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Abstract: Urban transport traffic surveillance is of great importance for public traffic control and
personal travel path planning. Effective and efficient traffic flow prediction is helpful to optimize
these real applications. The main challenge of traffic flow prediction is the data sparsity problem,
meaning that traffic flow on some roads or of certain periods cannot be monitored. This paper
presents a transport traffic prediction method that leverages the spatial and temporal correlation
of transportation traffic to tackle this problem. We first propose to model the traffic flow using a
fourth-order tensor, which incorporates the location, the time of day, the day of the week, and the
week of the month. Based on the constructed traffic flow tensor, we either propose a model to estimate
the correlation in each dimension of the tensor. Furthermore, we utilize the gradient descent strategy
to design a traffic flow prediction algorithm that is capable of tackling the data sparsity problem
from the spatial and temporal perspectives of the traffic pattern. To validate the proposed traffic
prediction method, case studies using real-work datasets are constructed, and the results demonstrate
that the prediction accuracy of our proposed method outperforms the baselines. The accuracy
decreases the least with the percentage of missing data increasing, including the situation of data
being missing on neighboring roads in one or continuous multi-days. This certifies that the proposed
prediction method can be utilized for sparse data-based transportation traffic surveillance.

Keywords: tensor decomposition; traffic flow; sparse data; traffic correlation pattern

1. Introduction

With the prevalence of vehicles traveling on urban roads, the surveillance of transport traffic
is an essential and important task for urban transportation management [1]. Obtaining accurate
information about near-term future traffic flows of road segments in a traffic network has a wide range
of applications, including vehicle navigation, congestion management [2–4], and understanding the
urban structure [5]. A major problem in getting traffic flow information in real-time is that the vast
majority of links are not equipped with traffic sensors, e.g., inductive loop detectors and closed-circuit
cameras [6]. It is prohibitive to densely adopt them on the city scale, which consequently limits the
coverage of traffic flow surveillance. Though trajectory data generated by probe vehicles for traffic
surveillance does exist, there are still roads that are not traveled by GPS (global positioning system)
equipped vehicles, on which the traffic cannot be monitored [7]. This directly makes the traffic flow
prediction of a road network face the problem of data sparsity [8]. Based on the sparse sensing data,
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the problem of how to predict traffic flow effectively and efficiently has resulted in a tremendous
amount of research. The majority of the previous investigations focus on short-term traffic prediction,
using the full data on given road segments or specific areas without considering the data missing on
continuous days. Another situation is the data missing on cascading road segments, which have not
been well tackled.

Factually, the data sparsity from the spatial–temporal view makes the prevalent transportation
traffic prediction method invalid, as it needs as original data (or extracted features) inputs and
training process, such as the time series-based methods [9], the machine learning-related methods [10],
and even the conventional neural network-based methods [11,12], or the prevalent deep learning
methods [13,14].

There have been a significant number of studies investigating traffic dynamics with a
focus on describing and understanding the resulting spatial–temporal traffic patterns [15,16].
Urban transportation traffic surveillance and prediction are the basis of transportation congestion
identification [17] and travel path recommendation [18]. Researchers have made efforts to combine
statistical methods [19] and machine learning methods [20,21]. Data-driven traffic surveillance methods
are now mainly faced with the data sparsity problem [22,23], which cannot be solved by statistical
models and machine learning methods.

Taking the traffic flow correlation between neighboring roads or directly connected roads into
consideration, researchers turn to mining the spatial relationship between road segments [24] and
utilizing the correlation findings to model urban transportation traffic [25–27]. This correlation analysis
identifies the underlying relationship in the road networks, while a few studies have been conducted
that make use of these findings to realize traffic prediction and solve the sparsity problems.

Among the effective methods to solve data sparsity are generative models, such as the
tensor decomposition method [28]. Tensor decomposition is a generative method that can realize
prediction with historical missing data [29]. Owing to the capability of tackling the sparsity problem,
the tensor decomposition method has been adopted to model urban road network traffic prediction.
Tang K. et al. [30] propose to construct a three-order tensor to model the travel time of different road
segments under different traffic conditions in some time slots. This research takes the congestion
status of road segments into the travel time modeling, while the temporal pattern is not given
enough analysis. The research in [31] utilized the tensor decomposition method to recognize traffic
patterns without predicting the future transportation traffic value, which is the main concern of
transportation traffic modeling.

