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Abstract: Mapping utility poles using side-view images acquired with car-mounted cameras is
a time-consuming task, mainly in larger areas due to the need for street-by-street surveying.
Aerial images cover larger areas and can be feasible alternatives although the detection and mapping
of the utility poles in urban environments using top-view images is challenging. Thus, we propose
the use of Adaptive Training Sample Selection (ATSS) for detecting utility poles in urban areas since
it is a novel method and has not yet investigated in remote sensing applications. Here, we compared
ATSS with Faster Region-based Convolutional Neural Networks (Faster R-CNN) and Focal Loss
for Dense Object Detection (RetinaNet ), currently used in remote sensing applications, to assess
the performance of the proposed methodology. We used 99,473 patches of 256 × 256 pixels with
ground sample distance (GSD) of 10 cm. The patches were divided into training, validation and test
datasets in approximate proportions of 60%, 20% and 20%, respectively. As the utility pole labels
are point coordinates and the object detection methods require a bounding box, we assessed the
influence of the bounding box size on the ATSS method by varying the dimensions from 30 × 30 to
70 × 70 pixels. For the proposal task, our findings show that ATSS is, on average, 5% more accurate
than Faster R-CNN and RetinaNet. For a bounding box size of 40× 40, we achieved Average Precision
with intersection over union of 50% (AP50) of 0.913 for ATSS, 0.875 for Faster R-CNN and 0.874 for
RetinaNet. Regarding the influence of the bounding box size on ATSS, our results indicate that the
AP50 is about 6.5% higher for 60 × 60 compared to 30 × 30. For AP75, this margin reaches 23.1% in
favor of the 60× 60 bounding box size. In terms of computational costs, all the methods tested remain
at the same level, with an average processing time around of 0.048 s per patch. Our findings show
that ATSS outperforms other methodologies and is suitable for developing operation tools that can
automatically detect and map utility poles.
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1. Introduction

The power distribution network is one of the most important assets in our daily life. However,
the utility poles are vulnerable to situations that lead to deterioration, e.g., extreme weather events [1],
corrosion [2] and car accidents [3]. Fragile utility poles can lead to an interruption in the service,
pedestrian injury and vehicle and property damages, generating more expenses for utility companies.
In response, utility companies conduct constantly human inspections and maintenance in loco to
prevent interruption of the service. For that, these companies maintain georeferenced databases
with network assets. However, with the network increase, maintaining these databases becomes a
challenging and costly task. Therefore, there is a necessity for methods less costly and that can cover
greater areas to mapping these assets, such as the utility poles.

Previous research used images or 3D points clouds captured with devices mounted in terrestrial
mobile mapping systems to automatically map the utility poles using machine learning methods.
Lehtomäki et al. [4] proposed a clustering-based method to find clusters on points clouds obtained
from a laser scanning sensor mounted on top of the vehicle. A cluster is classified as a utility pole
when several criteria based on the shape of the object are met. A challenge for this method are oblique
poles and tree trunk objects which lead to false positives detection. Sharma et al. [5] also proposed a
clustering based method such as Mean Shift algorithm to segment utility pole objects from cameras
and smartphones images in rural areas, where there are vehicle access restrictions. Most of the machine
learning methods are shape-based methods [4–6] to find specifically pole-like shapes. However, due to
a variety of utilities poles, distance of objects and occlusions make the parameters setting of these
algorithms critical. To cope with these challenging tasks, deep learning methods have been proposed
in remote sensing applications.

Deep learning methods have been applied significantly to remote sensing image analysis, mainly
using convolutional neural networks (CNNs) architectures [7–14]. The use of object detection
methods is emerging in the remote sensing community [15]. Zhang et al. [16] applied an object
detection deep learning method named RetinaNet on images from Google Street View to utility poles
detection. The authors also used a modified brute-force-based line-of-bearing to estimate the positional
coordinates. Tang et al. [17] proposed a semi-supervised method that requires only image-level labels
(containing power line, positive image, or not, negative image) to detect and localize distribution lines
and utility poles. Two Inception-v3 networks were applied in the images obtained from a car-mounted
street-level camera pointed upward view at the daytime sky. Nevertheless, in this side-view street
images methods the information of the objects needs to be estimated by considering multiple points of
view [16], making this method a time-consuming activity mainly in larger areas due to the need for
the street by street surveying.

