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Abstract: Radar cross section near-field to far-field transformation (NFFFT) is a well-established
methodology. Due to the testing range constraints, the measured data are mostly near-field.
Existing methods employ electromagnetic theory to transform near-field data into the far-field
radar cross section, which is time-consuming in data processing. This paper proposes a flexible
framework, named Neural Networks Near-Field to Far-Filed Transformation (NN-NFFFT). Unlike
the conventional fixed-parameter model, the near-field RCS to far-field RCS transformation process is
viewed as a nonlinear regression problem that can be solved by our fast and flexible neural network.
The framework includes three stages: Near-Field and Far-field dataset generation, regression estimator
training, and far-field data prediction. In our framework, the Radar cross section prior information is
incorporated in the Near-Field and Far-field dataset generated by a group of point-scattering targets.
A lightweight neural network is then used as a regression estimator to predict the far-field RCS
from the near-field RCS observation. For the target with a small RCS, the proposed method also
has less data acquisition time. Numerical examples and extensive experiments demonstrate that the
proposed method can take less processing time to achieve comparable accuracy. Besides, the proposed
framework can employ prior information about the real scenario to improve performance further.

Keywords: near-field to far-field transformation (NFFFT); neural network; nonlinear regression;
radar cross section (RCS) measurement; regression analysis

1. Introduction

The radar cross section (RCS) of an object is a fictitious area that describes the intensity of the
reflected wave in the radar [1]. The RCS definition requires that the target be located at infinity distance,
which makes sure that a plane wave illuminates the target. In general, the target and measurement
sensors are always situated at a finite distance apart. Thus, the incident wave is spherical, as shown
in Figure 1a. In order to measure RCS with an acceptable error 1 dB or less [1], the target must be
at distances greater than 2d2/λ, where d is the linear size of the target under test (TUT) and λ is the
wavelength [2]. This is the far-field criterion. It implies that, with the frequency increasing or the target
expanding, the far-field range will be too extensive to permit RCS direct measurements.
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Figure 1. Schematic diagram for radar cross section measurement: (a) Incident spherical wave in the 

target under test (TUT); (b) Near-field scattering data collection geometries; (c) The geometry of the 

TUT; (d) Incident wave analysis of the TUT. 

As shown in Figure 1c,d, if the measurement distance r does not meet the far-field criterion both 

in the horizontal and vertical directions—i.e., r < 2𝑤2 𝜆⁄  & r < 2ℎ2 𝜆⁄ —the incident wave is 
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but not in the horizontal direction—i.e., r > 2𝑤2 𝜆⁄  & r < 2ℎ2 𝜆⁄ —the phase displacement between 

point 3 and point 0 is small enough (less than 𝜋 8⁄ ) [1]. Under this condition, the wave can be treated 

as a cylindrical wave. 

If a TUT is measured in the range which does not meet the far-field criterion, the scattered field 

measured by sensors is called near-field. RCS calculated by near-field has an unacceptable error and 

needs to be transformed into far-field RCS. This process is named as the near-field to far-field 
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There are many common approaches to implement NFFFT based on electromagnetic theory. 

Most of them are called “image-based” techniques. That is because they need to make broadband 

measurements on the target. This “image-based” method can be summarized in two ways. The first 

kind evaluates the inverse synthetic aperture radar (ISAR) images in near-field and calculates RCS 

directly, as in [3–6]. The accuracy of the first kind depends on the imaging process. The measured 

errors lead to corresponding errors in the reconstructed far-field RCS [3]. The second kind, based on 

the Hankel function, calculates RCS without the image reconstruction process but still needs a 

broadband measurement, as in [7–10]. However, this method introduces fluctuations in the angle 

domain [9]. While spatial filtering techniques may suppress the fluctuations, they introduce a 

significant loss of angle resolution [11]. All of the “image-based” techniques require a broadband 
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Figure 1. Schematic diagram for radar cross section measurement: (a) Incident spherical wave in the
target under test (TUT); (b) Near-field scattering data collection geometries; (c) The geometry of the
TUT; (d) Incident wave analysis of the TUT.

As shown in Figure 1c,d, if the measurement distance r does not meet the far-field criterion both
in the horizontal and vertical directions—i.e., r < 2w2/λ & r < 2h2/λ—the incident wave is spherical.
While if the measurement distance r meets the far-field criterion in the vertical direction but not in the
horizontal direction—i.e., r > 2w2/λ& r < 2h2/λ—the phase displacement between point 3 and point 0
is small enough (less than π/8) [1]. Under this condition, the wave can be treated as a cylindrical wave.

If a TUT is measured in the range which does not meet the far-field criterion, the scattered field
measured by sensors is called near-field. RCS calculated by near-field has an unacceptable error
and needs to be transformed into far-field RCS. This process is named as the near-field to far-field
transformation (NFFFT).