Pastor G. et al. [32] capitalize on the definition of rank, called the tensor train, to present a
low-rank tensor model for vehicular traffic volume data. The proposed method exploits all the
correlations between local structures that are presented in the multiple models. The resulting optimally
balanced tensor improves the imputation accuracy of the tensor train rank. However, this research
focuses on the tensor rank and the imputation accuracy [33] and is not particularly concerned with
traffic flow prediction. With tensor construction and tensor decomposition-based transportation
traffic prediction, context-aware information about road network traffic can be captured and can assist
in the improvement of traffic flow prediction accuracy [34–37]. This is the main focus of this paper,
and we propose to model transportation traffic with a fourth-order tensor by incorporating the location
correlation and the temporal dimension, including the time of day, the day of the week and the week
of the month.

By analyzing the historical traffic flow, we observe that the traffic flow presents a spatial pattern
and temporal pattern. Specifically, the spatial pattern means that the traffic flow of cascading locations is
of a similar variation trend or opposite trends. The temporal pattern is the periodicity and the temporal
variation trend. The problem of how to incorporate these spatial and temporal correlations, which are
hidden in the original data in traffic flow prediction models, has yet to be solved. Fully incorporating
the underlying spatial and temporal correlation of transportation traffic data assists us in grasping
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the traffic pattern and alleviating the data sparsity problem during the traffic flow prediction process,
which is considered in our proposed traffic flow prediction method.

Previous studies about transportation traffic correlation concentrate on the traffic correlation
on different road segments [6]. These methods and findings assist us in understanding the road
structure and transportation traffic surveillance. However, there is still not a sufficient transportation
correlation for traffic flow prediction when faced with the data sparsity problem. The researchers
in [15] proposed the utilization of a tensor-based method for modeling traffic data and completing
the missing traffic data, whereas our motivation is to predict the traffic flow when the original data
have different percentages of missing values. Additionally, the aforementioned study only focused on
dealing with the missing traffic data at a single point. The case of missing data from neighboring roads
was not considered, so it ignored the spatial correlation of traffic data.

In this paper, we propose to construct a traffic flow tensor that captures the spatial and temporal
correlation of transportation traffic. We further propose a tensor decomposition method that predicts
future traffic flow with missing data on cascaded road segments or on continuous days to tackle the
spatial and temporal data sparsity problem. To be specific, the main contributions of this paper include
the following aspects:

(1) We propose the utilization of a fourth-order tensor to model traffic flows, which can capture
the spatial and temporal pattern of transportation traffic. Based on the tensor representation
of traffic flows, we further propose a correlation estimation model to estimate the relationship
between each pair of dimensions of the fourth-order tensor.

(2) Based on the constructed fourth-order traffic flow tensor, we propose a gradient descent-based
tensor decomposition algorithm for traffic flow prediction, which does not need pre-training and
can tackle the data sparsity problem from spatial and temporal perspectives.

(3) To validate the traffic flow prediction method, case studies on two real-world datasets are
constructed. The evaluation results demonstrate that our proposed traffic flow prediction method
outperforms other baselines with missing temporal data and missing spatial data.

According to the research problem above, the rest of this paper is organized as follows: the Methods
are presented in Section 2. Specifically, the tensor construction, the tensor decomposition, and the
prediction algorithm are, respectively, described. The Datasets and Metrics are described in Section 3.
Our experimental Results using two real-world datasets are presented in order to evaluate our proposed
traffic flow prediction method in Section 4. A Discussion of our conclusions and future works is
conducted in Section 5.

2. Methods

2.1. Tensor Construction

By analyzing the traffic flow, we find that the traffic pattern correlates to the road segment location,
time of day, day of the week, and the week of the month. In this paper, we construct a fourth-order tensor.

Specifically, we analyze the correlation between the four dimensions to certify the multi-pattern
of traffic flow on urban roads, which is suitable for tensor modeling. It also helps to understand the
feasibility of tensor-based traffic flow modeling.