Remote sensing sensors onboard aerial and orbital platforms appear as an alternative enabling
the cover of larger areas. Orbital images have a maximum decimetric ground sample distance (GSD),
making the detection of utility poles difficult. On the other hand, aerial sensors provide higher spatial
resolution imageries. Indeed, the covered area on aerial images is bigger than street-level and it is
also possible to observe the distance between utility poles and the interconnection of its lines power
distribution. In addition, they can capture the images on heavy traffic roads and can save manpower
and time [1]. However, for this application, a few works have been considering aerial images in utility
poles mapping, which are commonly used on several remote sensing applications [18].

Alam et al. [1] proposed a variant of SegNet initialized with the pre-trained VGG16 network to
detect utility poles from UAV (unmanned aerial vehicle) imagery. The images were captured in urban
scenarios flying near the utility poles (almost similar to vertical images captured from vehicles). The goal
is to detect the utility pole with SegNet, estimate the angle of detected poles with Hough Transform and
predict the pole resilience with the SVM (Support Vector Machine) algorithm. Liu et al. [19] proposed
a method to detect utility poles from UAV images with two Faster-RCNN also initialized with the
VGG16 network. First Faster R-CNN detects utility poles and the second one crop on the top half of
these detected objects to detect the cap pole missing. Moreover, RetinaNet outperformed other deep
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learning methods in several remote sensing applications [15,20,21]. Despite these initial efforts, there is
a lack of research focusing on utility poles automatic mapping using aerial images, mainly using novel
deep learning methods, such as Adaptive Training Sample Selection (ATSS). ATSS [22] is a state-of-art
method, and it has not been investigated in remote sensing applications.

ATSS proposes a new strategy for selecting negative and positive samples for training object
detection methods. Different from methods that use fixed IoU threshold for selecting positive and
negative samples such as Faster-RCNN and RetinaNet, ATSS proposes an algorithm to obtain an
individual IoU threshold for each ground-truth bounding box. Thus, this approach could improve the
detection of small objects or objects that occupy a small area of the bounding box such as the utility
poles. Furthermore, this proposal benefits the detection of objects of the same class on different scales
and shapes, differently from most of currently state-of-art methods. According to the results shown by
Zhang et al. [22], ATSS outperformed current state-of-art methods on the COCO dataset. Despite these
results, ATSS has not been investigated in remote sensing applications.

Developing automatic methods to detect poles is crucial to maintain the sustainability of the
growing power distribution network, face the increase of extreme weather events and maintain
the quality of service. The objective of this study was to evaluate the performance of ATSS to
detect and map utility poles in aerial images. We compared the achieved results with Faster
R-CNN [23] and RetinaNet [24], which are common methods applied in remote sensing image
analysis. RetinaNet, for example, outperformed other deep learning methods in several remote sensing
applications [15,20,21].

Most research using aerial images is focused on utility poles inspection, which requires low flights
for monitoring their elements. For mapping purposes higher flights are preferable, making it difficult
to identify the poles in the images, as can be verified in Figure 1. This leads to some challenges during
the detection, such the presence of shades, poles occluded by other objects, different backgrounds in
the images, different types and sizes of poles and the fact that poles represent a small portion of the
bounding box.

Figure 1. Examples of electric poles present in our dataset.

The rest of this paper is organized as follows. Section 2 demonstrates the method developed here.
Section 3 presents the results obtained with our approach while comparing them with other methods.
Section 4 discusses the implications of the results of our approach. Section 5 concludes our research.

2. Material and Methods

2.1. Study Area

We used as a study area the urban area of the city of Campo Grande, in the state of Mato Grosso
do Sul, Brazil (Figure 2).
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Figure 2. Study area location: (a) South America and Brazil; (b) Mato Grosso do Sul; (c) Campo Grande;
and (d) Study area.

The aerial RGB orthoimages were provided by the city hall of Campo Grande, state of Mato
Grosso do Sul, Brazil. The orthoimages have a ground sample distance (GSD) equal to 10 cm. In total,
1057 orthoimages with dimensions 5619 × 5946 pixels were used in the experiments. These images
were split in 99,473 patches, where 111,583 utility poles were identified as ground-truth. Details
regarding the experimental setup are presented in Section 2.3.

