
sensors

Article

Optimization of IMU Sensor Placement for the
Measurement of Lower Limb Joint Kinematics

Wesley Niswander 1, Wei Wang 2 and Kimberly Kontson 1,*
1 Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and

Drug Administration, Silver Spring, MD 20993, USA; Wesley.Niswander@fda.hhs.gov
2 Division of Clinical Evidence and Analysis 2, Office of Clinical Evidence and Analysis, Office of Product

Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration,
Silver Spring, MD 20993, USA; Wei.Wang2@fda.hhs.gov

* Correspondence: Kimberly.Kontson@fda.hhs.gov

Received: 2 September 2020; Accepted: 15 October 2020; Published: 22 October 2020
����������
�������

Abstract: There is an increased interest in using wearable inertial measurement units (IMUs) in
clinical contexts for the diagnosis and rehabilitation of gait pathologies. Despite this interest, there is
a lack of research regarding optimal sensor placement when measuring joint kinematics and few
studies which examine functionally relevant motions other than straight level walking. The goal of
this clinical measurement research study was to investigate how the location of IMU sensors on the
lower body impact the accuracy of IMU-based hip, knee, and ankle angular kinematics. IMUs were
placed on 11 different locations on the body to measure lower limb joint angles in seven participants
performing the timed-up-and-go (TUG) test. Angles were determined using different combinations
of IMUs and the TUG was segmented into different functional movements. Mean bias and root mean
square error values were computed using generalized estimating equations comparing IMU-derived
angles to a reference optical motion capture system. Bias and RMSE values vary with the sensor
position. This effect is partially dependent on the functional movement analyzed and the joint angle
measured. However, certain combinations of sensors produce lower bias and RMSE more often
than others. The data presented here can inform clinicians and researchers of placement of IMUs on
the body that will produce lower error when measuring joint kinematics for multiple functionally
relevant motions. Optimization of IMU-based kinematic measurements is important because of
increased interest in the use of IMUs to inform diagnose and rehabilitation in clinical settings and
at home.
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1. Introduction

The importance of gait in clinical evaluation is well established. Measurement of human gait
has the potential to aid clinicians in making diagnoses, targeting areas for rehabilitation, informing
approaches for orthopedic surgery, and tracking rehabilitation progress [1]. While direct observation
of human gait is easily done, the quantification of gait is more difficult but important to effectively
track changes over time or compare gait to other clinical populations [2]. Optical motion capture
(MOCAP) is a common means of quantitively measuring human gait. However, MOCAP is vulnerable
to marker occlusion and limited capture volume, confining data collection to a dedicated laboratory
space [3]. This prevents the monitoring and evaluation of patients in more realistic environments.
There is increased interest in the use of inertial measurement units (IMUs) to measure gait kinematics
due to their portability and immunity to MOCAP-specific issues such as occlusion and limited capture
volume. As such, there is considerable research on IMU-based gait kinematics to study healthy and
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pathological gait, with most studies concluding IMU-based joint angle calculations are comparable to
MOCAP systems [3–7].

The literature supports the notion that IMUs offer a reasonable alternative to MOCAP when
collecting data outside of the laboratory. While this suggests publications related to IMU kinematic
measurements in “real-world” contexts might increase, a recent review article indicates most studies
assess gait on a treadmill or walkway with few studies examining common functional movements
besides straight overground walking [3]. Examining functional movements such as sit-to-stand
and turning are important to clinicians because they aid in assessing lower extremity strength and
balance [8,9]. If IMU-derived gait kinematics are expected to accurately describe common daily
activities, then they need to be proven using more functionally relevant motions. The anatomical
placement of sensors is also variable and oftentimes poorly documented [3]. A few publications
optimized sensor placement when measuring gait parameters such as stance/swing percent and
cadence [10,11] and evaluated sensitivity of pose estimation accuracy to IMU sensor placements during
single leg squats [12]. However, to our knowledge, no studies optimize IMU sensor placement for
measuring lower limb joint angles during every day movements such as walking, turning, sitting,
and standing.

