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Abstract: An accurate observation model and statistical model are critical in underwater integrated
navigation. However, it is often the case that the statistical characteristics of noise are unknown
through the ultra-short baseline (USBL) system/Doppler velocity log (DVL) integrated navigation in
the deep-sea. Additionally, the velocity of underwater vehicles relative to the bottom of the sea or the
currents is commonly provided by the DVL, and an adaptive filtering solution is needed to correctly
estimate the velocity with unknown currents. This paper focuses on the estimation of unknown
currents and measurement noise covariance for an underwater vehicle based on the USBL, DVL, and a
pressure gauge (PG), and proposes a novel unbiased adaptive two-stage information filter (ATSIF)
for the underwater vehicle (UV) with an unknown time-varying currents velocity. In the proposed
algorithm, the adaptive filter is decomposed into a standard information filter and an unknown
currents velocity information filter with interconnections, and the time-varying unknown ocean
currents and measurement noise covariance are estimated. The simulation and experimental results
illustrate that the proposed algorithm can make full use of high-precision observation information and
has better robustness and navigation accuracy to deal with time-varying currents and measurement
outliers than existing state-of-the-art algorithms.

Keywords: ultra-short baseline system; Doppler velocity log; adaptive two-stage information filter;
currents velocity; measurement noise covariance

1. Introduction

The underwater vehicle (UV) remains the best option for manipulation tasks, such as sampling,
detailed inspection, and servicing subsea instruments. In deep-sea, the UV is dependent on the
navigation ability to perform long-range and long-term missions near the sea bottom to support
a wide range of ocean surveys. For the past decades, numerous underwater navigation schemes
have been proposed [1–3]. Here, the ultrashort baseline (USBL) system/Doppler velocity log (DVL)
integrated navigation is one of the most important ones, since it provides absolute position and
is not prone to dead reckoning error in deep-sea. In particular, the USBL system and the DVL
are complementary, and conveniently installed in the hull and extensively applied to underwater
positioning [4,5]. Additionally, the UV is usually outfitted with a pressure sensor, and the vehicle
depth is computed from the direct measurements of the ambient sea water pressure via standard
equations for the properties of sea water [6,7]. Combined with the calibration and compensation for
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depth information, the three-dimensional navigation of the underwater vehicle can commonly be
converted into two-dimensional navigation.

The DVL, by the principle of Doppler frequency shift, can be used to calculate the velocity of
the vehicle relative to the sea bottom or the water column, and obtain a displacement by velocity
integration [8–10]. In the mid-depth zone, the vehicle velocity measured by the DVL can be influenced
by ocean currents. Acoustic navigation systems are the only effective sensors for horizontal state
measurements in the mid-depth zone. Since the current velocity is typically unknown, estimating the
correct vehicle and current velocity may have great uncertainties. Additionally, the acoustic navigation
methods, including the USBL, require accurate alignment calibration and sound velocity profiles
(SVPs). The measurement accuracy of the USBL is influenced by the range error and bearing error,
which decreases according to the increase of the distance between the transponder and transducer. As a
result, the observation noise of the USBL varies violently with observation distance, and it shows poor
positioning accuracy without the aid of other sensors in the deep-sea. When the elevation of real-time
average sea level is known, it is convenient to combine the USBL system with a pressure sensor for
navigation near the seabed. The slant range measurements can be adopted to improve the horizontal
positioning accuracy [11]. Since they are unknown, saltation varying current disturbances are more
difficult to compensate by using integral effect or adaptation, and the convergence of traditional
navigation method can be relatively slow [12].

Reliable state/parameter estimation is a prerequisite for the stability and performance of navigation
systems. The state estimation under arbitrary unknown inputs has received much attention in the past
decades. As extensions of traditional Kalman filtering, augmented Kalman filters (AKFs) are frequently
applied to the joint estimation of linear motion with colored noise or unknown input, and related
work can be found in types of research [13–17]. Friedland proposed a classical two-stage Kalman filter,
which decomposes the augmented filter into two reduced-order filters [14]. However, the approach is
only optimal in the presence of a constant bias [15]. Kitanidis first developed an unbiased recursive
filter without prior information about the unknown input [16]. However, the limiting condition of
the approach is it requires the assumption that the distribution matrix of the unknown inputs in the
measurement equation is of full rank. A global optimal filter was proposed, which removed this
assumption, but this filter is limited to state estimation presenting a unified approach to design a specific
globally optimal state estimator [17]. Recently, particle filters have also been applied to unknown
input estimation, and they can cope with systems with non-Gaussian noise [18–20]. Other relevant
examples include robotics or advanced vehicle applications where the applied forces or acceleration
are unmeasured and can change arbitrarily due to the environment [21–28].

Due to the time-variant measurements noise and unknown ocean currents, an adaptive filtering
solution is required to estimate the position of the UV. In practice, it is not natural to assume directly
the unknown input properties and mathematical model of the augmented system in a complicated
marine environment. The strong time-varying characteristics of the colored noise or unknown input,
for example, the saltation unknown ocean currents, should be considered. Another disadvantage
of AKF is that it requires an accurate statistical model [29], which is difficult and even impractical
in underwater acoustic application. As above, the measurement accuracy of USBL observation is
affected by the environment and varies dramatically, which is not conducive to the stability of filtering.
Without precise models/properties for the unmolded dynamics, accurate estimation is still necessary
for underwater vehicle monitoring purposes. The covariance matrix of the observation equation
can be approximately estimated by the most common adaptive Sage filtering, according to window
smoothing of the innovation sequence or residual sequence, which is called innovation-based adaptive
estimation (IAE) and residual-based adaptive estimation (RAE) [30–32]. The process noise covariance
matrix Q or the measurement noise covariance matrix R with time can be estimated by the IAE and
RAE algorithms. When the system is subject to an abnormal condition, an adaptive factor is utilized
by the robust adaptive Kalman filter (RAKF) proposed by Yang and Gao [33] to tune the predicted
state error covariance. However, the IAE, RAE, and RAKF methods are all described based on the
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information provided by the innovation or the residual. Under the effect of unknown ocean currents,
the estimation of measurement noise covariance can be damaged, and thereby lead to inaccurate and
even divergent output of the filter.