2.2. Pole Detection Approach

In general, the labels provided for the poles consist of their coordinates due to georeferenced
databases with network assets. The dataset was manually labeled with one point (represented by
two values) at the base of each pole. Since object detection methods need a bounding box instead
of a point, each ground-truth label (point) was converted to a rectangle (represented by four values).
To do that, a rectangular box (well know as bounding box) centered at this point was built by setting
its width size wb and height size hb. In this way, the midpoint of each bounding box is represented
by the point (ground-truth label) to determine bounding box localization and the two parameters wb
and hb determine its size. In the experiments, we evaluated the influence of different sizes (wb and hb
values) on the results. Figure 3 shows the labels represented by a coordinate and the corresponding
bounding boxes.

Given the annotated bounding boxes, the object detection algorithms can be trained to learn
these bounding boxes and be able to predict the bounding boxes’ location in an image. In this sense,
the state-of-art algorithms such as RetinaNet [24] and Faster R-CNN [23] usually generate a large
number of boxes (named as anchor boxes), estimate how good are these predicted anchors with regards
to the bounding boxes and split them into positive and negative examples. The quality of anchor
boxes is estimated considering the ratio of intersection to the union between anchor box and bounding
boxes, and this measure is well known as Intersection over the Union (IoU). Since refining these
large number of generated anchors, which have four parameters (spatial coordinates) each, can be
costly, recently anchor-free methods have emerged [25]. However, Zhang et al. [22] concluded that
the main impact on the method’s performance is not only considering anchor-based and anchor-free
representations, but how they select positive and negative samples. The main idea of the ATSS [22]
algorithm is to select a small set (top K) of good anchors boxes based on object’s statistical features for
classification and regression steps.
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We compared the ATSS method with RetinaNet and Faster R-CNN methods. The object detection
methods used in this study are briefly described as follows. The methods were implemented based on
the source codes proposed by Multimedia Laboratory, via the MMDetection project. The open-source
project is available at https://github.com/open-mmlab/mmdetection.

Figure 3. Steps of the pole detection approach.

Faster R-CNN [23] is a convolutional neural network (CNN) used for detecting objects in two
stages. The CNN architecture can be described into three components named as backbone (aimed to
extract feature maps from images), neck (refine the feature maps) and head (stands for classification
and prediction tasks, for example) [26]. Using features maps generated by a backbone (ResNet50 in
this work), the first stage, named Region Proposal Network (RPN) at the neck component, receives the
features maps and outputs as result candidates object bounding boxes. The second stage also receives
the features maps and aim through a Region of Interest Pooling layer to extract features from each of
the candidate bounding boxes proposed by the first stage. This operation is based on max pooling,
aiming to obtain a fixed-size feature map that does not depend on the dimensions of the bounding
boxes proposed by the RPN. Finally, a softmax layer predicts the location and classes of the proposed
regions at the head component.

RetinaNet [24] is a one stage object detector that solves the class imbalance by reducing the loss
attributed to well-classified images. The class imbalance occurs when the number of background
examples is much larger than the examples of the object of interest. Through a new loss function,
training is focused on concrete examples and prevents the high number of background examples
from making it difficult for the network to learn the method. The RetinaNet architecture is based
on a backbone, a neck and two task-specific subnetworks (at head component). The backbone and
neck consist of ResNet-50 (in this work) and a Feature Pyramid Network from [27], respectively,
responsible for obtaining a feature map across an entire input image. The first subnet is a small Fully
Convolution Network, a simple network with five convolutional layers that are attached to the neck
component. This subnet is responsible for predicting, at each spatial position throughout the image,
a probability of the object’s presence. The second subnet has an identical structure to the first, but it is
responsible for calculating the regression to estimate the bounding box coordinates. Both the first and
second subnets are parallel.

https://github.com/open-mmlab/mmdetection


Sensors 2020, 20, 6070 6 of 14

ATSS (Adaptive Training Sample Selection) [22] is a method that introduces a new way of defining
positive and negative samples during the training phase. Unlike other state-of-the-art methods that
have a high number of hyperparameters, ATSS has only one hyperparameter K, corresponding to
the number of anchors closest to the center of the ground-truth that are selected from each level of
the pyramid feature. This hyperparameter is kept fixed at a value of 9. The ATSS also differs from
other state-of-the-art methods by using an individual IoU threshold for each ground-truth during the
training, obtained by adding the average and standard deviation of the anchor box IoU’s proposals in
relation to the ground-truth. Bounding boxes with IoU greater than the threshold calculated for the
respective ground-truth are considered positive samples. In our experiments, the ATSS was set with
ResNet-50 as the backbone and FPN as the neck.