Firstly, we incorporate a correlation calculation formula, as shown in Equation (1), to estimate the
relationship between each dimension in the constructed tensor.

Sn =

coln∑
i≥ j≥1

Rn(i, j)

coln(coln − 1)/2
(1)

where Rn represents the correlation matrix after transforming the fourth-order traffic flow tensor into
an n-order matrix, coln denotes the column number after transforming the traffic flow tensor into an
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n-order matrix, and Sn represents the correlation results of the n-dimension of the traffic flow tensor.
A larger value of Sn represents a more correlated relation in the dimension. This correlation estimation
model can certify that the traffic flow tensor is reasonably constructed and incorporates effective traffic
pattern information underlined in the traffic flow data.

After transforming the fourth-order traffic flow tensor Xtime×day×week×location into a matrix on the
n-dimension, the matrix is constructed by columns on the n-dimension to get X(n). Then, the correlation
matrix based on this transformed matrix denotes the correlation between these transformed matrices.
Elements in the correlation matrix are the quantized relationship between columns. The average value
after summing the correlation matrix entries obtains the average correlation.

2.2. Tensor Decomposition

After constructing the fourth-order traffic flow tensor, we utilize the Tucker-based tensor
decomposition approach to predict future traffic flow values, which could capture the multi-dimensional
inherent correlation of traffic flows. The tensor decomposition is shown in Equation (2).

X← Φ ×1 UTime ×2 UDay ×3 UWeek ×4 ULocation (2)

where X ∈ R288×7×7×10 in the evaluation and we set each time slot as 5 min. Then, the time slot
number of a day is equal to 288. The day number of a week is 7, and we select 10 locations. Then,
the core tensor is Φ ∈ R3×3×3×3, which reflects the relation between the factor matrix of UTime , UDay ,
UWeek and ULocation, which, respectively, denote the components of traffic patterns in terms of time, day,
week, and location.

To gradually represent the tensor-based prediction method, we first introduce the matrix
filling-based method. Then, this can be extended to the fourth-order tensor decomposition method.

We construct a two-order matrix that maps the spatial and temporal traffic flow, as shown in
Figure 1. The dimension consists of location and time. Each entry of the matrix denotes the traffic
flow value, and the empty entries mean values that are to be predicted.

Figure 1. Traffic flow matrix.

Generally, the matrix is represented as X ∈ R(α×h+α×p)×l, where α means the total time length,
and h, p, respectively, represent the historical time span and the prediction time span. l denotes the
neighbor locations. For the prediction model, we assume that the current time slot is ti, then the
prediction problem is transformed to fill the values in the time span [ti + α, ti + 2α, · · · , ti + p× α] given
the known values in the time span [ti, ti − α, ti − 2α, · · · , ti − h× α].
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In fact, there has been sufficient research on filling missing values in matrices, such as the widely
used SVD (singular value decomposition) algorithm. Matrix filling is generalized as an optimization
problem, as shown in Equation (3).

fW(A, B) =
1
2
‖X −ABT

‖
2
W (3)

where w is the weight matrix of the same size as matrix A. Each entry of w denotes whether the traffic
flow exists. Specifically, 0 means a missing value (otherwise, values are 1). A and B are the factor
matrices that need to be estimated using the factorizing algorithm.

Progressively, we illustrate a third-order tensor-based prediction method. The constructed tensor
is shown in Figure 2. The three dimensions consist of the time, the day and the week.

Figure 2. Third-order tensor.

To incorporate the correlation between locations, we further add the location dimension and
construct a fourth-order tensor of traffic flow, as shown in Figure 3. Finally, the constructed traffic flow
tensor incorporates the spatial and temporal correlation.

Figure 3. Fourth-order traffic flow tensor.