In this study, a new filter is proposed to estimate the unknown time-varying currents and the
real-time observation covariance matrix. The main contribution is the design of the unbiased adaptive
two-stage information filters (ATSIFs) for deep-sea underwater vehicles to estimate the position,
velocity, and time-varying unknown current velocity. The ATSIF involves two interconnected parts,
one based on the classical information filter for state estimation, and the other based on the sequential
least squares algorithm for unknown parameter estimation. The different forgetting factors are
introduced to classical sequential least squares, and it controls how fast past observations are forgotten.
An adaptive estimation method of the measurement noise is presented based on the epoch difference in
the measurements. The acoustic system error caused by inaccurate sound velocity can be estimated by
the ATSIF as well, which is convenient to be applied in our underwater navigation research. In addition,
measurement equations for the USBL, DVL, and PG sensors are given, and simulation and experimental
results are presented.

This paper is arranged as follows. Section 2 introduces the navigation system for the USBL/DVL
integrated navigation system based on the slant ranges and the depth measurements. Then, the dynamic
and measurement equations, and the data integration equations are given. The unbiased adaptive
two-step information filter is described in Section 3. Section 4 describes the simulation and experiments.
Finally, Section 5 presents the conclusions of this study.

2. Integrated Navigation Model

2.1. System Model

As shown in Figure 1, the vehicle fixed coordinate system {b} and the outline of the vehicle
are simplified as a dashed box. The positions of the sensor packages relative to the attitude and
heading reference system (AHRS) are given by the lever arms vectors rb

tp/tm,rb
dvl/tm,rb

pg/tm for the USBL
transponder, DVL, and pressure gauge in the vehicle fixed frame, respectively.
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The positions of the other sensors relative to the AHRS in the {m} coordinate are represented as
rm

tp, rm
dvl, and rm

pg, respectively. Then [34]:

rm
tp = Cm

b (ϕbm)rb
tp/tm, rm

dvl = Cm
b (ϕbm)rb

dvl/tm, rm
pg = Cm

b (ϕbm)rb
pg/tm, (1)

where Cm
b (ϕbm) ∈ R3×3 denotes the direction cosine matrix (DCM) from {b} to {m},ϕbm is the attitude

angle of {b} relative to {m}.
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The dynamics of the position and attitude are given by:

.
pn

m(t) = Cn
m(ϕmn(t))vm

d (t) + vn
c (t) + wv(t), (2)

.
C

n
m(ϕmn(t)) = Cn

m(ϕmn(t))S(ωm
m(t)) + wϕ(t), (3)

where pn
m(t) ∈ R3 is the position of AHRS in the local navigation coordinate frame {n}; Cn

m(ϕmn(t)) ∈
R3×3 denotes the DCM from {m} to {n}, andϕmn(t) represents the attitude of the AHRS; vm

d (t) ∈ R3 and
ωm

m(t) represent the velocity of the AHRS relative to the fluid and angular velocity in {m}, respectively;
vn

c (t) denotes the ocean currents velocity in {n}; S(·) is the skew-symmetric matrix, which represents
the cross product such that S(ωm

m(t))a = ωm
m(t) × a; wv(t) ∈ R3 and wϕ(t) ∈ R3 represent the state

stochastic perturbations of the velocity and turn rate, respectively.

2.2. Observation Model

As shown in Figure 2, the navigation system includes two parts: (1) An underwater vehicle
equipped with a DVL sensor, PG, AHRS, and USBL transponder; and (2) a ship-decked unit with a
GNSS antenna and a dunking transducer on a rigid pole. The relative coordinates in the {n} frame of
the GNSS antenna and the USBL transducer can be calculated by attitude measurements. The relative
position between the vehicle and ship can be measured by USBL, and the UV depth relative to the sea
level can be communicated with the ship using an acoustic modem.
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The measurement equations for the USBL transponder [8,35–37] and the DVL [26] are given by
Equations (4) and (5), respectively:

di(t) = ‖pn
m(t) + Cn

m(ϕmn(t))rm
tp − pn

r (i)‖2 + ε
tp
i (t) , i = 1, . . . , nr , (4)

vd
dvl(t) = Cd

m(ϕmd)(vm
m(t) +ωm

m(t) × rm
dvl(t)) + ε

d
dvl(t), (5)

where di(t) denotes the distance between the transponder and the transducer measured by the USBL;
pn

r (i) ∈ R3 is the position of the receiver in {n}, and nr is the number of receivers; εtp
i (t) represents the
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USBL measurement noise; vd
dvl(t) ∈ R

3 represents the velocity reading provided by the DVL; Cd
m(ϕmd)

is the rotation matrix from {m} to {d}; εd
dvl(t) represents the DVL measurement noise.