While the utility of IMUs in clinics is recognized, these knowledge gaps may prevent more
widespread adoption. Therefore, the aim of this study was to address the two gaps identified above by
examining the impact of IMU location on lower limb joint angle accuracy while participants perform
multiple functionally relevant movements. Participants performed the Timed-Up-And-Go (TUG)
test given its extensive validation in clinical populations and the variety of functional movements
performed [13–15]. Eleven sensor positions on the torso, thigh, shank, and foot were chosen based on
commonly reported locations in the literature. All possible combinations of IMU sensors were used to
calculate hip, knee, and ankle angles in the sagittal plane and compared to a reference MOCAP system.
The output of this study could inform clinicians and researchers of IMU sensor locations that will
produce lower error when measuring joint kinematics for multiple functionally relevant motions.

2. Materials and Methods

2.1. Participants

A convenience sample of seven participants was recruited (4 male/3 female; 26.0 ± 4.0 years
of age). The inclusion criteria were as follows: greater than 18 years of age and no self-declared
gait impediments or abnormalities Exclusion criteria were individuals younger than 18 years of age
or individuals with gait impairments. All participants provided written informed consent prior to
participation. The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the U.S. FDA Institutional Review Board (No. 2019-CDRH-002). Participants
were asked to wear flat, close-toed shoes. Two-strap Velcro sandals were provided to participants who
did not have proper footwear.

2.2. IMU System and Sensor Placements

Xsens MTw Awinda IMUs were used (Xsens, Enschede, The Netherlands). Data capture was
linked to an Xsens base station and processed in the MTw Workstation to obtain angular velocities,
accelerations, and quaternions. Due to a capture settings error, some data were collected at 40 Hz
while the remaining data were captured at 60 Hz. The human 46.1 profile filter was used. A Vicon
MOCAP system ran concurrently (Vicon Motion Systems Ltd., Oxford, UK). Regardless of the sampling
frequency, a general-purpose output configuration file was created in Vicon to generate an output
synchronization signal, similar to a TTL signal (Vicon MX System: Vicon MX Hardware System
Reference R1.6). That signal was received by the XSens MTw Awinda receiver station to trigger the
start of capture of both systems simultaneously.
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A brief literature review informed IMU placements. The body segment and location of sensors
placed on the lower body, along with their literature sources, are in Table 1. Recommendations from
Xsens tutorials (https://tutorial.xsens.com/) are also included and denoted with an asterisk in the source
column. Eleven anatomical locations were selected. Sensors were placed on the right leg (where
applicable). Table 2 includes detailed sensor location descriptions. Figure 1 shows sensor placements
on a subject.
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Figure 1. Participant set-up. Depiction of the location of each IMU sensor (orange) and Plug-In-Gait
body model marker locations for: (A) the front view; (B) the side view; and (C) the back view.
Orientations of the superior–inferior (SI), medial–lateral (ML), and anterior–posterior (AP) axes are
also shown in (A).

2.3. MOCAP System and Marker Placement

IMU accuracy was evaluated against a reference MOCAP system as in previous studies [7,16–18].
The MOCAP system (Vicon) consisted of eight B10 Bonita and four Vero v1.3 optical cameras.
The cameras sampled at 100 Hz or 120 Hz and their positions were optimized to the targeted
capture volume. The system was calibrated prior to data collection according to the manufacturer’s
specifications. The Vicon Plug-in-Gait (PiG) lower body model was used to analyze movement at
the hip, knee, and ankle joints. Fourteen reflective markers were placed on the pelvis and legs of
participants. Markers were placed on the anterior superior iliac spines and posterior superior iliac
spines of the pelvis, lateral side of the thighs and shanks; flexion–extension axis of the knees, heel,
lateral malleolus; and over the second metatarsal head on the mid-foot side of the equinus break.
Subject-specific measurements of body mass, height, ankle width, knee width, and leg length were
included in the lower body model. Ankle width was defined as the medio-lateral distance across
the malleoli; knee width was defined as the medio-lateral width of the knee across the line of the
knee axis; and leg length was measured between the anterior superior iliac spine markers and the
medial malleolus. Figure 1 shows the front, side, and back views of a participant with the markers in
place. Further details on PiG have been previously described and are available on Vicon’s website
(https://docs.vicon.com/display/Nexus26/Full+body+modeling+with+Plug-in+Gait).

https://tutorial.xsens.com/
https://docs.vicon.com/display/Nexus26/Full+body+modeling+with+Plug-in+Gait
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Table 1. Description of IMU sensors placements found in the literature and their sources. Recommendations from Xsens tutorials (https://tutorial.xsens.com/) are also
included and denoted with a * in the source column.