2.3. Prediction Algorithm

In this part, a detailed representation of the tensor-based traffic flow prediction is given.
As introduced, the tensor is factorized into the core tensor and factor matrices. The objective
function is to minimize the original tensor and the multiplication of the core tensor and factor matrices.
Note that we focus on sparsity-based traffic flow modeling. Thus, the tensor-based prediction algorithm
could be capable of predicting future traffic flow values given several historical or continuous instances
of missing data. The objective function used in this paper is shown in Equation (4).

fW(A, B, C) =
1
2
‖W ∗X−W ∗ ~Φ; A, B, C�‖2W (4)
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where W is the weight tensor of the constructed fourth-order traffic flow tensor X with the same size.
Each element is defined as in Equation (5):

wi jk =

{
0, i f xi jk lost
1, else;

(5)

According the objective function in Equation (4), the core tensor can be calculated as in Equation (6).

X =~Φ; U(1), U(2), · · · , U(N)�

⇔ Φ =~X; U(1)T, U(2)T, · · · , U(N)T�
(6)

To optimize the objective function in Equation (4) and get the factorized results of the core tensor
and factor matrix A, B, C, we propose a weighted gradient descent-based optimization algorithm,
the Tucker-WGopt (weighted gradient optimization) algorithm. For simplification, we first take a
three-order tensor X ∈ RI×J×K as an example. Then, the objective function described in Equation (4)
can be transformed into the formula as shown in Equation (7).

fW(A, B, C) =
I∑

i=1

J∑
j=1

K∑
k=1

w2
i jkS

S =

x2
i jk − 2xi jk(

P∑
p=1

Q∑
q=1

R∑
r=1

φpqraipb jqckr) + (
P∑

p=1

Q∑
q=1

R∑
r=1

φpqraipb jqckr)

2
(7)

Then, the gradient of the factor tensor A can be calculated as shown in Equation (8).

∂ f
∂A =

∂ f
∂aip

= 2
J∑

j=1

K∑
k=1

w2
i jkS

S = {(−xi jk +
P∑

l=1

Q∑
m=1

R∑
n=1

φimnailb jmckr)(
Q∑

q=1

R∑
r=1

φpqrb jqckr)}

(8)

To simplify the representation in Equation (8), we introduce temporary variables, including a
tensor Y, Y = W ∗X, and Z = W ∗ ~Φ; A, B, C�, then the objective function shown in Equation (4) can
be transformed into Equation (9).

fW(A, B, C) =
1
2
‖Y−Z‖2W (9)

Here, the temporary tensor Y can be pre-calculated to decrease the computation time and speed
up the prediction algorithm. The gradient of each factor matrix can be represented as in Equation (10).

∂ f
∂A = 2(Z(1) −Y(1))(Φ ×2 B ×3 C)T

(1) ;
∂ f
∂B = 2(Z(2) −Y(2))(Φ ×1 A ×3 C)T

(2) ;
∂ f
∂C = 2(Z(3) −Y(3))(Φ ×1 A ×2 B)T

(3) ;

(10)

After extending it to the N-order tensor, the prediction algorithm is presented in Algorithm 1.
The traffic flow value in the time span to be predicted is removed, and a certain percentage of the
historical data before the prediction horizon are lost, meaning a sparse traffic flow tensor. The proposed
traffic flow prediction algorithm can realize traffic flow forecasting by tackling this data sparsity problem.
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Algorithm 1. Dynamic Traffic Flow Prediction

Input: sparse traffic flow tensor X with data removed in the prediction horizon.
Output: traffic prediction tensor X̃.
1. Set the order of the core tensor Φ.
2. Initialize the core tensor Φ.
3. Initialize each factor matrix A(1), A(2), · · · , A(N);
4. Utilize the factor matrices to calculate the core tensor Φ, according to the formula in (6).
5. Pre-calculate the tensor Y = W ∗X with norm γ = ‖Y‖.
6. Calculate tensor Z = W ∗ ~Φ;A(1), · · · , A(N)�.
7. Calculate the tensor T = Y−Z.
8. Calculate f = 1

2γ− < Y, Z > + 1
2 ‖Z‖

2.