In this research, the positioning accuracy of the vertical direction is better than 30 cm, which uses
the differential global positioning system (DGPS) technology (e.g., StarFire, VeriPos, and Marinestar)
based on the communication data link of marine satellites [38]. Then, the instantaneous elevation of
the sea surface z(t) can be simplified, as represented by:

z(t) = ztp(t) − zd + wd
tp(t), (6)

where ztp(t) denotes the height of the real-time USBL transducer; zd represents the immersion of the
transducer, which is usually assumed to be a constant and can be estimated; and wd

tp represents the
noise caused by the waves and the ship dynamic draft. Typically, the period of a wave is only a few
seconds to a few minutes, while the cycle of tides is longer and can be considered almost constant
within several minutes. The influence of waves can be removed by roughly utilizing the moving
average method. Therefore, considering that the PG is calibrated, the measurement ppg(t) can be
represented by:

pn
pg(t) = patm(t) + ρ(t)gzn

pg(t) + εpg and zn
pg(t) = zn

m(t) + [ 0 0 1 ]Cn
m(ϕmn(t))rm

pg + εn
pg, (7)

where patm(t) denotes the atmospheric pressure at the mean sea level; ρ(t) represents the mean seawater
density; g is the acceleration of gravity; zn

pg denotes the depth of the pressure gauge; εpg represents the
PG noise; zn

m(t) represents the depth of the AHRS; and εn
pg represents the depth offset error.

2.3. Integrated Navigation Model

To reduce the complexity of the system dynamics and measurements, the calibration was
accomplished and the exact orientation vector was obtained. A simple linear time-varying (LTV) model
is used here:

.
x(t) = A(t)x(t) + B(t)s(t) + d(t), (8)

where x = [(pn
m)T, (vm

m)T
]T

, and s = vn
c ; dk and vk represent the vector of white Gaussian acceleration

noises with zero mean, respectively; Ak =

[
03×3 Cn

m(ϕmn(k))
03×3 03×3

]
∈ R6×6, Bk =

[
I3×3 03×3 ]

T
.

To achieve a discrete-time model of the dynamics (4), we assumed that the measurements are obtained
with a constant sampling rate T. Then, the system can be described by:

xk = Φkxk−1 + Γkuk−1 + wk
yk = Hkxk + vk

(9)

where Φk = e
∫ T

0 A(T−τ)dτ, Γk = I6, and uk =
∫ T

0 eA(T−τ)B(T − τ)s(T − τ)dτ. Hk can be linearized and
described by (4), (5), and (7) with the known parameters {ϕmn(t), ϕmd, rm

tp, pn
r (i), rm

dvl(t), ztp(t), rm
pg},

and observations yk =
[

d1(k) · · · dnr(k) (vd
dvl(k))

T zn
pg(t)

]T
. This is a simplified from for the

design of an observer, as both the input and output of the system are known continuous bounded
signals. Then, the classic augmented discrete-time model is usually used as follows:

[
xk+1
uk+1

]
=

[
Φk+1 Γk+1

0 I3

][
xk
uk

]
+

[
wk
ξk

]
yk = [ Hk 0 ]

[
xk
uk

]
+ vk

(10)
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where ξk represents the random error. Thus, the KF method can be used for data integration in the
system (10). However, the augmented form generally simplifies the physical model of the input error
and neglects the strong time-varying characteristics of the unknown input uk.

As shown in Table 1, we analyzed the influence of the unknown currents error on the system in this
research and separated the unknown input from the augmented filter. The problem addressed in this
study and the measurement characteristics of sensors can be summarized in the following statement.

Table 1. Summary of measured quantities and variables to be estimated.

Estimate Measurement

AHRS pos. pn
m(t) USBL Ranges di(t)

AHRS vel. vn
m(t) Relative vel. to fluid vd

dvl(t)
Currents vel. Angular vel. ωm

m(t)
vn

c (t) Depth zn
pg(t)

1. The USBL observation contains obvious measurement noise, which is related to the distance and
changes with space and time.

2. The other systematic errors, such as calibration errors and constant deviations of depth gauges,
can be corrected by augmenting parameters.

3. There are time-varying and saltation ocean currents.

3. Adaptive Two-Stage Information Filter Design

To improve the estimation accuracy of the navigation state, unknown ocean current velocity,
and measurement noise covariance, a modified two-stage adaptive information filter is proposed to
trade the algorithm simplicity and efficiency.

3.1. The Two-Stage Information Filter

Considering a stochastic linear discrete-time system (10), wk and vk are independent random
noise vectors with covariance matrices Qk = E[wkwT

k ] and Rk = E[vkvT
k ], respectively. If the state

estimation x̂k−1, Pk−1, and unknown parameter estimation ûk−1 are given, according to system (10) and
the variance-covariance propagation law, the predicted state and covariance are given as:

x̂k|k−1 = Φkx̂k−1 + Γkûk−1,
Pk|k−1 = ΦkPk−1ΦT

k + Qk.
(11)

The following information filter estimation can be obtained [39,40]:

x̂k =
(
HT

k R−1
k Hk + P−1

k|k−1

)−1
(HT

k R−1
k yk + P−1

k|k−1x̂k|k−1

)
, N−1

k (HT
k R−1

k yk + P−1
k|k−1x̂k|k−1), (12)

where Nk =
(
HT

k R−1
k Hk + P−1

k|k−1

)
. The x̂k|k−1 in Equation (11) corresponds to x̂k−1 and ûk−1, respectively.

The x̂k can be determined by the two kinds of parameters based on Equation (8) as well. Therefore, x̂k can
be written as into x̂k = x̂a

k + x̂u
k with:

x̂a
k = N−1

k (HT
k R−1

k yk + P−1
k|k−1Φkx̂a

k−1), (13)

x̂u
k = N−1

k (P−1
k|k−1Φkx̂u

k−1 + P−1
k|k−1Γkûk−1), (14)

where the Equation (13) is the classic information filtering equation of the system (10) without
considering the unknown input ûk−1, which can be calculated recursively in the form of standard



Sensors 2020, 20, 6029 7 of 19

information filtering. Considering the effect of Gaussian noise, and u change over time, the filtering
estimates of Equation (14) can be written as:

x̂u
k = N−1

k (P−1
k|k−1Φkx̂u

k−1 + P−1
k|k−1Γkûk−1) + ∆k−1, (15)

where û represents an estimation of u, and ∆k−1 is the compensation term of the estimation of system
noise ûk−1.