Body Segment Location Number of Sources Sources

Pelvis
L4-L5 8 Laudanski 2013 [19], Panebianco 2018 [10], Barrois 2016 [20], Spain 2012 [21],

Mancini 2016 [22], Esser 2011 [23], Esser 2009 [24], Doheny 2012 [25]
Sacrum 2 * Vargas-Valencia 2016 [26]

Foot

Dorsal foot 13 *
Laudanski 2013 [19], Panebianco 2018 [10], Barrois 2016 [20], Vargas-Valencia
2016 [26], Bourgeois 2014 [27], Guo 2012 [28], Hsu 2014 [29], Tadano 2013 [30],

Kong 2013 [16], Scapellato 2005 [31], Kwakkel 2007 [17], Anwary 2018 [11]

Heel 5 Kwakkel 2007 [17], Anwary 2018 [11], Khan 2017 [32], Lau 2008 [33],
Rebula 2013 [34]

Lateral, below lateral malleolus 3 Anwary 2018 [11], Rampp 2014 [35], Reinfelder 2015 [4]

Shank

Lateral mid-shank 2 Laudanski 2013 [19], Kong 2013 [16]
Flat surface of shin bone 1 *

Lateral, just above lateral malleolus 4 Panebianco 2018 [10], Vargas-Valencia 2016, Guo 2012 [28], Sijobert 2014 [36]
Anterior 4 Spain 2012 [21], Tadano 2013 [30], Kwakkel 2007 [17], Maqbool 2016 [5]

Tibial tuberosity 1 Lau 2008 [33]

Thigh
Lateral mid-thigh 3 * Laudanski 2013 [19], Kong 2013 [16]
Lateral near knee 2 Vargas-Valencia 2016 [26], Guo 2012 [28]

Anterior near knee 2 Tadano 2013 [30], Lau 2008 [33]

https://tutorial.xsens.com/
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Table 2. Description of the IMU sensor locations on the lower body.

Torso
L4-L5 L4/L5 lumbar spine

Sacrum on the sacrum

Thigh

LAT Lower Anterior Thigh: anterior thigh, 5 cm above the knee joint axis.
MLT Middle Lateral Thigh: lateral thigh, halfway between the hip and knee joints.
LLT Lower Lateral Thigh: lateral thigh, 5 cm above the knee joint axis.
LPT Lower Posterior Thigh: posterior thigh, 5 cm above the knee joint axis.

Shank
Shin Shin Bone: hard surface of tibial bone, below the knee and above the thickest

part of the calf.
MLS Middle Lateral Shank: lateral shank, halfway between the knee and ankle.
LLS Lower Lateral Shank: lateral shank, 5 cm above the lateral malleolus.

Foot
Heel Adhered to heel on the back of participant’s shoe

DFoot Dorsal Foot: under the tongue of the participant’s shoe, approximately over
the distal end of the third and fourth metatarsal bones.

2.4. Functional Task–TUG Test

Participants performed the Timed-Up-and-Go (TUG) task. The TUG required participants to
stand from a chair, walk 3 m, turn around, walk back, and sit down. A standard height chair was used
without assistive devices or arm rests. Participants performed three TUG trials at minimum, with two
participants performing five. In total, 25 TUG trials were analyzed. Data capture began with subjects
standing for IMU calibration purposes.

