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Abstract: The cylindrical resonator is the core component of cylindrical resonator gyroscopes (CRGs).
The quality factor (Q factor) of the resonator is one crucial parameter that determines the performance
of the gyroscope. In this paper, the finite element method is used to theoretically investigate the
influence of the thermoelastic dissipation (TED) of the cylindrical resonator. The improved structure
of a fused silica cylindrical resonator is then demonstrated. Compared with the traditional structure,
the thermoelastic Q (QTED) of the resonator is increased by 122%. In addition, the Q factor of the
improved cylindrical resonator is measured, and results illustrate that, after annealing and chemical
etching, the Q factor of the resonator is significantly higher than that of the cylindrical resonators
reported previously. The Q factor of the cylindrical resonator in this paper reaches 5.86 million,
which is the highest value for a cylindrical resonator to date.
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1. Introduction

A Coriolis vibratory gyroscope (CVG) measures angular velocity or the angle of a moving object
through the precession of the elastic wave of a resonator vibrating in eigenmodes. With a great number
of advantages, including high accuracy, considerable stability, long durability, low power consumption
and maintenance-free features, CVGs with axisymmetric shell resonators are widely used in navigation
fields and platform stabilization systems [1–8]. It is claimed that the well-known Northrop Grumman
hemispherical resonator gyroscope (HRG) has continuously worked for over 50 million hours without
a single failure [9]. However, its complex structure and high cost have limited the application of these
HRGs to high-value space programs. By comparison, the innovative structure of the flat electrode
carrier proposed by Sagem has led to the simplification and lowered cost of HRG manufacturing,
and, therefore, the massive application of HRGs [10–12]. The microfabricated HRGs reported by the
University of Michigan and the University of California, Irvine, have achieved similar performance at a
much lower cost [13–15]. The successful designs and applications have stimulated renewed interest in
investigating this type of angular sensor, and HRG model and design [16,17], control strategies [18–20],
error analysis [21], etc., have since been extensively studied.

Cylindrical resonator gyroscopes (CRGs) are a type of vibratory gyroscope with a symmetrical
cylindrical shell resonator. Similar to HRGs, the cylindrical resonator is the core element of the CRG,
and its quality factor (Q factor) and symmetry set the limit of the CRG sensitivity and noise performance.
Compared with hemispherical resonators, cylindrical resonators are easier to manufacture and can
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maintain relatively high Q factors. In the manufacturing process, hemispherical resonators require
high concentricity for thin spherical shells, which demand high-precision multiple-axis machining
centers, complicated manufacturing processes of rough grinding and fine grinding, and relatively long
manufacturing times. By contrast, cylindrical resonators only require concentricity for the cylindrical
shells and only need a grinding machine, relatively less manufacturing steps [22], and less machining
time. Our research group fabricated fused silica cylindrical resonators with the Q factor approaching
8 × 105 in 2016 [23] and 2.89 × 106 in 2019 [24]. Improving the Q factor of the resonator is critical to
further improving the overall performance of the CRG.

Q factor is known to be affected by many different kinds of dissipation, including air damping,
surface loss, anchor loss and thermoelastic dissipation, etc. Air damping is a loss mechanism caused by
friction when a resonator operates in a viscous fluid. When the resonator vibrates, some momentum
of the resonator is transferred into the fluid by collision [25]. The air damping can be significantly
reduced by operating the resonator in a vacuum environment. Surface loss is mainly caused by defects
and impurities on the surface of the resonator and has a great influence on the Q factor of micro-sized
resonators, such as MEMS gyroscopes [26]. The mechanism of surface loss has not been explained well
in the present research. However, several experiments have actually illustrated that annealing and
chemical etching of the resonator can effectively reduce the surface loss [27]. Anchor loss is caused by
the mechanical waves generated when the resonator vibrates, which propagate through the anchor
stem to the substrate [28]. In order to prevent and reduce the propagation of elastic waves to the
substrate, the resonator should be correctly designed to ensure that the anchor stem of the resonator is
at a node of the mode on the resonator.