It is assumed that a time-varying matrix Fk ∈ Rn×p exists, such that x̂u
k = Fkûk, and holds for all

time. The detailed description of the similar methods can be found in [41,42]. Then:

Fkûk = N−1
k (P−1

k|k−1ΦkFk−1ûk−1 + P−1
k|k−1Γkûk−1) + ∆k−1, (16)

where the recursive linear equation of state estimation x̂u
k is established based on û. The estimation ûk

of the system noise can be represented as ûk = ûk−1 + ∆ûk. Then:

Fk(ûk−1 + ∆ûk) = N−1
k (P−1

k|k−1ΦkFk−1ûk−1 + P−1
k|k−1Fkûk−1) + ∆k−1. (17)

Letting ∆k−1 = Fk∆ûk, then (13) becomes:

Fkûk−1 = N−1
k (P−1

k|k−1ΦkFk−1ûk−1 + P−1
k|k−1Γkûk−1), (18)

and a recursive expression of Fk can be obtained as follows:

Fk = N−1
k (P−1

k|k−1ΦkFk−1 + P−1
k|k−1Γk). (19)

Now, Equation (15) can be rewritten as:

x̂u
k = N−1

k (P−1
k|k−1Φkx̂u

k−1 + P−1
k|k−1Γkûk−1) + Fk(ûk − ûk−1). (20)

Note that the right second term of (20) is used to compensate the error caused by ûk−1 , u,
and its continuous time KF counterpart can be find in [40]. Now, x̂k can be computed with
Equations (13) and (20), then: {

x̂k = x̂a
k + x̂u

k
Pk = N−1

k
, (21)

where Equation (17) is the expression of the adaptive filter designed in this study, and it is necessary to
consider the recursive computing problem.

The ûk is estimated with the observed values and the predicted values of the model. The innovation
vector is defined as follows:

Vk = yk −Hk(Φkx̂a
k−1). (22)

It is straightforward to find that Vk represents the standard Kalman filter innovation vector
of the system (10) without considering uk. Then, the covariance of Vk can be computed by
Σk = Rk + HkPk|k−1HT

k .
Considering the equation x̂u

k−1 = Fk−1ûk−1, the innovation vector also satisfies:

Vk = HkΦkFk−1ûk−1 + HkΓkûk−1 = (HkΦkFk−1 + HkΓk)ûk−1. (23)

Clearly, the (23) right term can be rewritten as Hk(Φkx̂u
k−1 + Γkûk−1). Now, Equations (18) and (19)

is subtracted with the left and right. Then:

0 = yk −Hk(Φkx̂k−1 + Γkûk−1). (24)
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So, the relationship between Vk and ûk−1 is given by (19) as:

Vk = Dkuk−1, (25)

where Dk = (HkΦkFk−1 + HkΓk).
Equation (21) can be regarded as an observation equation with unknown parameters u. Based on

the steady characteristics of unknown input, the sequential least squares can be used to estimate ûk
sequentially. The detailed equations are given as:

Ψk = (Σk + DkΛk−1DT
k )
−1

, (26)

Gk = Λk−1DT
k Ψk, (27)

Λk = Λk−1 −Λk−1DT
k ΨkDkΛk−1, (28)

ûk = ûk−1 + Gk(Vk −Dkûk−1). (29)

In the adaptive information filter, at the initial time instant k = 0, the initial state x̂0 ∈ N(
¯
x0, P0) is

assumed to be a Gaussian random vector, and the basic algorithm of two-stage information filtering
(TSIF) can be given as Algorithm 1.

Algorithm 1: Two-Stage Information Filter (TSIF).

1. Initialization:
x̂a

0 ∼ N(x0, P0),x̂u
0 = 0,F0 = 0,Λu

0 = ωuIp,û0 = 0.
2. Input: observation yk

(30)

3. Recursive computation: For k = 1, 2, 3, . . .
(1). Information filtering (IF):

x̂a
k|k−1 = Φkx̂a

k−1, (31)
Pk|k−1 = ΦkPk−1ΦT

k + Qk, (32)
Nk =

(
HT

k R−1
k Hk + P−1

k|k−1

)
, (33)

x̂a
k = N−1

k (HT
k R−1

k yk + P−1
k|k−1Φkx̂a

k−1), (34)
Pk = N−1

k . (35)
(2). Innovation and covariance:

Vk = yk −Hk(Φkx̂a
k−1), (36)

Σk = Rk + HkPk|k−1HT
k . (37)

(3). Correction:
Fk = N−1

k (P−1
k|k−1ΦkFk−1 + P−1

k|k−1Γk), (38)
Dk = (HkΦkFk−1 + HkΓk), (39)

Ψk = (Σk + DkΛk−1DT
k )
−1

, (40)
Gk = Λk−1DT

k Ψk, (41)
Λk = Λk−1 −Λk−1DT

k ΨkDkΛk−1, (42)
ûk = ûk−1 + Gk(Vk −Dkûk−1), (43)
x̂u

k = N−1
k (P−1

k|k−1Φkx̂u
k−1 + P−1

k|k−1Γkûk−1) + Fk(ûk − ûk−1). (44)
(4). Modified state:

x̂k = x̂a
k + x̂u

k . (45)
4. Output: x̂k and ûk

Proposition 1. The mathematical expectationsE[xk − x̂k] and E[uk − ûk] tend to zero when k→∞ . The details
can be found in Appendix A.