2.5. IMU Joint Angle Calculations

There are several different approaches to sensor-to-body IMU calibration. No study has compared
outcomes of these to date so there is no consensus on the best approach [37]. However, all approaches
generally produce kinematic profiles that align well with reference systems such as MOCAP [37].
A calibration similar to the one described by Palermo et al. was used to define calibration vectors
describing body segment orientations in terms of sensor coordinate systems and is briefly described
here [18]. Participants assumed two poses for static calibration (standing upright and sitting while
leaning back with outstretched legs) to determine vectors in the sagittal plane using gravitational
acceleration. Cross products between these vectors defined medial–lateral (ML) axis while the standing
vector alone defined superior–inferior (SI) axis for each sensor. SI and ML cross products defined
anterior–posterior (AP) axis. A final cross product between the AP and SI axes redefined the ML axis
to ensure orthogonality. The SI, ML, and AP vectors were normalized. Gravity vectors were averaged
over multiple frames during a separate calibration trial for the seated pose. The standing pose vectors
were defined during frame one of the TUG data capture. Body segments laid in the sagittal plane
during both poses.

Quaternions describing sensor orientation were produced using Xsens software. These quaternions
rotated the calibration vectors to determine body segment orientations in terms of sensor coordinate
systems for each frame of the TUG. To accomplish this, the calibration vectors were converted into
quaternion format (Equation (1)), where Cx, Cy, and Cz are the three components in x, y, and z,
and rotated using quaternion conjugation (Equation (2)), where q is sensor quaternion and p is
calibration unit vector in quaternion format. The resultant series of quaternions were converted back
to unit vectors Equation (1). [

Cx Cy Cz
]
=

[
0 Cx Cy Cz

]
(1)

qpq−1 = p′ (2)

These orientation vectors needed to be transformed to a global coordinate system before angle
calculations could occur. Shank and thigh segment axes were assumed parallel during frame one when
participants stood upright. This facilitated transformation by defining an instant when the otherwise
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unrelated sensor coordinate systems were known to be coincident. Direction cosine matrices (DCMs)
were constructed between the frame one vectors and a common right-handed coordinate system [1,0,0],
[0,1,0], and [0,0,1]. These DCMs rotated unit vectors at each frame to this global coordinate system.
DCMs can be constructed as shown in Equation (3) where a, b, and c are the normalized calibration
vectors, [x, y, z] is a vector in terms of a sensor coordinate system, and [x′, y′, z′] is the same vector in
terms of the global coordinate system.

x′

y′

z′

 =


a1 b1 c1

a2 b2 c2

a3 b3 c3




x
y
z

 (3)

Flexion/extension angles were calculated between IMUs placed above and below each joint.
DCMs were constructed at each frame to project the SI vector of the segment below a joint into the
coordinate system of the segment above a joint. Flexion/extension angles were then calculated using
Equation (4) for all three joints and sensor combinations (hip: 8 combinations; knee: 12 combinations;
ankle: 6 combinations).

A1 = arctan
(

CSI,1

CSI,3

)
(4)

where CSI,1 is the anterior–posterior component of projection and CSI,3 = superior–inferior component
of projection.

2.6. MOCAP Joint Angle Calculations

The Vicon PiG model calculated hip flexion/extension, knee flexion/extension, and ankle
dorsiflexion/plantarflexion angles. Hip flexion/extension is calculated between the pelvis AP axis,
and a projection of the thigh AP axis into the sagittal plane of the pelvis. This plane is perpendicular
to an axis passing transversely through the pelvis at the hip joint center. Knee flexion/extension
is calculated between the thigh AP axis and the projection of the shank AP axis into the plane
perpendicular to the knee flexion axis. Ankle dorsiflexion/plantarflexion is taken between the
shank AP axis and the projection of the axis formed by the heel and toe markers into the
sagittal plane of the foot. More information on PiG angle calculations is on Vicon’s website
(https://docs.vicon.com/display/Nexus26/Full+body+modeling+with+Plug-in+Gait).

2.7. Data Analysis

Each trial of the TUG was segmented manually in the Vicon acquisition software to assess error
during specific movements. Since 25 TUG trials were performed by seven subjects, each segment has
25 possible samples to include in the analysis. Walk Pass 1 and Walk Pass 2 were deemed similar and
combined during data processing. In the tables presented in the Results Section 3, the row labeled
“Walk (1 and 2)” represents the combination of these segments, yielding 50 possible samples for this
analysis. The segment definitions are defined below in Table 3:

Table 3. Description of TUG segmentation.