2.3. Experimental Setup

For our experimental setup, we divided the RGB orthoimages into training, validation and test
sets. We used 634 (60%), 212 (20%) and 211 (20%) orthoimages from different areas for training,
validation and testing, respectively. Each orthoimage has 5619 × 5946 pixels (561.90 m × 594.60 m).
Since the object detection methods receive smaller images as input, each orthoimage was split into
non-overlapping patches of 256 × 256 pixels (25.60 m × 25.60 m), covering an area of approximately
655.36 m2 per patch. The number of orthoimages and image patches are shown in Table 1.

Table 1. Description of the training, validation and test sets of the poles dataset.

Dataset Number of Patches Number of Orthoimages

Training 60,124 634
Validation 19,869 212

Testing 19,480 211
Total 99,473 1057

For the training process, we initialized the backbone of all object detection methods with
pre-trained weights from ImageNet (http://www.image-net.org/). We applied a Stochastic Gradient
Descent optimizer with a momentum equal to 0.9. For this, we used the validation set to adjust the
learning rate and the number of epochs to reduce the risk of overfitting. We empirically assessed
learning rates (0.0001, 0.001 and 0.01) and found that the convergence of the loss function is better for
0.001 and stabilized over 24 epochs. Figure 4 illustrates the loss curve for all methods. As we can see,
the loss function decreases rapidly in the first iterations and stabilizes at the end, indicating that the
number of epochs is sufficient and the learning rate is adequate. After performing the adjustments,
we set the initial learning rate to 0.001 and the number of epochs to 24 (∼700 k iterations).
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(c) RetinaNet

Figure 4. Loss function during training for the three object detection methods.

The proposed application was developed using MMDetection framework [26] on the Ubuntu
18.04 operating system. Training and testing procedures were conducted in a computer equipped with

http://www.image-net.org/
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an Intel R© Xeon(E) E3-1270 @3.80 GHz CPU, 64 GB of RAM Memory along with Titan V graphics card,
a GPU produced by NVIDIA containing 5120 CUDA (Compute United Device Architecture) cores and
12 GB of graphics memory.

2.4. Method Assessment

The performance of the methods is evaluated using the Average Precision (AP). To obtain the
precision and recall metrics, the Intersection Over Union (IoU) was calculated as the overlapping area
between the predicted and the ground-truth bounding boxes divided by the area of union between
them. In the experiments, we used common IoU values of 0.5 and 0.75. If the prediction obtains IoU
greater than the threshold, the prediction is considered as true positive (TP); otherwise, it is a false
positive (FP). A false negative (FN) occurs when ground-truth boxes are not detected by any prediction.
Using the metrics described above, precision and recall are estimated using Equations (1) and (2),
respectively. The area under the precision–recall curve represents the average precision (AP).

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

3. Results

This section describes the results obtained in our experiments. Section 3.1 shows a quantitative
analysis of the result, while Section 3.2 discusses the qualitative ones. Lastly, Section 3.3 reports the
computational costs of the assessed methods.

3.1. Quantitative Analysis

First, we evaluated the object detection methods using AP with two thresholds. In the first
test, the average precision was obtained using a IoU threshold of 0.5 (AP50). On the second test,
we increased the threshold to 0.75, and the average precision was calculated (AP75). Table 2 shows the
results for each test using a fixed size bounding box of 40 × 40.

Table 2. Average precision for the object detection methods. To generate the ground truth, a fixed size
bounding box of 40 × 40 was used.

Method AP50 AP75

Faster R-CNN 0.875 0.682
RetinaNet 0.874 0.673

ATSS 0.913 0.749

It is observed that ATSS outperformed the other two methods by about 4% for AP50 and 7% for
AP75. The results show the higher accuracy of ATSS compared to other state-of-the-art architectures.
It is also noted that, for AP50, Faster R-CNN and RetinaNet have similar results. When the threshold is
increased to 0.75, Faster R-CNN achieved slightly better performance. Considering the 111,583 utility
poles present in our dataset, the higher accuracy in AP50 translates into about 4464 poles identified by
ATSS that the Faster R-CNN and RetinaNet methods were unable to detect. In AP75, this number rises
to 7811 utility poles located by ATSS that the two other methods were unable to detect.

