing and eating in free-living using smart eyeglasses. IEEE J. Biomed. Health
Inform. 2017, 22, 23–32. [CrossRef]

http://dx.doi.org/10.1016/j.sysarc.2007.01.005
http://dx.doi.org/10.1016/j.pmcj.2016.08.003
http://dx.doi.org/10.1016/j.compbiomed.2016.02.004
http://www.ncbi.nlm.nih.gov/pubmed/26917540
http://dx.doi.org/10.1109/TNSRE.2008.2008648
http://www.ncbi.nlm.nih.gov/pubmed/19362898
http://dx.doi.org/10.1049/ip-cdt:20045081
http://dx.doi.org/10.1109/MM.2004.25
http://dx.doi.org/10.1109/TIM.2007.913724
http://dx.doi.org/10.1016/j.jss.2010.01.015
http://dx.doi.org/10.1109/JBHI.2017.2698523

Sensors 2020, 20, 6104 27 of 27

31. Schiboni, G.; Amft, O. Automatic dietary monitoring using wearable accessories. In Seamless Healthcare
Monitoring; Springer: Berlin/Heidelberg, Germany, 2018; pp. 369–412.

32. Zhang, R.; Amft, O. Free-living eating event spotting using EMG-monitoring eyeglasses. In Proceedings of the
2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA, 4–7
March 2018; pp. 128–132.

33. Chu, J.U.; Moon, I.; Lee, Y.J.; Kim, S.K.; Mun, M.S. A supervised feature-projection-based real-time EMG
pattern recognition for multifunction myoelectric hand control. IEEE/ASME Trans. Mechatron. 2007, 12, 282–290.
[CrossRef]

34. Schiboni, G.; Suarez, J.C.; Zhang, R.; Amft, O. Attention-Based Adaptive Sampling for Continuous EMG Data
Streams. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23
August 2019; pp. 1178–1183.

35. Buschhoff, M.; Günter, C.; Spinczyk, O. A unified approach for online and offline estimation of sensor platform
energy consumption. In Proceedings of the 2012 8th International Wireless Communications and Mobile
Computing Conference (IWCMC), Limassol, Cyprus, 27–31 August 2012; pp. 1154–1158.

36. Mikhaylov, K. Simulation of network-level performance for Bluetooth Low Energy. In Proceedings of the 2014
IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC),
Washington, DC, USA, 2–5 September 2014; pp. 1259–1263.

37. Zhang, R.; Bernhart, S.; Amft, O. Diet eyeglasses: Recognising food chewing using EMG and smart eyeglasses. In
Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks
(BSN), San Francisco, CA, USA, 14–17 June 2016; pp. 7–12.

38. Azariadi, D.; Tsoutsouras, V.; Xydis, S.; Soudris, D. ECG signal analysis and arrhythmia detection on IoT
wearable medical devices. In Proceedings of the 2016 5th International Conference on Modern Circuits and
Systems Technologies (MOCAST), Thessaloniki, Greece, 12–14 May 2016; pp. 1–4.

39. Kumar, G.S.A.; Manimaran, G.; Wang, Z. End-to-end energy management in networked real-time embedded
systems. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 1498–1510. [CrossRef]

40. Shoaib, M.; Jha, N.K.; Verma, N. Algorithm-driven architectural design space exploration of domain-specific
medical-sensor processors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2012, 21, 1849–1862. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMECH.2007.897262
http://dx.doi.org/10.1109/TPDS.2008.124
http://dx.doi.org/10.1109/TVLSI.2012.2220161
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Exploration Framework
	Design Space Representation
	Configuration Generation
	Configuration Evaluation

	Optimisation Metrics
	Retrieval Performance Metric
	Execution Time Metric
	Energy Consumption Metric
	Memory Demand Metric
	Communication Latency Metric

	IoT Application Evaluation
	Smart Eyeglasses to Monitor Eating in Free-Living
	Design Space Representation
	Algorithm (1)
	Data Sampling (2)
	C (3)
	Runtime mode (4)

	Configuration Evaluation
	Sensor Dataset
	Multi-Objective Computation
	Multi-Objective Visualisation
	Multi-Objective Analysis

	Discussion
	Conclusions and Future Work
	References