9. Calculate the gradient matrix as G(n) = −T(n)(Φ ×1 A(1)
× · · · ×n−1 A(n−1)

×n+1 A(n+1)
× · · · ×N A(N))

T
(n)

10. Utilizing the gradient decent algorithm to get the core tensor Φ and the factor matrices A(1), · · · , A(N).
11. Calculate the filled tensor

X̃ = Φ ×1 A(1)
×2 A(2)

× · · · ×N A(N)

12. Return X̃

3. Datasets and Metrics

In this section, we present the datasets in this study to verify the traffic prediction approach.
Additionally, the metrics for measuring the prediction accuracy are elaborately described.

3.1. Datasets

In order to ensure the feasibility, repeatability, and usability of our model, we utilize two real-world
datasets to test the performance of our traffic flow prediction algorithm.

Our dataset is the expressway traffic flow collected from the PeMS (performance measurement
system) in California, which is a free way performance measurement system for all of California.
It contains I-5 North roads, and the time spans from 1 March 2017 to 30 April 2017. Each time slot is
5 min, and the time span consists of 288 time slots. The dataset contains 11 locations. The first six-week
dataset is used to train the model, and the last two-week dataset is applied to test the performance of
prediction algorithms. For visualization, examples of two locations in the two months (60 days) are
shown in Figure 4.

This shows that the traffic flow of a location presents a variation pattern in the time of day and the
day of the month, which can be captured using our proposed fourth-order tensor construction model.

Another dataset is the traffic flow on two cascading urban roads in Changchun, China. The traffic
flow is obtained from urban taxi cabs traveling on roads. The GPS trajectories generated by the taxi
cabs are utilized to extract the vehicle number on a road in a given time slot. The real dataset contains
1929 taxi cabs, and the trajectory data are generated from 1 May 2017 to 29 July 2017 with a total of
90 days of traffic flow data. The road network, together with the trajectory data of one day, are shown
in Figure 5. In order to incorporate the spatial correlation of traffic flow between locations, we select
two roads in the major area.
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Figure 4. Traffic flow of two express ways.

Figure 5. Case study area in Changchun, China, and the taxi trajectory distribution. The background is
the road network, and the red points are the trajectory points (GPS points) generated by the taxi cabs.
The trajectory is utilized to extract the traffic flow on a road.



Sensors 2020, 20, 6046 9 of 15

3.2. Performance Metrics

To quantify the prediction of traffic flow prediction algorithms, we apply four metrics,
MAE (mean absolute error), MAPE (mean absolute percentage error), RMSE ((root mean square error)),
and TCA (traffic capacity accuracy), which are shown from Equation (11) to Equation (14).

MAE =
1
n

n∑
t=1

|xt − x̂t| (11)

MAPE =
1
n

n∑
t=1

|xt − x̂t|

xt
× 100% (12)

RMSE =

√√
1
n

n∑
t=1

(xt − x̂t)
2 (13)

TCA = 1−
‖(I −W) ∗ (X − X̂)‖

‖(I −W) ∗X‖
(14)

where xt denotes the ground truth of traffic flow, x̂t denotes the prediction value, and n is the
sample number. X̂ is the predicted tensor where the prediction horizon is along the timeline. Note that
a smaller value of either MAE, MAPE, or RMSE indicates a better prediction. A bigger value of
TCA instead represents a better prediction. Compared to the other three metrics, i.e., MAE, MAPE
and RMSE, TCA incorporates the missing data information into measuring the prediction performance,
which leads to its capability of verifying the prediction accuracy in terms of different levels of missing
data in the model inputs.

To demonstrate the advantage of our proposed traffic flow prediction algorithm,
Tucker-WGopt, four baselines are adopted in the experiment. The baselines include Tucker-ALS
(alternating least squares), CP (CANDECOMP/PARAFAC)-ALS, SVR (support vector regression),
and the traditional time series model ARIMA (auto regressive integrated moving average).

4. Results and Analysis

In this section, we present the prediction performances for both the complete data and the sparse
data in terms of prediction accuracy measured by the metrics. Moreover, we look into and compare
time consumption for different methods in this section. Two real-world datasets are utilized in the
experiment. The dataset for the Changchun, China, only contains two cascading roads, and the PeMS
dataset contains 11 locations. In the experimental part, to evaluate the prediction performance on the
complete data, we utilize both complete datasets. For evaluating the prediction accuracy in terms of
sparse data, we utilize the PeMS dataset, as we should evaluate missing data in neighboring locations,
and the PeMS dataset contains more neighboring locations.