To assess the influence of the bounding box size, Table 3 presents the results using five sizes in the
construction of the ground truth. The results were obtained using ATSS as an object detector, since it
obtained the best results in the previous experiment. The results indicate that increasing the bounding
box size from 30 × 30 to 60 × 60 improves AP50 by 6.5% and AP75 by 23.1%. In terms of detected utility
poles, ATSS with 60 × 60 bounding boxes located around 7523 for AP50 and 25,776 for AP75 more
utility poles in comparison with 30 × 30 bounding box size.
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Table 3. Average precision for different fixed size bounding boxes using ATSS.

Size AP50 AP75

30 × 30 0.879 0.623
40 × 40 0.913 0.749
50 × 50 0.931 0.815
60 × 60 0.944 0.854
70 × 70 0.944 0.853

3.2. Qualitative Analysis

The results were also analyzed from a qualitative point of view. The priority was to analyze the
assertiveness of the methods for poles in different conditions such as shaded, covered by trees or in
different types of terrain. We also assessed the performance of the methods while detecting different
types, sizes and shapes of the utility poles presented in the dataset. The results shown in this section
were obtained using AP50 and 40 × 40 bounding box size.

Figure 5 shows the detection of poles occluded by the top of trees. It is observed that the most
assertive method for this scenario was ATSS. Faster R-CNN and RetinaNet were able to detect the
region of the image in which the object was present, but both methods provided multiple bounding
boxes for the same object when it is occluded by trees.

(a) ground-truth (b) ATSS (c) Retina Net (d) Faster R-CNN

Figure 5. Results obtained by the methods when locating utility poles occluded by trees tops: (a) the
ground-truth; (b) ATSS; (c) RetinaNet; and (d) Faster R-CNN.

Figure 6 shows the poles that are visible but in a shadow region. Note that the characteristic of
the predictions is similar to the previous scenario. When the poles are shaded, Faster R-CNN and
RetinaNet did not have a good assertiveness. Several examples were verified in the dataset in these
lighting situations, and both methods end up generating multiple bounding boxes for the same object,
while ATSS again had no problems locating the utility poles.
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(a) ground-truth (b) ATSS (c) Retina Net (d) Faster R-CNN

Figure 6. Examples of images with shaded poles: (a) ground-truth; (b) ATSS; (c) RetinaNet; and
(d) Faster R-CNN.

Regarding the different sizes and types of poles, Figure 7 shows the detections and the
corresponding terrestrial image obtained from Google Street View. ATSS obtained a good performance,
detecting utility poles of the most varied types and sizes. Faster R-CNN and RetinaNet methods
obtained good assertiveness by processing images of smaller scale poles, such as lighting poles or
low voltage electric poles, but failed to locate larger poles, such as the models used for high voltage
transmission of electrical energy, shown in the last row of Figure 7.

In the dataset, there are examples of utility poles installed on different types of terrain, such
as grass, street, sand, etc. Figure 8 illustrates the behavior of the methods under this variation of
background. It was observed that changing the type of terrain is not a factor that interferes with the
assertiveness of the methods. All methods achieved good performance when processing images of
utility poles installed in different types of terrain.

3.3. Computational Costs

Since training and validation were performed on the workstation described in Section 2.3, we also
used the same workstation to assess the computational costs of the methods. For that, the processing
time of all 19,480 patches of the test set was obtained for each method. Considering that each patch
covers an area of 655 m2, we also established as a metric the area scan speed, that is the amount of area
per second that each method processed. With the total processing time, the average processing time
for each patch and the area scan speed was estimated, as detailed in Table 4.

Table 4. Processing time evaluation of the methods.

Method Average Time (s) Area Scan Speed (m2/s)

Faster R-CNN 0.048 13,651.14
Retina Net 0.047 13,943.82

ATSS 0.048 13,651.14
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(a) ATSS (b) Retina Net (c) Faster R-CNN (d) Google Street View

Figure 7. Examples of images with different models and shapes of poles: (a) ground-truth; (b) ATSS;
(c) RetinaNet; and (d) Faster R-CNN.

As expected, the three methods achieved an almost equal average processing time, with the
RetinaNet method being only 1 ms faster compared to the other methods, a minimal difference that
can be considered insignificant. This equality in terms of computational costs is justified by the fact
that all three tested methods have ResNet50 architecture as a backbone.