There are many common approaches to implement NFFFT based on electromagnetic theory.
Most of them are called “image-based” techniques. That is because they need to make broadband
measurements on the target. This “image-based” method can be summarized in two ways. The first
kind evaluates the inverse synthetic aperture radar (ISAR) images in near-field and calculates RCS
directly, as in [3–6]. The accuracy of the first kind depends on the imaging process. The measured
errors lead to corresponding errors in the reconstructed far-field RCS [3]. The second kind, based on the
Hankel function, calculates RCS without the image reconstruction process but still needs a broadband
measurement, as in [7–10]. However, this method introduces fluctuations in the angle domain [9].
While spatial filtering techniques may suppress the fluctuations, they introduce a significant loss
of angle resolution [11]. All of the “image-based” techniques require a broadband measurement
in a wide-angle. Besides the “image-based” approach, NFFFT is also implemented by plane-wave
expansion in [12,13]. In this kind of method, the exact shape of the object is needed. The accuracy of
the algorithm depends on the sampling position and the discretization. The methods mentioned above
reveal the relationship between near-field and far-field, while they both require a long time in data
acquisition and signal processing.

In this paper, firstly, based on the Swerling Case I Model, point-scattering targets are used to
simulate Near-field and Far-field data. The training samples can be easily acquired by measurements
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and simulations. Secondly, a new framework, called Neural Networks Near-Field to Far-Filed
Transformation (NN-NFFFT), is proposed to predict the far-field RCS for isotropic-point scattering
targets. The proposed method views NFFFT as a regression problem and electromagnetic scattering
characteristics are integrated into the dataset as a priori knowledge. In contrast, the conventional
method is a fixed parameter model.

Specifically, NN-NFFFT introduces a lightweight neural network to predict far-field RCS from
the single frequency point near-field RCS data. Compared with the traditional method, the proposed
NN-NFFFT can achieve more than ten times faster than the “Image-Based” NFFFT while maintaining
comparable accuracy. The well-trained estimator can be used as a real-time mapping function between
near-field RCS and far-field RCS. This process is shown in the simulation section.

The result shows that the far-field RCS can be predicted by the neural network with prior
information efficiently. The complex calculations and the accuracy of the framework are only included
in the training process. By using a large amount of data, the framework can be trained to meet the
error requirement.

Furthermore, the antennas’ radiation patterns and the bistatic measurement can be completely
incorporated in the training process with no additional complication. The sampling limitation
introduced in [10] can also be ignored due to the training samples. The experiment result shows that,
for the target, which has a small RCS, the method maintains good accuracy with less operation time.

2. Theory

2.1. The Relationship between Near-Field and Far-Field

RCS is defined as

σ = 4π lim
R→∞

R2 |Es|
2

|Ei|
2 (1)

where Es is a component of the scattered electric field at an observation point, and Ei is a component of
the incident electric field at the target position.

To implement NFFFT, it requires that the target must satisfy the scalar SAR “reflectivity density”
model. The reflectivity distribution ρ(r′) does not change with the look angle [6].

When a spherical wave illumines a target, the whole measurement process is a 3D scene, as shown
in Figure 1b through the blue and red lines. If the target is flat enough, as mentioned above, it is
approximately illumined by a cylindrical wave. This situation is common in RCS measurement because
both aircrafts and vehicles are flat. In this condition, measuring sensors trace is shown in Figure 1b
through the red line. The target model can be described in the x-y plane, as shown in Figure 2.
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Figure 2. Two-dimensional far-field and near-field condition: (a) Far-field condition; (b) Near-field 

condition. 

Figure 2. Two-dimensional far-field and near-field condition: (a) Far-field condition; (b) Near-
field condition.
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As shown in Figure 2a, the target is illuminated by a plane wave under the far-field condition.
The monostatic scattered field at the receiver sensor is given by [5]

SFF(r̂, k) = CFF

∫
V

ρ(r′)e− j2k(|r|−r̂·r′)dr′ (2)

where ρ(r′) is the TUT’s reflectivity distribution. r̂ is a unit vector that represents the look angle.
k stands for wavenumber, which is equal to 2π f /c. r stands for the measurement range. r′ indicates the
location of the target. CFF is a constant that depends on measurement system’s parameters, which can
be removed by calibration.

In the two-dimensional near-field scene, as shown in Figure 2b, the scalar Green’s function
in free space can be expressed as G0(r, r′) = exp(− jk|r− r′|)/4π|r− r′|, Every scattering point on
the target can be regarded as a reradiating source. Thus, the new two-way Green’s function is
G(r, r′) = exp(− j2k|r− r′|)/(4π|r− r′|)2 [8]. In this condition, the monostatic scattered field at the
receiver point is given by

SNF(r, k) = CNF

∫
V

ρ(r′)
e− j2k|r−r′ |

|r− r′|2
dr′ (3)

where CNF is a constant that depends on the parameters of the system and can be removed by calibration.
r stands for the measurement range and r′ indicates the location of the target. Equation (3) can be
rearranged to the format including Green’s function of 2-D free space [8]

SNF(r, k) =
∫
V

√
2kρ(r′)

|r− r′|
3
2

e− j2k|r−r′ |
√

2k|r− r′|
dr′ (4)

As shown in Figure 2b, the 2-D condition is discussed. Considering Hankel addition theory,
Green’s function of 2-D free space can be expressed as

e− j2k|r−r′ |
√

2k|r− r′|
= H(2)