Thermal elastic damping (TED) is derived from the coupling between the mechanical and thermal
domains. During vibration, different regions of the resonator experience compressive stress and
tensile stress, respectively. Compressive and tensile stresses produce temperature gradients in the
resonator. To restore thermal equilibrium, the heat in hot regions flows irreversibly to cold regions,
and this process is known as TED [29]. TED is determined by the material, geometry and operating
temperature of the resonator. Numerous studies of TED have been reported so far. Zener proposed
a general calculation model for the thermoelastic Q (QTED) of wires and reeds, which considered
one-dimensional heat transfer in the direction of bending [30]. Braginsky et al. analyzed the effect
of surface defects of quartz resonators on TED, which was based on Zener’s model [31]. Shiari et
al. simulated the influence of surface roughness of the beam micro-resonators [32], and Sorenson et
al. analyzed the effect of surface roughness of micromachined hemispherical shell resonators [33].
Their studies showed that the TED increased with the increase of resonator roughness. In addition,
they illustrated that the surface roughness of the resonator had a more significant effect on the TED with
larger thickness. Darvishian also comprehensively analyzed and simulated the influence of geometry,
materials, rim condition and operating temperature on the TED of micromachined hemispherical shell
resonators [34]. Hao and Ayazi established an analytical model for the TED of ring structures and
studied the effect of ring dimension on the Q factor due to TED [35]. Hamza used the influence of TED
to reduce the Q factor mismatch of the MEMS disk resonator [36]. However, studies on the TED of
different cylindrical resonator structures are rather rare, and this study intends to fill this gap.

In this paper, the QTED and temperature gradient distribution of the cylindrical resonator are
first simulated. The direction of irreversible heat flow transfer in the cylindrical resonator is analyzed
through the temperature gradient distribution. Based on the simulation results, the structure of the
cylindrical resonator is improved to increase the QTED. Then, the Q factor and resonant frequency of the
fabricated cylindrical resonator with the improved structure after annealing and chemical etching are
reported, respectively, and the Q factor of the cylindrical resonator reaches 5.86 million. To the authors’
best knowledge, this is the highest Q factor value reported for fused silica cylindrical resonators to date.
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2. Simulation Model

In the process of vibration, it is assumed that the length of the neutral layer of the cylindrical
resonator does not change. However, materials on each side of the neutral layer can form a temperature
gradient because of the compressive and tensile stresses. The temperature gradient leads to energy
transformation from the high-temperature region to the low-temperature region, causing irreversible
energy loss. The three-dimensional equation of elastic motion can be written as [30]:

E
2(1 + ν)

∇
2u +

E
2(1 + ν)(1− 2ν)

∇(∇·u) −
Eα

2(1− 2ν)
∇T + f = ρ

∂2u
∂t2 (1)

where E is Young’s modulus in MPa, ν is Poisson’s ratio, α is the coefficient of thermal expansion in
1/K, f is the external force per volume in N/m3, T is the temperature in K and u = (u, v, w) represents
the deformation vector, respectively. The thermal dynamics can be written as [30]:

k∇2T − ρCsp
∂T
∂t

=
EαT

1− 2ν
∂
∂t
∇·u (2)

where k represents the thermal conductivity in W/(m K) and Csp represents the specific heat capacity of
the material in J/(kg K). In order to solve these two equations, a finite element-based approach can be
applied for arbitrary 3D geometries and finding deformations.

The structure of the cylindrical resonator is shown in Figure 1. COMSOL software is used
to analyze the influence of different structures on the TED of cylindrical resonators. A cylindrical
resonator operating in the n = 2 mode (wineglass mode) is used for angular measurement. Ideally,
this mode consists of two degenerate modes that have the same natural frequency and are spatially
orthogonal. Each degenerate mode has 4 antinodes and 4 nodes [4], as shown in Figure 2. In the
simulation, we assume that TED is the main loss mechanism of the cylindrical resonator; thus, the QTED
can be calculated by Equation (3) [37]:

QTED =
1
2

∣∣∣∣∣∣Re(ω)
Im(ω)

∣∣∣∣∣∣ (3)

where QTED represents the Q factor of the TED and ω represents the resonant frequency of n = 2 mode.
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there are mainly seven directions of irreversible heat flow: the thickness direction and the 

Figure 2. The n = 2 mode of the cylindrical resonator: (a) Primary mode; (b) Secondary mode.



Sensors 2020, 20, 6003 4 of 13

2.1. Simulation

The material of the cylindrical resonator is defined as fused silica. The physical properties of
fused silica used for the following simulation are presented in Table 1.

Table 1. Physical properties of fused silica.