The obtained computational costs demonstrate that the workstation efficiently handled the high
number of images in the dataset. The processing of the 19,480 test images took about 15 min for each
method. The training and validation steps for each method took around 20 h.

The scan speed obtained demonstrates the great advantage of the use of aerial images compared
to the street by street mapping, as described by Zhang [16], with our proposed method scanning in
just a few seconds the utility poles of neighborhood-sized areas. The average time shows that the
methods have the potential to be applied in real-time and may also be embedded in processors with
low computational capacity in the future.
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(a) ground-truth (b) ATSS (c) Retina Net (d) Faster R-CNN

Figure 8. Examples of images with utility poles in different types of terrain: (a) ground-truth; (b) ATSS;
(c) RetinaNet; and (d) Faster R-CNN.

4. Discussion

As described in the Section 3, it was observed that ATSS was, on average, 5% more accurate than
Faster R-CNN and RetinaNet using bounding box with size 40 × 40 pixels. Regarding computational
costs, the three methods remained at the same level.

The size of the bounding box proved to be an influential parameter in the average precision
obtained by ATSS. By increasing the size of the bounding box from 30 × 30 to 60 × 60, we identified
that AP50 increases from 87.9% to 94.4% and from 62.3% to 85.3% for AP75. As in the dataset the utility
poles are seen from different angles, smaller bounding boxes may not completely cover the object,
as shown in Figure 9 with 40 × 40 size bounding boxes. The use of larger bounding boxes not only
eliminates the risk of not fully cover the object of interest, but also allows the method to learn elements
inherent to the object that can assist in its detection, such as the shadow of the utility pole on the
ground. However, very large bounding boxes can include irrelevant information for object detection
as observed for 70 × 70.
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(a) (b) (c)

Figure 9. Examples of utility poles that are not fully cover with a 40 × 40 bounding box size:
(a) example 1; (b) example 2; and (c) example 3.

When observing the image dataset, it is noted that pole detection in aerial images is a challenging
task, since there are different terrains, sizes and types of utility poles and poles covered by other objects
such as trees, among other situations. Another problem is related to the size of each object in the
ground-truth. The object itself corresponds to a small portion of the bounding box, where everything
else corresponds to the background of the image.

Considering these difficulties, the relative superiority of the ATSS in relation to the other two
methods can be credited to the proposal to calculate an IoU threshold for each ground-truth during
training. As the utility pole itself occupies a small area of the bounding box, when using a fixed value
of IoU threshold for all ground-truths, such as > 0.5 or > 0.75, a sample can be considered positive
even if the bounding box intersects only the background presented in the ground-truth, exclusively to
the fact that the prediction has a larger IoU than a predetermined value. The calculation of the IoU
threshold proposed by the ATSS method avoids the occurrence of this scenario, preventing the method
from learning features that do not correspond to the object of interest.

The calculation of IoU threshold for each ground-truth proved to be a powerful tool also for
datasets in which the objects have different sizes and shapes, a scenario presented in this work.
Obtaining an IoU threshold for each ground-truth enabled the method to learn the features of different
pole models. The results obtained demonstrate that calculating a particular IoU threshold for each
object during the training contributed to the ATSS method learning more general features of the utility
poles present in the dataset.

5. Conclusions

We proposed and evaluated the performance of the ATSS deep learning method for the detection
and location of utility poles in aerial orthoimages. Two state-of-the-art methods widely used in remote
sensing applications, Faster R-CNN and RetinaNet, were used for comparison purposes.

The task was performed satisfactorily by all methods; however, the ATSS obtained the best
performance among the three experienced, with 91.3% average precision using IoU threshold of 0.5,
being on average 4% more accurate than the Faster R-CNN and RetinaNet methods. This result
was expected due to the innovations proposed by the ATSS method regarding other state-of-the-art
methods. The computational costs of the three methods were very similar, with average processing
of 20.83 images per second. The best bounding box size setup found for the ATSS method was with
dimensions of 60× 60 pixels. This setup achieved an average precision of 94.4% for AP50 and 85.4% for
AP75, an increase of 6.5% for AP50 and 23.1% for AP75 when compared with 30 × 30 bounding boxes.

The results indicate that the ATSS method is a strong candidate for the development of an
operational tool for detecting and locating utility poles. In our application it obtained better
performance in comparison to other methodologies proposed and published in other papers, such as
the location of streetlights by street-level images [16].
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