0

(
2k

∣∣∣r− r′
∣∣∣) = ∞∑

n=−∞
H(2)

n (2kr)Jn(2kr′)e jn(ϕ0−ϕ
′) (5)

where H(2)
n is the Hankel function of the second kind and Jn is the Bessel function. ϕ stands for the

far-field look angle while ϕ0 is the near-field look angle. ϕ′ is the angle of the point on the TUT.
Thus Equation (3) can be changed as

SNF(r, k) =
∫
V

√
2kρ(r′)

|r− r′|
3
2

∞∑
n=−∞

H(2)
n (2kr)Jn(2kr′)e jn(ϕ0−ϕ

′)dr′ (6)

Exchanging the position of integration and summation, Equation (6) becomes

SNF(r, k) =
∞∑

n=−∞
{H(2)

n (2kr)e jnϕ0 .[
∫
V

√
2kρ(r′)

|r− r′|
3
2

Jn(2kr′)e− jnϕ′dr′]} (7)

While in the far-field condition, the measurement distance r in Equation (7) is infinity—i.e., r→∞ .
Then Equation (7) turns into the far-field monostatic scattered field given by

SFF(r, k) = lim
r→∞

SNF(r, k) = lim
r→∞

∞∑
n=−∞

{H(2)
n (2kr)e jnϕ.[

∫
V

√
2kρ(r′)

|r− r′|
3
2

Jn(2kr′)e− jnϕ′dr′]} (8)

The relationship between the TUT and the measurement sensor turns from Figure 2b to Figure 2a.
Furthermore, the representation of the look angle is also changed from ϕ0 to ϕ. Due to |r| �

∣∣∣r′max

∣∣∣ (r′max
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represents for the maximum size of the TUT) in the far-field condition, |r− r′| can be approximated as
|r| or r without any error. The following can be derived

SFF(r, k) =

√
2k
r3

∞∑
n=−∞

{H(2)
n (2kr)e jnϕ[

∫
V

ρ(r′)Jn(2kr′)e− jnϕ′dr′]} (9)

Note
∫
ρ(r′)Jn(2kr′) exp(− jnϕ′)dr′ = S2k

n is the generalized Fourier series of the target image,
an inherent scattering characteristic of the target and not related to measurement distance.

Equation (9) can be changed as

SFF(r, k) =

√
2k
r3

∞∑
n=−∞

S2k
n H(2)

n (2kr)e jnϕ (10)

In the far field range—i.e., 2kr→∞—using the large argument approximation theory in Hankel
function [14], Equation (10) becomes

SFF(r, k) ≈
1
r2

√
2
π

e− j(2kr− π4 )
∞∑

n=−∞
S2k

n e jn(ϕ+ π
2 ) (11)

As mentioned before, the generalized Fourier series of the target image S2k
n is not related to

measurement distance. Near-field data can also represent it.
In [7], weighted near-field data UNF are created by Fourier Transform:

UNF = FFT
(∣∣∣r− r′

∣∣∣ 3
2
· IFFT(SNF)

)
=

∫
V

√

2kρ(r′)
e− j2k|r−r′ |
√

2k|r− r′|
dr′ (12)

Combining Equations (5), (12) and the definition of S2k
n , UNF can be changed as

UNF(r, k) =
√

2k
∞∑

n=−∞
S2k

n H(2)
n (2kr)e jnϕ0 (13)

S2k
n can be acquired by applying Fourier transform to near-field data UNF(r, k), given by

S2k
n =

√
1
2k

∫
UNF(r, k)e− jnϕ0dϕ0

H(2)
n (2kr)

(14)

Ignore the coefficient, which can be determined by calibration. Combining (11) and (14),
the relationship between the near-field data UNF(r, k) and the far-field data SFF(r, k) can be derived as:

SFF(r, k) =
∫

UNF(r, k)
∞∑

n=−∞

jne jn(ϕ−ϕ0)

H(2)
n (2kr)

dϕ0 = UNF(r, k) ∗ω(ϕ0) (15)

where ω(ϕ0) =
N0∑
−N0

jn exp( jnϕ0)/H(2)
n (2kr) stands for the NFFFT process.

According to [6], the RCS of the TUT is defined as

σ(r, k) = C
∣∣∣SFF(r, k)

∣∣∣2 (16)

where C is a constant determined by calibration. Thus, the near-field RCS is defined as

σNF(r, k) = C
∣∣∣SNF(r, k)

∣∣∣2 (17)

Our framework focuses on predicting the far-field RCS from the near-field RCS. Unlike the
conventional approach, this process is nonlinear.
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2.2. Regression Estimation

Equations (12) and (15) reveal the relationship between near-field and far-field measurement
data in theory. This process is liner, ignoring the multi-reflection [12]. Combining the NFFFT process
with the RCS definition in Equations (16) and (17), the radar cross section near-field to far-field
transformation is nonlinear.

In our framework, the NFFFT problem is defined as a nonlinear regression problem. From the
Bayesian inference framework [15], the maximum a posteriori (MAP) finds the optimal RCS σ′

σ′ = argmax
σ

p(σ|σNF, ξ)p(σ) (18)

where σ is true far-field RCS while σ′ is the optimal one. ξ stands for the framework’s parameter
to be optimized. p(σ) corresponds to the prior distribution of σ. Equation (18) can be changed into
logarithmic form to find the most suitable parameter:

σ′ = argmax
σ

log p(σ|σNF, ξ) + log p(σ) (19)

Equation (19) can be further transformed to represent the loss function:

σ′ = argmin
σ

1
2
‖σNF − ξ · σ‖

2 + λφ(σ) (20)

where σ′ can be obtained by minimizing the 0.5‖σNF − ξ · σ‖
2. A regularization term φ(σ) can restrict

the model’s learning ability on the dataset so that the trained model has a stronger generalization
ability for the new data. The larger the value of parameter λ, the greater the penalty for the model.