Component Value Units

Young’s modulus (E) 72 GPa
Density (ρ) 2200 kg/m3

Specific heat capacity (C) 770 J/(kg K)
Thermal conductivity (k) 1.38 W/(m K)

Coefficient of thermal expansion (α) 5.2 × 10−7 1/K
Poisson’s ratio (ν) 0.18

In the initial structure, the thickness of the resonant shell, suspension and bottom plate was 0.8,
0.3 and 0.6 mm, respectively. In order to minimize the calculation cost and the frequency difference
between the two degenerate modes caused by the inhomogeneity of the mesh process, the method of
free quadrilateral meshing and sweep meshing was utilized for the cylindrical shell. The rest of the
parts were meshed with free tetrahedrons, as shown in Figure 3.
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During the simulation, the cylindrical resonator is operated at the temperature of T = 293.15 K.
The end-face of the stem is fixed, and the rest part is in a free vibration state. The temperature gradient
distribution of the cylindrical resonator vibrating at this temperature can be obtained by simulation,
as shown in Figure 4a. The eigenfrequency is 6039.3 Hz, and the QTED is 8.14 × 108. A large area
of the temperature gradient is formed on the resonant shell, the suspension and the bottom plate,
and the resulting heat transfer in these hot and cold regions causes a large amount of TED. In our
simulation, there are mainly seven directions of irreversible heat flow: the thickness direction and the
circumferential direction of the resonant shell, the suspension and the bottom plate and the longitudinal
direction between the resonant shell and the suspension, as shown in Figure 4b.

2.2. Effect of Shell Structure

The main way to reduce TED is to reduce the irreversible heat flow, that is, to increase the thermal
resistance of the resonator. Thermal resistance indicates the ability of the structure to resist the heat
flow, which can be calculated by Equation (4):

R =
L
kS

(4)

where R represents the thermal resistance, L represents the structure thickness in the direction of the
heat flow, k represents the thermal conductivity and S represents the area of heat conduction. Therefore,
increasing the thickness of the structure in the direction of heat flow can increase the thermal resistance,
that is, reduce the TED.

Based on the above hypothesis, the inner diameters of the resonant shell and the suspension are
fixed at their initial values, while the thicknesses of the resonant shell, the suspension and the bottom
plate change by 10% of their original size, respectively. The QTED of the initial structure is defined
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as Q0, and the thickness of the resonant shell, the suspension and the bottom plate is defined as t0.
Figure 5 shows the normalized QTED, defined as Q/Q0, versus the change in the normalized thickness
of the resonant shell, the suspension and the bottom plate, defined as t/t0.
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As depicted in Figure 5, the thermal resistance in the radial hot and cold region increases with the
increase in thickness of the resonant shell and the suspension, resulting in improved QTED. In addition,
thermal resistance in the axial hot and cold region increases with the thickness of the bottom plate,
but the area of heat conduction on the azimuth also increases; that is, the thermal resistance decreases.
According to the variation trend of the Q/Q0 with the thickness of the bottom plate, it can be observed
that the irreversible heat flow in the azimuthal direction of the bottom plate plays a more important
role than the irreversible heat flow across the thickness of the bottom plate on QTED. Additionally,
compared with the resonant shell and the bottom plate, the suspension has less influence on the TED.
Therefore, in order to improve the QTED of the cylindrical resonator, the structure of the resonant
shell and bottom plate should be mainly adjusted. Considering the variation trend of Q/Q0 with
the thickness of the resonant shell and considering other losses such as anchor loss, the thickness of
the resonant shell and the bottom plate are finally designed to be 1.0 mm and 0.4 mm, respectively.
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The eigenfrequency and the QTED of the improved structure are found to be 6741.6 Hz and 1.41 × 109,
respectively, and the QTED of the improved structure is 73% higher than that of the initial structure.

2.3. Effect of The Bottom Plate Shape

It is known that adding holes on a vibrating structure may reduce the thermal elastic
damping [38,39]. Considering the smaller deformation of the bottom plate and the consistency
of the manufacturing process, the bottom holes are designed to achieve the goal of improving the QTED.
The temperature gradient distribution of a resonator with eight bottom holes of different diameters
is shown in Figure 6. It can be observed in the figure that the holes in the bottom plate increase the
thermal resistance on the bottom plate during vibration, which reduces the irreversible heat transfer,
thereby increasing QTED.
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The QTED of cylindrical resonators with different diameters of bottom holes are simulated, and the
results are depicted in Figure 7. Within a range of 2 to 5.5 mm, larger bottom holes yield a significant
increase in QTED. Therefore, the bottom hole is designed with a diameter of 5.5 mm to reduce the TED
of the cylindrical resonator, and the eigenfrequency and QTED of the improved structure are found to
be 6571.9 Hz and 1.81 × 109, respectively. The QTED of the improved structure is 122% higher than the
QTED of the initial structure when the bottom hole diameter is merely 3 mm.
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3. Experimental Result