Sit-to-Stand Starts when participant begins to lean forward; ends with first heel strike

Walk Pass 1 Starts with first heel strike; ends with final toe off prior to participant turning

Turn 1 Starts with final toe off prior to starting turn; ends with first heel strike out of turn

Walk Pass 2 Starts with first heel strike out of turn; ends with final toe off prior to participant turning

Turn 2 Starts with final toe off prior to starting turn; ends when participant begins to bend knees
to sit

Stand-to-Sit Starts when participant begins to bend knees to sit; ends when participant is seated upright

https://docs.vicon.com/display/Nexus26/Full+body+modeling+with+Plug-in+Gait
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Error between angles determined by IMU combinations and MOCAP were calculated for all TUG
segments for each iteration of TUG. The error was presented as mean bias and root mean square error
(RMSE). These metrics were calculated for each segment of every TUG iteration. The mean biases for a
single TUG were calculated as an average of the difference between IMU angle measurements and
the MOCAP for each TUG iteration. Similarly, the RMSEs were calculated as the square root of the
average of squared difference between IMU angle measurements and the MOCAP for each iteration of
a given segment of TUG. The mean bias and RMSE for each iteration were compared among the IMU
sensor combinations using generalized estimating equations (GEE) with exchangeable correlation to
account for the clustering of biases or RMSEs for different TUG iterations within the same participants.
The statistical analysis was conducted using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

Over the course of data collection, data from six sensors were excluded due to faulty recordings
across all subjects and trials. Tables showing results of the study indicate the number of samples (n) for
a given segment and subjects (subs) used to calculate each metric.

3. Results

Bias and RMSE values between joint angles measured by IMUs and the reference MOCAP system
are presented in tabular format (Tables 4–6). Rows specify the averaged bias and RMSE over all TUG
trials for each TUG segment; columns specify sensor combinations. Cells in the table provide the least
squares means of bias and RMSE and their corresponding standard errors, as well as p-values. For bias,
the p-value is calculated from a hypothesis test to determine whether the mean bias is different from
zero. Since a p-value < 0.05 indicates the bias is significantly different from zero and therefore the
measurement is biased, measurements for which p-value > 0.05 are highlighted in grey to emphasize
those measurements which are unbiased. For RMSE, the p-value is calculated from the comparison
between the RMSE and the lowest RMSE for each combination of sensors of a given joint and TUG
segment. A p-value < 0.05 indicates there is statistically significant difference between this RMSE and
the lowest RMSE for the given angle and TUG segment. Lower RMSEs indicate better performance;
therefore, measurements for which p-value > 0.05 were highlighted in grey to emphasize measurements
with values similar to the lowest RMSE.

Table 4 shows the bias and RMSE values for ankle flexion for each segment of the TUG. The lowest
absolute bias over all segments was 0.02◦ (1.11◦) (least squares mean (standard error)) obtained during
Turn 1 using the LLS/Heel sensor combination. The largest absolute bias of 2.35◦ (0.54◦) was obtained
during Turn 2 using the MLS/DFoot sensor combination. Over all segments, the lowest RMSE values
of 2.33◦ (0.57◦) and 2.58◦ (0.61◦) were obtained during the Sit-to-Stand and Stand-to-Sit movements,
respectively, using the MLS/DFoot IMU sensor combination. The highest RMSE value for ankle flexion
was 5.49◦ (0.91◦) during the Turn 2 segment with the LLS/Heel sensor combination.

Table 5 shows the bias and RMSE values for knee flexion for each segment of the TUG. The lowest
absolute bias over all segments was 0.08◦ ± 1.01◦ obtained during Turn 1 using the MLS/LAT sensor
combination. The largest absolute bias values over all segments was −7.06◦ (1.52◦) and −7.00◦ (2.08◦)
obtained using the Shin/LLT sensor combination during Sit-to-Stand and Stand-to-Sit movements,
respectively. The Shin/LLT sensor combination also generated the lowest and highest RMSE values of
4.62◦ (0.63◦) during Turn 2 and 9.31◦ (1.59◦) during Sit-to-Stand, respectively.