Based on (20), a regression estimator can be used to approach the mapping relationship between
near-field RCS and far-field RCS. In order to approximate the whole process, large amounts of data
pairs are needed. This process is called making a dataset. Then, the data pairs are used to train a specific
estimator model using a nonlinear regression approach. If the trained estimator model meets the error
requirements, it can be used as a prediction system for the NFFFT. This process is shown in Figure 3.
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Figure 3. Near-field to far-field transformation framework flow chart. Figure 3. Near-field to far-field transformation framework flow chart.
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2.3. Neural Network

In this paper, the regression estimator is implemented by a supervised neural network (NN).

2.3.1. Fundamental Theory

A feed-forward artificial neural network used sigmoid or Gaussian activation function is a
universal estimator [16]. It has already been proposed as an efficient tool to implement antenna
radiation pattern NFFFT in [17].

In our framework, the L2 parameter norm penalty is used in Equation (20). The L2 parameter
norm penalty is defined as

φ(σ) =
1
2
‖ξ‖22 (21)

L2 regularization causes the NN to “perceive” the input data as having higher variance,
which makes it shrink the weights on features whose covariance with the output target is low
compared to this added variance [18].

A set of random isotropic scattering center distributions is generated to calculate near-field RCS
over the angle of measurement and the same angle of far-field RCS. Before importing to the neural
network, the maximum value of the input near-field RCS data is used to normalize the near-field and
the corresponding far-field data to obtain a data pair. Then they are used to train the neural network.
During the training process, according to Equation (20), the main aim of training is to optimize the NN
model’s weight parameter to achieve an appropriate transformation network. This process is shown in
Figure 4a.
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During the implementation process, the input near-field data needs to be normalized first, and then
it enters into the NN to predict the far-field RCS. The last step before the output is that the same value
is used to denormalize the predicted RCS data. The structure of the NN-NFFFT framework is shown
in Figure 4b.

Besides the neural network, convolutional neural network [19,20], deep residual network [21,22],
generative adversarial networks [23] or the other deep learning models can also be used as a
regression estimator.

2.3.2. Neural Network Structure

The network architecture of the proposed NN has five layers. In this NN structure, three hidden
layers are used: two layers have 256 neurons connected to the input, and output layers and one layer
in the middle has 512 neurons. The sigmoid function is chosen as an activation function and the
regularization parameter λ = 0.05.

2.3.3. Priori Information

A large number of prior data pairs are needed to train the NN model. The data must have a
similar probability distribution to the TUT.

As mentioned in [24], multiple scattering center targets can directly define the monostatic scattering
field at any point. Once the scattering center distribution is known, the near-field and far-field data
can be simulated as prior data pairs. What is more, the training dataset can also use measured data,
which is easily accessible in the RCS test field.

It is of vital importance to find an appropriate modeling method. The most related modeling
work is in fluctuating target detection [25]. The radar signal fluctuation is mainly caused by look
angle changing. Marcum and Swerling have presented several fluctuating models to investigate the
signal fluctuation distribution, which are summarized in [25]. Those models contain most of the radar
detection targets.

Modeling in this paper is inspired by the Swerling Case I Model [26], which is commonly used to
represent small jet aircraft in the front view. The Swerling Case I Model is defined as a target that can
be represented as several independently fluctuating reflectors of approximately equal echoing area,
even if the number of reflectors is as small as four or five.

A group of centrosymmetric point-scattering targets is used as a prior information. The target
consists of three to five equal scattering centers that are evenly located on the x-axis. The maximum
radius of it is R. The monostatic test antenna is located at a distance L away from the origin. Figure 5a
shows an example of our model that is conforming to the Swerling Case I Model.
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Furthermore, the experiment demonstrates that the neural network is a potential method to
achieve NFFFT, based on this model. For a specific scatterer, the far-field RCS can be predicted by a
neural network with prior information efficiently.
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2.3.4. Evaluation

In order to assess the error in the results, in [12], the root-mean-square error (RMSE) is used.
RMSE is defined as

RMSE =

√√√
1

Nθ

Nθ∑
n=1

∣∣∣σmeas(n) − σExtr.(n)
∣∣∣2 (22)

where σmeas(n) (units m2) is the RCS output by the neural network. σExtr(n) (units m2) is the far-field
RCS defined by the target and n is the sampling point in the angle domain. The unit of the RMSE is m2

and it can be changed in to dBsm. RMSE stands for the absolute error in the whole testing angle.

3. Numerical Analysis

3.1. Setting

In the implementation of the framework, the test angle θ is from −6◦ to 6◦ and has 121 sampling
points. It takes into account the cost of data acquisition and the limitations of “image-based” NFFFT
on the test angle [10]. The radius R of the target is limited to 3λ to 8λ. In this condition, the far-field
range is 72λ to 512λ, while the measurement distance L is 33λ.