The simulation results indicate that a proper adjustment of the resonator shell structure can
effectively improve the QTED. Besides, the existence of bottom holes can also improve the QTED
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significantly. Therefore, the thickness of the resonant shell, the bottom plate and the diameter of the
bottom holes are designed to be 1.0, 0.4 and 5.5 mm, respectively, as shown in Figure 8. Cylindrical
resonators with improved structures fabricated with a similar process have been reported before [40],
and post-fabrication treatments, including annealing and chemical etching [23,24], have been applied
to these resonators.
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The Q factor of the improved resonator is experimentally tested. The process of measurement has
been described in detail in our previous study [23]. As shown in Figure 9, the experimental devices
includes a laser Doppler vibrometer and a vacuum system. When the Q factor of the resonator is
measured at 1 atm, the Q factor is low duo to the influence of air damping. Therefore, the Q factor can
be calculated by Equation (5) [23]:

Q =
f

∆ f
(5)

where f represents the resonant frequency and ∆ f represents the −3 dB bandwidth of the frequency
response of the resonator. For a much higher Q factor, the ring-down time method is employed to
calculate the Q factor:

Q = π fτ (6)

where f represents the resonant frequency and τ represents the ring-down time when the amplitude
attenuates to 1/e of the initial value.
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A proper annealing process improves the structural temperature of the cylindrical resonator.
The residual internal stress of the material and the pollutants on the cylindrical resonator will be
removed by the annealing process, thus improving the Q factor [41,42]. The specific process of annealing
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is presented in Table 2 [40]. After annealing, the resonant frequency and Q factor of the improved
cylindrical resonator are measured at 1 atm and 0.01 Pa, respectively. The frequency responses of the
resonator at 1 atm are depicted in Figure 10a,b. The resonant frequencies of the resonator are 6248.4
and 6249.3 Hz, and Q factors are 7980 and 6249, respectively. When the Q factor is measured at 0.01 Pa,
Equation (6) is used for the Q calculation. The vibration data measured by laser Doppler vibrometer
are fitted exponentially, and the results of the resonator after annealing are depicted in Figure 10.
The results indicate that the resonant frequency of the low-frequency axis is 6260.9 Hz, and the decay
time is 28.8 s, which gives a Q factor of 5.66 × 105. The resonant frequency of the high-frequency axis is
6261.9 Hz, and the decay time is 25.8 s, which gives a Q factor of 5.07 × 105.Sensors 2020, 20, 6003 9 of 14 
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Figure 10. Schematic of: (a) The frequency response of the low-frequency axis after annealing is 
measured at 1 atm; (b) The frequency response of the high-frequency axis after annealing is measured 
at 1 atm; (c) The frequency response of the low-frequency axis after annealing is measured at 0.01 Pa; 
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<800 °C 10 °C/min 1150 °C 900 °C 0.5 °C/min 

1150 °C 4 °C/min 8 h ≤800 °C Free cooling 

Figure 10. Schematic of: (a) The frequency response of the low-frequency axis after annealing is
measured at 1 atm; (b) The frequency response of the high-frequency axis after annealing is measured
at 1 atm; (c) The frequency response of the low-frequency axis after annealing is measured at 0.01 Pa;
(d) The decay time of the low-frequency axis after annealing is measured at 0.01 Pa; (e) The frequency
response of the high-frequency axis after annealing is measured at 0.01 Pa; (f) The decay time of the
high-frequency axis after annealing is measured at 0.01 Pa.
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After annealing, surface defects and surface impurities caused by mechanical processing still exist
on the resonator. These imperfects will cause the Q factor to be severely limited [43–49]. In order to
reduce the surface loss of the resonator, NH4F2 is used as the etching solution to chemically etch the
cylindrical resonator [50]. After chemical etching, the resonant frequency and Q factor of the improved
cylindrical resonator are measured at 1 atm and 0.01 Pa, respectively. The frequency responses of the
resonator at 1 atm are depicted in Figure 11a,b. The resonant frequencies of the resonator are 5927.4
and 5928.6 Hz, which give Q factors of 8461 and 8428, respectively. The results of the chemically
etched resonator at 0.01 Pa are depicted in Figure 11. The resonant frequency of the low-frequency
axis decreases to 5939.7 Hz while the decay time increases to 314.9 s, which gives a Q factor of
5.86 × 106. The resonant frequency of the high-frequency axis is 5941.0 Hz, and the decay time is
293.6 s, which gives a Q factor of 5.48 × 106. To our knowledge, this is the highest Q factor reported in
cylindrical resonators to date.
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Figure 11. Schematic of: (a) The frequency response of the low-frequency axis after chemical etching
is measured at 1 atm; (b) The frequency response of the high-frequency axis after chemical etching
is measured at 1 atm; (c) The frequency response of the low-frequency axis after chemical etching is
measured at 0.01 Pa; (d) The decay time of the low-frequency axis after chemical etching is measured at
0.01 Pa; (e) The frequency response of the high-frequency axis after chemical etching is measured at
0.01 Pa; (f) The decay time of the high-frequency axis after chemical etching is measured at 0.01 Pa.
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Table 2. The process of annealing.