4.1. Correlation of Tensor Dimension Analysis

In this section, we present the correlation of the fourth-order tensor of traffic flow using our
proposed correlation estimation model. The correlation calculation results are shown in Table 1.

Table 1. Correlation between dimensions.

Dimension. Matrix Size Correlation

Time 288× (7× 7× 10) 0.41
Day 7× (288× 7× 10) 0.88

Week 7× (288× 7× 10) 0.96
location 10× (288× 7× 7) 0.98
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It can be found that the correlation in the location dimension is calculated to be the largest
value. The temporal traffic pattern in the day of the week and the week of the month presents an
adequate correlation, whereas the correlation in the time dimension has the smallest value. By looking
into the real-world situation, this underlines that the traffic flow of a given day is a bit stochastic.
When it comes to the long-term traffic pattern, say daily or weekly, the traffic instead presents a
characteristically more stable pattern. Such stable patterns are captured in the tensor construction,
and could facilitate the traffic prediction.

4.2. Prediction Performance with the Complete Data

We first test the prediction performance of the proposed model on the original datasets.
Both original datasets are complete, meaning that no elements are missing. Such an evaluation
helps us know how the model performs for a dataset where no elements are missing. Measured by
three metrics, i.e., MAPE, RMSE, and TCA, the prediction results on the PeMS dataset and the trajectory
dataset in Changchun, i.e., TraCC (trajectory dataset of Changchun, China), are shown in Table 2.

Table 2. Effectiveness of different prediction methods.

Method
MAPE RMSE TCA

PeMS TraCC PeMS TraCC PeMS TraCC

Tucker-WGopt 0.091392 0.091318 6.2138 6.2093 0.9866 0.9874
Tucker-ALS 0.097251 0.097039 8.8694 8.8439 0.9783 0.9832

CP-ALS 0.099368 0.099230 8.7244 8.7193 0.9774 0.9796
SVR 0.100135 0.100141 9.1256 9.1231 not applicable

ARIMA 0.102438 0.102174 9.3695 9.3597 not applicable

The results in Table 2 show that the proposed algorithm, Tucker-WGopt, obtains the smallest
prediction error measured by two metrics, namely MAPE and RMSE. The results of the two datasets
are quite similar. In addition, it achieves the largest TCA value. This means that Tucker-WGopt
outperforms other methods in terms of prediction accuracy. Compared to Tucker-ALS, the proposed
Tucker-WGopt also obtains improvements, which verify the effectiveness of incorporating weighed
gradient optimization into the Tucker-based tensor decomposition. Note that the TCA value obtained
by the proposed method also performs the best when considering the missing data weight matrix.
Further testing of the prediction performance with the sparse data is presented in the next part of
this section. Aside from the prediction accuracy, we further show the performance from the perspective
of computation time, which is shown in Table 3.

Table 3. Efficiency of different methods.

Method Time (s) Training Needed

Tucker-WGopt 5.1 N
Tucker-ALS 0.7391 N

CP-ALS 0.6773 N
SVR 0.3158 Y

ARIMA 13.7808 Y

Table 3 shows that the proposed prediction algorithm, Tucker-WGopt, consumes less time
compared to ARIMA. However, it does not show an advantage in terms of computing speed compared
to Tucker-ALS, CP-ALS, or SVR. The advantage of the tensor decomposition or matrix decomposition
models is that they do not require a training process. Moreover, the tensor-based methods are capable
of tackling sparse data for value prediction. Sparse data mean that a certain number of entries in the
tensor are missing, and the tensor decomposition method keeps being capable of predicting the future
values even with these empty entries; meanwhile, such empty entries can be filled after utilizing the
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prediction algorithm. In the next section, we further verify the performance of traffic prediction when
different levels of missing data exist.

4.3. Verifying with Sparse Data

As we need calculate the prediction accuracy of the model, we have collected datasets where the
original data are not missing. The missing data are constructed by randomly removing data, which is
carried out to test the model’s robustness in terms of missing data. Thus, the location of missing data
exists randomly in the road network, and such stochastically generalized locations could help ensure
the robustness of missing data for randomly selected roads.