Considering the balance between accuracy and training speed, the selection process of the training
sample has the following steps.

Firstly, we create three different datasets. They have 3 × 66, 3 × 122 and 3 × 244 samples,
respectively. The more samples we use, the closer the test error is to the training error.

Then, 45 samples are also randomly selected in the range of R to test the trained neural network
framework. They are independent of the training samples and do not participate in the training process.
There are 15 samples for the three, four, and five scattering centers, respectively. The RCS of each point
is 0 dBsm (1 m2). They are used to verify the error of the new data and are enough to demonstrate the
framework’s applicability.

The iteration of the training is 5000 times. The error-iteration of the models is shown in Figure 6a–c.
After 5000 iterations, the training set’s error is lower than −16 dB, and the training error between
different datasets is not significant. The testing error is shown in Figure 6d–f. The training time of
different datasets is 180, 275 and 380 s. Comparing the balance between accuracy and training speed,
we selected 366 training samples. They are randomly picked with the radius limitation. The training
samples are composed of three equal parts. There are 112 samples for the three, four, and five scattering
centers, respectively.
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3.2. Comparison

In order to compare with “image-based” NFFFT in [10], a three-point scattering target that meets
the requirements in Figure 5a is used to define the wideband monostatic scattering field at the same
angle. The center frequency of them is the same as the NN-NFFFT framework, while the relative
bandwidth is 40%. The maximum radius R is 5.2 λ.

As mentioned in [10], the accuracy of “Image-Based” NFFFT is relative to the sample points in the
frequency domain and the truncation number in Equation (15). The truncation number nmax is related
to the minimum diameter of the target D (D = 2R) and is restricted to be greater than kD + 10 [9],
where k is the wavenumber. If the measurement distance and the test angle is decided, the error and
runtime of NFFFT are only related to the frequency sampling points.

In this paper, eight groups of different frequency sampling points (401, 201, 101, 81, 51, 21, 11, 5)
data are generated. The wideband near-field data are used in Equation (15) to implement “Image-Based”
NFFFT to compare with the NN-NFFFT framework.

3.3. Performance

Four of the NFFFT results are shown in Figure 7. Three of them are output by NN-NFFFT,
while the last one Figure 7d is the result given by “Image-based” NFFFT with 401 frequency points.
As we can see, the NN successfully predicts the peaks and troughs of the far-field data, and for the
different TUTs, which have different numbers of scattering centers, the error does not increase.
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The RMSE of the NN-NFFFT output RCS is shown in Figure 8a. It shows that the RMSE of the
test samples is lower than −7 dBsm. Compared with the 0 dBsm targets.
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Figure 8. Test error (a) the RMSE of different sample output from neural network. (b) The RMSE of
“image-based” NFFFT result (only the center frequency) respect to different frequency points.

The RMSE of the above mentioned “image-based” NFFFT is shown in Figure 8b. The x-axis stands
for the different frequency points. The RMSE increases as the frequency points reduce. If the frequency
points are more than 201, the RMSE is higher than −7 dBsm.

3.4. Run Time

As we can see, when the frequency points are lower than 201, the RMSE of “image-based” NFFFT
and NN-NFFFT is at the same level. In this condition, the operation time and RMSE for each framework
are shown in Table 1. The simulation platform is Intel(R) Core(TM) i7-6700 CPU @ 3.4 GHz (Intel,
Santa Clara, CA, USA) with 16 GB RAM.
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Table 1. Temporal comparison.

Framework Pre-Preparation
Time 1 Operation Time RMSE Experiment Data

Acquisition Time 2

NN-NFFFT 275 s 0.289 s −10.28 dBsm 12 s
“image-based”

NFFFT none 5.568 s −6.748 dBsm 244.5 s

1 The pre-preparation time means the time consumption before the framework’s implementation, and it mainly refers
to the training time of the neural network. 2 The experiment data acquisition time is explained in the Experimental
Results section. It is estimated under the following conditions: the VNA IF bandwidth is 50 Hz, the testing point in
angle domain is 121 and the speed of the turn table is 1 degree per second.

The RMSE-Operation Time relationship of different NFFFT results based on the same target is
shown in Figure 9. It shows that the “image-based” NFFFT needs more time to achieve the same RMSE
as NN-NFFFT.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 19 

 

Table 1. Temporal comparison. 

Framework 
Pre-Preparation 

Time 1 
Operation 

Time RMSE 
Experiment Data 

Acquisition Time 2 

NN-NFFFT 275 s 0.289 s 
−10.28 
dBsm 12 s 

“image-based” 
NFFFT 

none 5.568 s −6.748 
dBsm 

244.5 s 

1 The pre-preparation time means the time consumption before the framework’s implementation, and 
it mainly refers to the training time of the neural network. 2 The experiment data acquisition time is 
explained in the Experimental Results section. It is estimated under the following conditions: the VNA 
IF bandwidth is 50 Hz, the testing point in angle domain is 121 and the speed of the turn table is 1 
degree per second. 

The RMSE-Operation Time relationship of different NFFFT results based on the same target is 
shown in Figure 9. It shows that the “image-based” NFFFT needs more time to achieve the same 
RMSE as NN-NFFFT. 