Annealing
Process

Heating Process Heat Preservation Cooling Process
Temperature Heating Rate Temperature/Time Temperature Cooling Rate

Parameter
<800 ◦C 10 ◦C/min 1150 ◦C 900 ◦C 0.5 ◦C/min
1150 ◦C 4 ◦C/min 8 h ≤800 ◦C Free cooling

4. Discussion

The simulation results revealed that the geometric structure of the cylindrical resonator had a
significant influence on the QTED. The irreversible heat flow transfer of the cylindrical resonator in the
n = 2 mode was mainly influenced by the structure and thickness of the bottom plate and resonant
shell. The variation of QTED of the cylindrical resonator was stimulated by changing the structure of
the bottom plate and the resonant shell, respectively. After that, the thickness of the resonant shell
and the bottom plate was adjusted, and 5.5 mm-diameter bottom holes were designed to improve
the QTED. The improved cylindrical resonator was then manufactured and processed with the same
annealing and chemical etching process, as previously reported [23,24]. The resonant frequency and
the Q factor of the improved cylindrical resonator after annealing and chemical etching in the medium
vacuum were then measured, respectively. The experimental results illustrated that the Q factor of the
cylindrical resonator was significantly increased, achieving 5.86 million. The reason for the significant
increase in the Q factor may be as follows: the thermoelastic dissipation of the cylindrical resonator
was significantly reduced, the anchor loss was suppressed and the bottom holes reduced the surface
loss by affecting the surface-to-volume ratio of the resonator. Note that the frequency obtained by
simulation was slightly different from that measured in the experiment and that the QTED of the
cylindrical resonator obtained in the simulation was three orders of magnitude higher than the Q factor
obtained in the experiment. This might be due to the simplification of the simulation modal in the
aspects of clamping condition, internal friction, surface defects and surface roughness of the resonator.
From the above experimental results, it can be obtained that the Q factor measured at 1 atm differed
by three orders magnitude from the Q factor measured at 0.01 Pa. The effect of air damping was not
considered in the simulation results. Therefore, air damping is also a significant factor that causes
a difference between simulation and experimental results. Through the comparison of simulation
results and experimental results, it should be pointed out that this simulation modal is more suitable
for revealing the variation trend of QTED with different cylindrical resonator structures.

5. Conclusions

In this paper, by simulating the thermoelastic dissipation of the cylindrical resonator, the main
directions of irreversible heat flow were obtained in the vibration of the cylindrical resonator structure.
Furthermore, the simulation results illustrated that compared with the suspension, the resonant
shell and the bottom plate had a more significant influence on the TED. By analyzing the results of
the simulation, the effects of different resonant shell and bottom plate structures were investigated.
Through a series of simulations of the geometric structure of the resonator, the improved structure
with QTED 122% higher than that of the initial structure was finally obtained. During the experiment,
the resonant frequency and Q factor of the cylindrical resonator were measured after annealing
and chemical etching, respectively. The Q factor of the improved cylindrical resonator achieved
5.86 million, the highest value of the Q factor reported in cylindrical resonators to date. Moreover,
for the cylindrical resonator structure proposed in this paper, the manufacturing process, annealing
treatment and chemical etching could be optimized to achieve even higher Q factors in the future.
Cylindrical resonators are not only expected to be used in low and medium precision inertial navigation
systems but should also have the potential to be used in high-precision inertial navigation systems at a
lower cost.
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