The Algorithm 1 separates unknown ocean currents and navigation parameters into two parts.
It is more convenient to reveal the effect of unknown ocean currents parameters on the function of
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possible estimated parameters through the innovation vector. The ocean current parameters in different
states can be estimated adaptively and more flexibly.

3.2. The Adaptive Estimation of Unknown Current Velocity

3.2.1. Diagnosis of Unknown Ocean Currents and the Saltation Ocean Currents

When the UV works near the sea bottom, the DVL can measure the velocity relative to the bottom
of the sea without ocean currents. Otherwise, many diagnostic algorithms can be applied to filter
anomalies through innovation vectors, residual vectors, or abnormal states. In this study, the prediction
innovation vector x̂k|k−1 will be reflected by the error of the prediction state vector, and the following
error discriminant statistics can be constructed through a sliding window of n epochs:

mean(∆e−k ) =
1
n

k∑
j=k−n+1

 (e
−

j )
Te−j

tr(Σ j)

, e−k = yk −Hk(Φkx̂k|k−1). (46)

The mean is compared with a presupposed threshold to distinguish whether there is an abnormal
state, i.e., whether there is an unknown ocean current. If there is an unknown ocean current,
the unknown parameters can be estimated by the second-order filtering.

3.2.2. Diagnosis of Abnormal USBL Data

It is assumed that the location provided by USBL at k time is pusbl
k , and the predicted value of the

position at the last moment is p̂k−1. It can be obtained that the velocity at this time is estimated to be
(pusbl

k − p̂k−1)/(tk − tk−1). In deep sea, DVL’s speed of measurement accuracy is much higher than the
average speed obtained by the adjacent time of USBL. It can be used as an important criterion to judge
whether the USBL data is abnormal.

3.2.3. Estimation of the Time-Varying Currents

When the time-varying ocean currents occurs, we can naturally introduce the forgetting factor
λ ∈ [0, 1] into the recursive Equations (40)–(43). Rewriting Equations (40) and (42), then the adaptive
SLS algorithm for estimating the ocean current velocity is as follows:

¯
Ψk = (λΣk + Dk

¯
Λk−1DT

k )
−1

¯
Λk = λ−1

¯
Λk−1 − λ

−1
¯

Λk−1DT
k

¯
ΨkDk

¯
Λk−1

. (47)

The forgetting factor is used to increase the proportion of new observations in the estimation of
ocean current velocity in filtering. If there is a slow change in ocean current velocity, the method can
effectively estimate the ocean currents by using new observations.

Consider the saltation ocean currents, which can cause serious effects on navigation. We consider
introducing an auto-adjusting factor αk into the above recursive Equations (40)–(43).

By rewriting Equations (40) and (42) with the adaptive two-section weight function, the SLS
algorithm for estimating the ocean current velocity can be rewritten as follows:

~
Ψk = (αkΣk + Dk

~
Λk−1DT

k )
−1

~
Λk = α−1

k

~
Λk−1 −α

−1
k

~
Λk−1DT

k

~
ΨkDk

~
Λk−1

αk ≈

 1 ∆ṽk ≤ c
c

∆ṽk
∆ṽk ≥ c

, (48)
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where ∆ṽk =

(
(e−j )

Te−j
tr(Σ j)

) 1
2

is a discriminating statistical vector based on the innovations, and c ∈ [1, 2.5] is

a presupposed threshold. The significance of Equation (48) is to reduce the influence of the previous
system noise estimation on the current system noise estimation and improve the convergence of
stepwise system noise. The gain matrix Ψk is magnified by introducing the adaptive factor λ or αk,
and depends more upon the new measurements.

The basic algorithm of adaptive two-stage information filtering (TSIF) can be given as Algorithm 2.
The ATSIF involves two interconnected parts, one based on the classical information filter for state
estimation, and the ther based on the sequential least squares algorithm for unknown parameter
estimation. The different forgetting factors are introduced to classical sequential least squares, and it
controls how fast past observations are forgotten.

Algorithm 2: Adaptive Two-Stage Information Filter (TSIF).

1. Initialization:

x̂a
0 ∼ N(x0, P0), x̂u

0 = 0, F0 = 0, Λu
0 = ωuIp, û0 = 0, λu

k ∈ [0, 1]. (49)
2. Input: observation yk
3. Recursive computation: For k = 1, 2, 3, . . .

(1). Information filtering (IF):
x̂a

k|k−1 = Φkx̂a
k−1, (50)

Pk|k−1 = ΦkPk−1ΦT
k + Qk, (51)

Nk =
(
HT

k R−1
k Hk + P−1

k|k−1

)
, (52)

x̂a
k = N−1

k (HT
k R−1

k yk + P−1
k|k−1Φkx̂a

k−1), (53)
Pk = N−1

k . (54)
(2). Innovation and covariance:

Vk = yk −Hk(Φkx̂a
k−1), (55)

Σk = Rk + HkPk|k−1HT
k . (56)

αk ≈

 1 ∆ṽk ≤ c
c

∆ṽk
∆ṽk ≥ c

, ∆ṽk =

(
(e−j )

Te−j
tr(Σ j)

) 1
2

, c ∈ [1, 2.5]. (57)

(3). Correction:
Fk = N−1

k (P−1
k|k−1ΦkFk−1 + P−1

k|k−1Γk), (58)
Dk = (HkΦkFk−1 + HkΓk), (59)
~
Ψk = (αkΣk + Dk

~
Λk−1DT

k )
−1

, (60)
~
Gk =

~
Λk−1DT

k

~
Ψk, (61)

~
Λk = α−1

k

~
Λk−1 −α

−1
k

~
Λk−1DT

k

~
ΨkDk

~
Λk−1, (62)