 
Figure 9. The RMSE vs. operation time of “Image-Based” NFFFT and NN-NFFFT. 

The result shows that a well-trained NN allows for real-time operation while maintaining good 
accuracy. Compared with the traditional “image-based” method, the framework is an alternative way 
to predict far-field RCS from near-field data. 

3.5. Flexibility 

The NN-NFFFT framework is proven to be an alternative approach to predict far-field RCS from 
near-field data. There are a few limitations in generalization due to the simple training dataset. The 
reason is that the framework is driven by a simple scattering model. However, the framework we 
proposed is flexible in multiple situations. By adjusting the training samples, the framework can be 
applied to more scenarios. 

The first situation is that the scattering characteristics of the target and the test scenario must be 
considered as much as possible before training. If a new factor is encountered in the test scenario, the 
factor can be analyzed and considered in the training process to improve the result. This aspect is 
discussed in Section 4.2. 

The second one is that the framework can be applied to more scattering configurations as long 
as the training samples are sufficient. We further apply the proposed framework to the asymmetric 
point scattering targets. We use double-scattering points to show the result. For more scattering 
center targets, the steps are the same. 

The model is shown in Figure 5b. The maximum radius of the target range R is 10λ. Two 
scattering points are randomly distributed in the range. The distance between them is greater than 

Figure 9. The RMSE vs. operation time of “Image-Based” NFFFT and NN-NFFFT.

The result shows that a well-trained NN allows for real-time operation while maintaining good
accuracy. Compared with the traditional “image-based” method, the framework is an alternative way
to predict far-field RCS from near-field data.

3.5. Flexibility

The NN-NFFFT framework is proven to be an alternative approach to predict far-field RCS
from near-field data. There are a few limitations in generalization due to the simple training dataset.
The reason is that the framework is driven by a simple scattering model. However, the framework we
proposed is flexible in multiple situations. By adjusting the training samples, the framework can be
applied to more scenarios.

The first situation is that the scattering characteristics of the target and the test scenario must be
considered as much as possible before training. If a new factor is encountered in the test scenario,
the factor can be analyzed and considered in the training process to improve the result. This aspect is
discussed in Section 4.2.

The second one is that the framework can be applied to more scattering configurations as long
as the training samples are sufficient. We further apply the proposed framework to the asymmetric
point scattering targets. We use double-scattering points to show the result. For more scattering center
targets, the steps are the same.

The model is shown in Figure 5b. The maximum radius of the target range R is 10λ. Two scattering
points are randomly distributed in the range. The distance between them is greater than 3λ to meet
the near-field test conditions, and there are no other restrictions. The other test conditions remain
unchanged. In this condition, TUT is asymmetric and flexibly distributed.
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Based on the accuracy and the training speed, 2500 samples are chosen as the training dataset.
The framework has the same structure and the same number of iterations. The training time increases
to 1350 s due to the increase in samples.

Two of the test samples and their results are given in Figure 10. They are randomly selected.
The results show that the framework can adapt to all the two-point scatterers in the area that do not
meet the far-field conditions by using a reasonable dataset.
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Due to the above two factors, the framework has great flexibility, even if its generalization is
limited due to the current training dataset.

4. Real Scene Experiment

4.1. Experiment Setup

In order to verify the framework on the actual scene, the experiment is carried out in an
anechoic chamber using a vector network analyzer (VNA) Ceyear-3655L (China Electronics Technology
Instruments Co., Qingdao, China). The experiment setup is shown in Figure 11. The measurement is
carried out at 10 GHz, which has a wavelength of 3 cm. The measurement antennas are located at a
distance of 1 m, which is 33λ away from the turntable center.
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The aperture of the test antenna is about 0.1 m. According to antenna radiation theory [27],
the antenna far-field zone is about 0.7 m. In the antenna’s far-field zone, the radiation power distribution
is the same as the antenna pattern. The 3 dB beamwidth of the antenna is 20◦. Thus, the aperture at 1 m
away from the probe is 0.72 m, while the maximum length of the target at 10 GHz is 0.6 m. Tt means
that the electromagnetic wave can cover the target completely. The setup is the same as the simulation.

Two different metal spheres are used in the experiment as different targets. According to the Mie
series [1], the RCS of metal spheres is shown in Table 2, −26 dBsm, and−31 dBsm. The distance between
them is more than 300 mm. In this condition, the metal sphere can be treated as a point-scattering
target. The multiple reflections are much lower than the receiver’s ground noise. Thus, the effect
is negligible.

Table 2. Measurement target.

Sample Number Metal Sphere
Diameter

Project Area of the
Sphere

NRCS 1 a
at 10 GHz

RCS

1 45 mm −27.987 dBsm 1.427 dB −26.557 dBsm
2 25 mm −33.092 dBsm 1.433 dB −31.665 dBsm

1 NRCS stands for the normalized radar cross section for perfectly conducting sphere respect to the projected area.
NRCS = σ/πa2, where σ stands for the RCS of sphere, and a represents the radius.