To further test the performance of our model with different amounts of missing data, we randomly
remove values in the tensor. The percentage of removed data spans from 10% to 90%. Under such
a situation, the prediction accuracy, measured by TCA, is as shown in Figure 6.

Figure 6. TCA (traffic capacity accuracy) with different percentages of missing data.

As shown in Figure 6, we found that the prediction accuracy decreases with the percentage of
missing data increasing. The TCA values keep being larger than 0.8 even when 90 percent of data have
been removed. This demonstrates that the proposed tensor decomposition-based method realizes an
effective traffic flow prediction; moreover, it outperforms two other baselines under all percentages of
missing data.

In a real situation, missing data may exist in continuous time slots. For instance, where the
data for a day are completely missing. To further verify the capability of tackling the missing data
phenomenon for traffic prediction in the proposed method, we then delete the data in the day dimension,
meaning that a whole day of data is missing. Measured by MAE, the results of continuous missing
data in one day are shown in Figure 7.
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Figure 7. Prediction of our method measured by MAE (mean absolute error) with continuous missing
data in one day.

Measured by MAE, we find that the proposed method effectively predicts traffic flow values
with small errors. For further testifying the robustness of the model in terms of tackling sparse
data for prediction, we remove data for continuous days. Measured by MAPE, the results of
three tensor-based methods are shown in Figure 8. We find that the results of the three methods
are similar when the missing data are from less than three continuous days, whereas, with data
removed for continuous days, the prediction errors of Tucker-ALS and CP-ALS increase substantially.
However, the proposed prediction method, Tucker-WGopt, keeps a similar prediction accuracy,
which is much smaller than the results of other two baselines. Such observations demonstrate that the
proposed Tucker-WGopt algorithm facilitates the tensor decomposition to capture more spatiotemporal
information on traffic flows for future traffic prediction. Hereby, the proposed method presents
advantages over two other baselines for tackling data missing in continuous days.

Figure 8. Prediction accuracy measured by MAPE (mean absolute percentage error) with continuous
missing data in multi-days.

Another missing data scenario is that the data are missing on neighboring road segments. Here,
we further test the prediction of our proposed method in this situation; the result is shown in Figure 9.
This shows that the prediction algorithm effectively fits real traffic flow.
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Figure 9. Prediction results with missing data on neighboring roads.

5. Discussion

This paper presents a tensor decomposition-based urban transportation traffic prediction method,
which incorporates the location correlation of road segments in the road network and the temporal
correlation into tensor construction. The temporal correlation contains the time of day, the day of
the week, and the week of the month. In addition to the location of a road, a fourth-order tensor
is constructed. Before tensor construction, we propose a traffic correlation estimation method to
certify the rationality of the constructed tensor. After constructing the fourth-order traffic flow tensor,
we further propose a tensor decomposition-based traffic flow prediction algorithm, which is capable of
tackling missing data on neighboring road segments and on continuous days. Evaluating real-world
datasets of traffic flow, it demonstrates that the proposed traffic flow method outperforms the existing
baselines with different levels of data sparsity.

The proposed fourth-order tensor can be transformed into a fifth-order tensor only when we
have multiple months of traffic data. By adding the dimension of the month, the temporal pattern
in different months can be captured to predict traffic flows. Similarly, if we can obtain access to a
dataset that covers more seasons or more years, the seasonal dimension or the yearly dimension can
also be added. Such verification experiments could only be carried out when a much bigger dataset
is available. Additionally, testing the approach on more road networks in other countries or cities may
help further evaluate the effectiveness, a task which is left to our future studies.

In conclusion, this paper proposed to utilize tensor decomposition to model traffic flow and
proposed a traffic flow prediction algorithm. The proposed method is designed mainly to tackle
traffic flow prediction with missing data. In future studies, we will focus on fifth-order or sixth-order
tensor modeling for traffic flow prediction. On the other hand, the context-aware information of traffic
congestion status could also be incorporated into modeling the traffic flow at the road network level.
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