ûk = ûk−1 +
~
Gk(Vk −Dkûk−1), (63)

x̂u
k = N−1

k (P−1
k|k−1Φkx̂u

k−1 + P−1
k|k−1Γkûk−1) + Fk(ûk − ûk−1). (64)

(4). Modified state:
x̂k = x̂a

k + x̂u
k . (65)

4. Output: x̂k and ûk

3.3. The Adaptive Estimation of the Measurement Noise Covariance

Due to the characteristics of acoustic sensors and ocean environment noise, the R matrix will
change obviously with time and space in practice. Consequently, the performance of the filter will
degrade when using an inaccurate prior statistic covariance R. Therefore, it is crucial to estimate the
statistical characteristics of the filter. There are numerous existing adaptive algorithms that can be used
to estimate the measurement noise covariance. The IAE and RAE methods are adapted as follows:

R̂IAE
k = E[ e−k (e

−

k )
T
] −HkPk|k−1HT

k ≈
1
m

m∑
i=0

e−k−i(e
−

k−i)
T
−HkPk|k−1HT

k , (66)
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R̂RAE
k = E[ e+k (e

+
k )

T
] + HkPkHT

k ≈
1
m

m∑
i=0

e+k−i(e
+
k−i)

T
+ HkPkHT

k , (67)

where x̂k|k−1 and x̂k are the predicted and corrected estimation of the state, respectively. Pk|k−1 denotes
the covariance of x̂k|k−1, and Pk denotes the covariance of x̂k. e−k and e+k = yk −Ckx̂k are the innovation
and residue vectors at time k, respectively.

However, the innovation vectors and residual vectors are sensitive to (x̂k|k−1, ûk|k−1) and (x̂k, ûk),
and the inaccurate (x̂k|k−1, ûk|k−1) and (x̂k, ûk) will affect the estimation of R. We consider the adaptive

estimation of R from the yp
k−1 = Ck−1x̂k−1|k−2 and original observations to improve the estimation

accuracy. By calculating the difference of the observed data in the adjacent time, the second-order
difference (SOD) of observation can be used to calculate R as follows [43]:

R̂SOD
k ≈ [Var((yk − yk−1) − (y

p
k − yp

k−1)) −HkQk−1HT
k ]/2, (68)

where yp
k = Hkx̂k|k−2 and the details can be found in Appendix B.

The covariance matrix of observation noise can be obtained by selecting observation data for a
short period time and the moving average method. If the sampling time T is small, the observed noise
covariance can be estimated by (68). The SOD method can be viewed as a second-order difference of
measurement than the IAE method. In USBL/DVL integrated navigation, when the accuracy of the
dynamic model is higher than that of measurement, this method can generally achieve better estimation
results. The potential advantage is that it can eliminate the system error items of the observation
system with little change between epochs and obtain a stable covariance matrix of observation noise,
which is beneficial to parameterization and separation of measurement system errors.

As shown in Figure 3, three discriminant conditions are referenced in the proposed filter. In order
to improve the stability and accuracy of filtering, the AIF and ATSIF algorithms are used to estimate the
state of the UV with different scenarios. The high-precision velocity measurement of DVL is used as
the diagnostic condition of USBL anomaly observation, and the data quality of USBL can be controlled
according to the equation in Section 3.2.2. When the USBL is normal and DVL is in the lock model,
the AIF algorithm is used to get an accurate navigation solution. When the DVL is in the water tracking
model, it is necessary to distinguish whether there are ocean currents according to the equation in
Section 3.2.1. If the ocean currents occur, the ATSIF algorithm should be used to compensate the
filtering error caused by the unknown currents.
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4. Experiment Analysis

4.1. Simulation Results

In this section, a numerical example of an underwater vehicle tracking problem is given to
illustrate the effectiveness of the proposed adaptive filtering approach. Consider an underwater vehicle
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with a constant velocity of 1 m/s at a depth of 1400 m. The positions of the USBL transducer and the
underwater vehicle trajectory are depicted in Figure 4a, and the simulation parameters of the USBL,
DVL, depth, and attitude measurements are given in Table 2.
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Figure 4. The trajectories of the underwater vehicle (a) and the current velocity in the northern
direction (b).

Table 2. Simulation parameters.

USBL (m) DVL (m/s) Depth (m) Heading (◦) Roll/Pitch (◦)

Gaussian Error L × 0.1% × K 0.03 0.5 0.3 0.1
System Error 0.5 × cos (t/3600) V × (1 + 0.05) 0.3 0.03 0.01

where L represents the slant range between the USBL transducer and the transponder; K is the scale factor; V denotes
the velocity of the vehicle in the vehicle coordinates. The ocean currents direction is introduced to be north–south in
this simulation, and the current velocity is simulated as Figure 4b.

The estimated current velocity error of the proposed algorithms with different adaptive factors is
depicted in Figure 5a. It shows that when the adaptive factor of λ is close to 1, the historical ocean
currents information occupies a large proportion in the filtering. The filtering is relatively stable at
this time, but the convergence speed is slow while the saltation ocean currents happen. When the
λ is small, the saltation ocean currents can be quickly estimated using the most recent observation
information. However, the current estimates fluctuate greatly and the filtering shows instability.
The proposed algorithm combined with the piecewise function can diagnose the time of saltation ocean
currents and estimate the saltation ocean current velocity quickly and increase the stability of the ocean
current estimation. The estimated horizontal position errors of the proposed algorithms are depicted
in Figure 5b. It can be seen that the proposed two-section weight method gives a more accurate and
robust estimation.