4.2. Result and Discussion

Six groups of experiment samples are randomly selected, and each group uses two different metal
spheres in Table 2. Two of the measurement result and output RCS predicted by the framework are
shown in Figures 12 and 13. By using the 50 Hz IF bandwidth, the absolute measurement error is lower
than −38 dBsm. The NN predicts the peaks and troughs of the far-field. All groups’ measurement
RMSE and prediction RMSE are shown in Figure 14. The RMSE of the predicted far-field data remains
lower than −34 dBsm and −36 dBsm as the target’s RCS becomes larger.
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As shown in Figures 12 and 13, the RCS, predicted by NN, jitters compared with the reference
result. This is because of the noise introduced by the test equipment. The signal to noise ratio (SNR)
can be approximately calculated by

SNR =
signal power
noise power

= 10 log
S0

2

(S− S0)
2 (23)

where S0 is the absolute value of the signal (obtained by simulation), and S is the actual value measured
by sensors. The SNR of the measurement result is 14.5 dB for the 25 mm sphere and 17 dB for the
45 mm sphere. The SNR of the NN output result is 10.5 dB for the 25 mm sphere and 13.1 dB for the
45 mm sphere. The SNR deteriorates by 4 dB, and the added noise mainly comes from the framework.

In order to evaluate the impact of noise, the VNA’s noise needs to be analyzed. The received
power can be calculated by radar function

Pr =
PtGtσGrλ2

Lt(4π)
3r4Lr

(24)

where Pt is transmitted power, it is equal to −30 dBm. Gt and Gr stand for the antenna gain, which are
around 13 dBi. The other parameters are mentioned in the previous sections. The loss Lt and Lr are
unknown. Thus, the received power is about −130 to −140 dBm.

The receiver sensitivity is about −150 dBm. It can be calculated by the function kTBF, where k is
the Boltzmann constant. T is the Kelvin temperature, which is 300 K. B is the IF bandwidth, which is
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50 Hz. F is the noise figure of the receiver, which is 6 dB. The SNR of the measurement result is around
10 to 20 dB. It is the same as the SNR calculated by Equation (23).

This is the reason why fluctuation exists in the results. The noise is not considered in the training
process. Thus, the trained NN treated noise as a useful signal while processing the measurement data.

The noise needs to be considered in the training process to reduce its impact on the output results.
The NN is a flexible denoising framework in signal processing [28] as long as the noise is considered in
the training dataset. It can reduce the noise by merely replacing the noisy signal to the training dataset.
The Gaussian white noise is added into the near-field data, and then the noisy near-field data and
noise-free far-field data constitute new data pairs. They are added to the training dataset. The SNR of
the near-field is 15 dB. The training samples is increased to 1344, while the training time is expanding
to 566 s.

By changing the training dataset, the framework is used to the same measurement near-field data.
The result is shown in Figure 15.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 19 

 

 

2

0

2

0

signal power
SNR 10log

noise power

S

S S
 


 (23) 

where S0 is the absolute value of the signal (obtained by simulation), and S is the actual value 

measured by sensors. The SNR of the measurement result is 14.5 dB for the 25 mm sphere and 17 dB 

for the 45 mm sphere. The SNR of the NN output result is 10.5 dB for the 25 mm sphere and 13.1 dB 

for the 45 mm sphere. The SNR deteriorates by 4 dB, and the added noise mainly comes from the 

framework. 

In order to evaluate the impact of noise, the VNA’s noise needs to be analyzed. The received 

power can be calculated by radar function 

 

2

t

r 3 4

P
P

4

t r

t r

G G

L r L

 


  (24) 

where Pt is transmitted power, it is equal to −30 dBm. Gt and Gr stand for the antenna gain, which are 

around 13 dBi. The other parameters are mentioned in the previous sections. The loss Lt and Lr are 

unknown. Thus, the received power is about −130 to −140 dBm. 

The receiver sensitivity is about −150 dBm. It can be calculated by the function kTBF, where k is 

the Boltzmann constant. T is the Kelvin temperature, which is 300 K. B is the IF bandwidth, which is 

50 Hz. F is the noise figure of the receiver, which is 6 dB. The SNR of the measurement result is around 

10 to 20 dB. It is the same as the SNR calculated by Equation (23). 

This is the reason why fluctuation exists in the results. The noise is not considered in the training 

process. Thus, the trained NN treated noise as a useful signal while processing the measurement data. 

The noise needs to be considered in the training process to reduce its impact on the output results. 

The NN is a flexible denoising framework in signal processing [28] as long as the noise is considered 

in the training dataset. It can reduce the noise by merely replacing the noisy signal to the training 

dataset. The Gaussian white noise is added into the near-field data, and then the noisy near-field data 

and noise-free far-field data constitute new data pairs. They are added to the training dataset. The 

SNR of the near-field is 15 dB. The training samples is increased to 1344, while the training time is 

expanding to 566 s. 

By changing the training dataset, the framework is used to the same measurement near-field 

data. The result is shown in Figure 15. 

  

(a) (b) 

Sensors 2020, 20, x FOR PEER REVIEW 17 of 19 

 

  

(c) (d) 

Figure 15. Result and RMSE output by improved NN: (a) Sphere diameter = 25 mm (0.83λ), R = 0.21 

m (7λ) NN output result; (b) Sphere diameter = 45 mm (1.5λ) R = 0.125 m (4.16λ) NN output result; 

(c) RMSE of each sample for 25 mm (1.5λ) diameter sphere; (d) RMSE of each sample for 45 mm (0.83λ) 

diameter sphere. 

The improved framework successfully predicted the far-field picks and troughs, and the output 

RMSE of the data is reduced to the same magnitude as the measurement data. The SNR of the result 

is 14.42 dB for the 25 mm sphere and 17.4 dB for the 45 mm sphere. It shows that the SNR improves 

and is equal to the input one. 

The result proves that the NN-NFFFT framework is highly adaptable. The accuracy of the 

framework mainly depends on the selection of the training dataset. If various situations in practical 

applications are considered during the training process, the framework’s ability in practice will also 

be powerful. 

Furthermore, the measured data are single frequency scatter data. Thus, the “image-based” 

NFFFT cannot be used. If a broadband measurement is carried out, it takes a long time in data 

acquisition. In the above experiment, the RCS of the TUT is −26 dBsm and −31 dBsm, which is very 

small. It requires a relatively small IF bandwidth in VNA. Thus, the IF bandwidth is 50 Hz, and the 

testing point in the angle domain is 121. The speed of the turntable is 1 degree per second. The data 

used in the abovementioned framework can be acquired in about 12 s (= 12 ÷ 1). Correspondingly, 

if a broadband measurement with 101 points in the frequency domain is implemented, the 

measurement time is around 244.5 s ( 101 ÷ 50 × 121 ). It shows that a single frequency 

measurement is much more efficient in the data acquisition process. The experiment shows that the 

framework has potential in RCS NFFFT. 

5. Conclusions 

In this paper, a flexible Neural Networks Near-Field to Far-Filed Transformation (NN-NFFFT) 

framework has been proposed to predict far-field RCS from near-field RCS. This framework contains 

three significant steps. The first one is making a dataset. Targets in the dataset are based on the actual 

demand, and the shape of the measurement scatterer should fit the same distribution. In our 

framework, point-scattering targets conforming to the Swerling Case I Model are used to simulate 

the dataset. The second one is training the regression estimator. The accuracy of the framework 

depends on this process and the time consumption is mainly concentrated in this process. The last 

one is the prediction of far-field RCS. The result proved that NN-FFFFT is a potential method to 

achieve NFFFT, while for the specific TUT, the far-field RCS can be predicted by a neural network 

with efficient priori information. What is more, the framework increases operation speed while 

maintaining acceptable accuracy compared with the widely used “image-based” NFFFT method. The 

measured near-field data have been used in the framework. The result shows that the framework has 

scalability and can improve performance further by employing prior information about the 

Figure 15. Result and RMSE output by improved NN: (a) Sphere diameter = 25 mm (0.83λ), R = 0.21 m
(7λ) NN output result; (b) Sphere diameter = 45 mm (1.5λ) R = 0.125 m (4.16λ) NN output result;
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The improved framework successfully predicted the far-field picks and troughs, and the output
RMSE of the data is reduced to the same magnitude as the measurement data. The SNR of the result is
14.42 dB for the 25 mm sphere and 17.4 dB for the 45 mm sphere. It shows that the SNR improves and
is equal to the input one.

The result proves that the NN-NFFFT framework is highly adaptable. The accuracy of the
framework mainly depends on the selection of the training dataset. If various situations in practical
applications are considered during the training process, the framework’s ability in practice will also
be powerful.
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Furthermore, the measured data are single frequency scatter data. Thus, the “image-based”
NFFFT cannot be used. If a broadband measurement is carried out, it takes a long time in data
acquisition. In the above experiment, the RCS of the TUT is −26 dBsm and −31 dBsm, which is very
small. It requires a relatively small IF bandwidth in VNA. Thus, the IF bandwidth is 50 Hz, and the
testing point in the angle domain is 121. The speed of the turntable is 1 degree per second. The data
used in the abovementioned framework can be acquired in about 12 s (= 12 ÷ 1). Correspondingly, if a
broadband measurement with 101 points in the frequency domain is implemented, the measurement
time is around 244.5 s (101 ÷ 50 × 121). It shows that a single frequency measurement is much more
efficient in the data acquisition process. The experiment shows that the framework has potential in
RCS NFFFT.

5. Conclusions

In this paper, a flexible Neural Networks Near-Field to Far-Filed Transformation (NN-NFFFT)
framework has been proposed to predict far-field RCS from near-field RCS. This framework contains
three significant steps. The first one is making a dataset. Targets in the dataset are based on the
actual demand, and the shape of the measurement scatterer should fit the same distribution. In our
framework, point-scattering targets conforming to the Swerling Case I Model are used to simulate the
dataset. The second one is training the regression estimator. The accuracy of the framework depends
on this process and the time consumption is mainly concentrated in this process. The last one is the
prediction of far-field RCS. The result proved that NN-FFFFT is a potential method to achieve NFFFT,
while for the specific TUT, the far-field RCS can be predicted by a neural network with efficient priori
information. What is more, the framework increases operation speed while maintaining acceptable
accuracy compared with the widely used “image-based” NFFFT method. The measured near-field
data have been used in the framework. The result shows that the framework has scalability and
can improve performance further by employing prior information about the measurement scenario.
Furthermore, during the actual data acquisition, the method maintains good accuracy with less time.
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