Considering the USBL accuracy changes with distance and a sudden change in the speed of sound,
the scale factor K changes from 5 to 8 at 4100 epochs in this simulation. Figure 6 exhibits the estimation
of USBL measurement noise covariance provided by SOD and RAE. RAE gives poor performance
during the maneuvering motion because it works based on the residual sequence and is coupled
with state estimation error. However, the SOD method can contribute accurate and stable estimations
over almost the whole process. To validate the feasibility of the proposed algorithm, different K is
implemented. Table 3 lists the root mean square errors (RMSEs) of all the approaches during different
K. The proposed algorithm also outperforms other algorithms with different K.
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Table 3. Average root mean square errors (RMSEs) of the UV positions with different K (m).

Method Proposed ARAE IF AIF

K = 2 1.06 1.08 1.43 1.16
K = 4 1.90 2.13 2.51 2.42
K = 8 2.47 2.79 3.20 3.17

From the simulation results, the performance of these filters is consistent with the theoretical
analysis, which is stated in Section 3.

4.2. Deep-Sea Towed Vehicle Experiment

As shown in Figure 7, there is a deep-sea towed vehicle, GAPS ultra-short baseline acoustic
positioning system, Phins Subsea strapdown inertial navigation system (SINS), and a survey vessel,
respectively. The towed vehicle is equipped with an SINS, pressure gauge, DVL, and ultra-short
baseline positioning system. The water depth of this experiment is about 1100 m, of which the depth
meter, ultra-short baseline positioning system, and SINS inertial navigation system are the main
navigation system and DVL is the auxiliary navigation system. Based on the depth data measured
by the depth meter on the vertical channel, the navigation and positioning of the towing body in the
horizontal direction of the deep-water area is mainly considered in this study.

The DVL used in this experiment is in bottom-lock velocity measurement mode (that is, when the
distance between DVL and the sea floor is less than 200 m, the velocity of the towing body relative to
the seafloor can be measured without considering the influence of ocean currents). The accuracy of
USBL will decrease with the increase of depth. Figure 8 shows that USBL even has the situation of
missing observation data in the deep-water area (6500 s after entering the water). At this time, DVL
velocity measurement information can be used as an effective supplement to restrain the navigation
divergence of the SINS system to a certain extent.
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As shown in Figure 9, there are kinds of information filtering methods for estimating the 
covariance of USBL using the USBL + RAE methods and the proposed SOD adaptive filtering method. 
The proposed method is smoother due to the coupling of slant data of USBL and depth observations. 
More specifically, in the case of USBL measurements, the maximum position error is approximately 
1 m in shallow water, while the maximum position error is approximately 3 m. The positions error is 
changed significantly with ranging. In deep water, the positioning accuracy of the USBL is 
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Figure 8. The 3-D position of USBL (a), usability of all navigation sensors (b), the PG data (c), and DVL
velocity (d) in the experiment.

Due to it being difficult to obtain the absolute positioning result of the underwater dynamic
vehicle, the adaptive real-time filtering result using RAE estimation is compared and analyzed with
the final post-processing navigation result obtained by the commercial post-processing software in
this example. The post-processing navigation result combined with forward filtering and backward
filtering with SINS data. It is considered to be a true and reliable UV position, velocity, and attitude.
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Since DVL does not measure the velocity relative to seawater, the measured data in this paper are only
related to a part of the research content of this paper.

As shown in Figure 9, there are kinds of information filtering methods for estimating the
covariance of USBL using the USBL + RAE methods and the proposed SOD adaptive filtering method.
The proposed method is smoother due to the coupling of slant data of USBL and depth observations.
More specifically, in the case of USBL measurements, the maximum position error is approximately
1 m in shallow water, while the maximum position error is approximately 3 m. The positions error is
changed significantly with ranging. In deep water, the positioning accuracy of the USBL is significantly
reduced, and real-time estimation of the USBL random model is of great significance to integrated
navigation. Compared with the traditional RAE method, the proposed method obtains more stable
filtering results.
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5. Conclusions

An unbiased adaptive two-stage information filter was proposed to estimate the position of the
UV and unknown current velocity. The time-varying unknown ocean current velocity and observed
noise covariance were estimated, and it can be easily extended to underwater acoustic navigation
filtering cases. According to simulation and experiment results, the following conclusions can be
drawn: (1) The proposed approach can improve the performance of underwater acoustic navigation
significantly; and (2) some stable coupling parameters, such as pressure sensors, can be effectively
estimated by the new filtering algorithm. The design of the new algorithm was applied to the
observation model of deep-sea acoustic navigation equipment, which provides a reference for the
research of underwater integrated navigation.

6. Patents

In further research, the filter design with missing data of acoustic sensors needs to be considered
as well. The algorithm can still be improved in the field of inertial navigation, and the adaptive
estimation of system error and system noise variance in the high-dimensional navigation system are
still worthy of further discussion.
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Nomenclature

rb
tp/tm, rb

dvl/tm, rb
pg/tm

the lever arms vectors of the USBL transponder, DVL and pressure
gauge

pn
m(t) the positions of AHRS in local navigation coordinate frame {n}

Cm
b (ϕbm),Cn

m(ϕmn(t)) the direction cosine matrix (DCM) from {b} to {m} and from {m} to {n}
ϕbm the attitude angle of {b} relative to {m} and form {m} to {n}
ϕmn

di(t) the distance between the transponder and the transducer
vm

d the velocity of the AHRS relative to fluid and angular velocity in {m}
ωm

m(t)
vn

c (t) the ocean currents velocity in {n}
pn

r the position of the receiver in {n}
pn

pg the position of the pressure gauge in {n}
zn

pg the depth of the pressure gauge in {n}
x the state parameters
x̂k the state parameters estimation

Appendix A

Define the estimation errors are as follows:

~
xk = xk − x̂k and

~
uk = uk − ûk. (A1)

According to (10) and (20),
~
xk can be expressed as:

~
xk = N−1

k (HT
k R−1

k νk + P−1
k|k−1Φk

~
xk−1 + P−1

k|k−1Γk
~
uk−1 + P−1

k|k−1wk) + Fk(
~
uk −

~
uk−1), (A2)

and according to (10) and (29),
~
uk can be expressed as:

~
uk =

~
uk−1 −GkCk(Φk

~
xk−1 + Γk

~
uk−1) −GkCkwk −Gkνk. (A3)

Define ξk , xa
k − x̂a

k =
~
xk − Fk

~
uk, then

~
xk−1 = ξk−1 − Fk−1

~
uk−1, then:

ξk= N−1
k (HT

k R−1
k νk + P−1

k|k−1Φk
~
xk−1 + P−1

k|k−1Γk
~
uk−1 + P−1

k|k−1wk) + Fk(
~
uk −

~
uk−1) − Fk

~
u

= N−1
k (HT

k R−1
k νk + P−1

k|k−1Φk
~
xk−1 + P−1

k|k−1Γk
~
uk−1 + P−1

k|k−1wk) − Fk
~
uk−1

= N−1
k (HT

k R−1
k νk + P−1

k|k−1Φk(ξk−1 + Fk−1
~
uk−1) + P−1

k|k−1Γk
~
uk−1 + P−1

k|k−1wk) − Fk
~
uk−1

= N−1
k HT

k R−1
k νk + N−1P−1

k|k−1Φkξk−1 + N−1P−1
k|k−1wk +

{
N−1[P−1

k|k−1ΦkFk−1 + P−1
k|k−1Γk

]
−Fk}

~
uk−1

(A4)

According Fk = N−1
k (P−1

k|k−1ΦkFk−1 + P−1
k|k−1Γk), then:

ξk = N−1
k HT

k R−1
k νk + N−1

k P−1
k|k−1Φkξk−1 + N−1

k P−1
k|k−1wk. (A5)

The noises wk and νk are Gauss noise, then:

E[ξk] = N−1
k P−1

k|k−1ΦkE[ξk−1]. (A6)
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It is recursively shown that E[ξk] = 0, staring from E[ξ0] = E[x̃0] −0 E[
~
u0

]
= 0. Similarly, substitute

~
xk−1 = ξk−1 − Fk−1

~
uk−1 into (A3), then:

~
uk=

~
uk−1 −GkHk(ΦkFk−1

~
uk−1 + Γk

~
uk−1) −GkHkwk −Gkνk −GkHkΦkξk−1

= (Ip −GkHkΦkFk−1 −GkHkΓk)
~
uk−1 −GkHkwk −Gkνk −GkHkΦkξk−1

= (Ip −GkDk)
~
uk−1 −GkHkwk −Gkνk −GkHkΦkξk−1

(A7)

Take the mathematical expectation at both sides of (A7), then:

E[
~
uk] = (I−GkDk)E[

~
uk−1]. (A8)

According to GkDk = Λk−1DT
k ΨkDk and Λk = Λk−1 −Λk−1DT

k ΨkDkΛk−1, the spectral norm of (Ip −GkDk) is

less than 1 for all time. Then, E(
~
uk) tends to zero when k→∞ , and:

E[x̃k] = E[ξk] + FkE[
~
uk] =0. (A9)

Appendix B

According to Equation (10), then:

∆yk|k−1 , yk − yk−1 = Hkxk + vk + vc −Hk−1xk−1 − vk−1 − vc, (A10)

∆yp
k|k−1 , yp

k − yp
k−1 = Hk(ΦkΦk−1x̂k−2 + ΦkΓk−1ûk−2 + Γkûk−1) −Hk−1(Φk−1x̂k−2 + Γk−1ûk−2), (A11)

where vc represents the unknown sound error, yp
k = Hkx̂k|k−2 and yp

k−1 = Hk−1x̂k−1|k−2. Then, we have:

∆yk|k−1 − ∆yp
k|k−1

= Ckxk + vk −Hk−1xk−1 − vk−1 −Hk(ΦkΦk−1x̂k−2 + ΦkΓk−1ûk−2 + Γkûk−1) + Hk−1(Φk−1x̂k−2 + Γk−1ûk−2) (A12)

Suppose that the system is time-invariant for a short period of time, where Φk ≈ Φk−1 ≈ I,Hk ≈ Hk−1,
and Γk ≈ Γk−1 ≈ I3. Then, we have:

∆yk|k−1 − ∆yp
k|k−1

= Ckxk + vk −Hk−1xk−1 − vk−1 −Hk(ΦkΦk−1x̂k−2 + ΦkΓk−1ûk−2 + Γkûk−1) + Hk−1(Φk−1x̂k−2 + Γk−1ûk−2)

≈ Hk(ΦkΦkxk−2 + ΦkΓkuk−2 + Γkuk−1 + Φkwk−2 + wk−1 −ΦkΦkx̂k−2 −ΦkΓkûk−2 − Γkûk−1)

−Hk(Φkxk−2 + wk−2 + Γkuk−2 −Φkx̂k−2 − Γkûk−2) + (vk − vk−1)

= Hk(Φk(Φkxk−2 − xk−2) + (Φkwk−2 −wk−2) − (ΦkΦkx̂k−2 −Φkx̂k−2)) + Hkwk−1 + (vk − vk−1)

≈ Hkwk + (vk − vk−1)

(A13)

Then, the covariance of observation noise can be calculated as follows:

R̂SOD
k ≈ [Var((yk − yk−1) − (y

p
k − yp

k−1)) −HkQk−1HT
k ]/2. (A14)
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