For hip flexion, the lowest absolute bias over all segments was 0.13◦ (2.24◦) obtained during
Turn 2 using the Sacrum/MLT sensor combination; the largest absolute bias was 16.30◦ (6.43◦) obtained
during Stand-to-Sit using the L4-L5/LPT sensor combination (Table 6). The lowest RMSE value of 4.35◦

(0.64◦) was obtained during Walk using the L4-L5/LLT sensor combination while the highest RMSE
value of 21.46◦ (4.52◦) was obtained during Stand-to-Sit using the L4-L5/LPT sensor combination.
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Table 4. Ankle flexion bias and RMSE [least squares mean (standard error)] for each sensor combination versus gold standard MOCAP system.

Shin MLS LLS

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Bias −1.98 (0.81) −1.00 (0.93) −1.44 (0.62) −0.40 (0.85) −1.30 (0.64) 0.09 (0.96)
p value * 0.015 0.280 0.021 0.639 0.042 0.927

RMSE 3.18 (0.66) 2.86 (0.50) 2.41 (0.48) 2.33 (0.57) 2.72 (0.25) 2.69 (0.58)

Si
tt

o
St

an
d

p value * 0.332 0.271 0.866 n/a 0.351 0.265

Shin MLS LLS

Heel (n = 16 from
5 subs)

DFoot (n = 17 from
6 subs)

Heel (n = 16 from
5 subs)

DFoot (n = 17 from
6 subs)

Heel (n = 16 from
5 subs)

DFoot (n = 17 from
6 subs)

Bias −1.53 (1.19) −1.87 (1.25) −0.76 (1.13) −0.83 (1.03) −0.56 (1.41) −0.43 (1.19)
p value * 0.200 0.135 0.498 0.418 0.691 0.717

RMSE 3.80 (0.49) 3.73 (0.68) 2.71 (0.71) 2.58 (0.61) 3.31 (0.49) 2.89 (0.57)

St
an

d
to

Si
t

p value # 0.026 0.114 0.538 n/a 0.009 0.444

Shin MLS LLS

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Bias −0.84 (0.60) −1.10 (1.09) −1.68 (0.39) −1.96 (0.63) 0.02 (1.11) −1.58 (0.66)
p value * 0.167 0.316 < 0.001 0.002 0.989 0.017

RMSE 4.51 (0.66) 4.56 (0.66) 3.94 (0.45) 4.13 (0.68) 4.54 (0.71) 4.21 (0.53)

Tu
rn

1

p value * 0.124 0.070 n/a 0.762 0.311 0.647

Shin MLS LLS

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Heel (n = 19 from
5 subs)

DFoot (n = 20 from
6 subs)

Bias 0.79 (0.88) −1.56 (0.73) −1.09 (0.56) −2.35 (0.54) −1.49 (1.48) −1.76 (0.75)
p value * 0.373 0.033 0.052 < 0.001 0.314 0.020

RMSE 3.93 (0.68) 4.71 (0.70) 3.85 (0.58) 4.58 (0.77) 5.49 (0.91) 4.74 (0.59)

Tu
rn

2

p value # 0.626 0.016 n/a 0.095 0.077 0.030
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Table 4. Cont.

Shin MLS LLS

Heel (n = 38 from
5 subs)

DFoot (n = 40 from
6 subs)

Heel (n = 38 from
5 subs)

DFoot (n = 40 from
6 subs)

Heel (n = 38 from
5 subs)

DFoot (n = 40 from
6 subs)

Bias 0.97 (0.84) −0.39 (0.90) −0.16 (0.65) −1.10 (0.53) 1.03(0.73) −0.05 (0.52)
p value * 0.246 0.662 0.801 0.038 0.157 0.927

RMSE 4.10 (0.56) 4.44 (0.46) 3.40 (0.32) 3.90 (0.32) 3.95 (0.51) 3.59 (0.31)W
al

k
(1

an
d

2)

p value # 0.035 0.005 n/a 0.238 0.118 0.532
* Bias p-values were calculated from hypothesis test to determine whether the mean bias is different from 0. # RMSE p-values were calculated from the comparison between each RMSE and
the least RMSE among different combinations. The number of samples (n) and number of subjects (subs) included in each analysis are indicated for each sensor combination.

Table 5. Knee flexion bias and RMSE [least squares mean (standard error)] for each sensor combination versus gold standard MOCAP system.

Shin MLS LLS

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

Bias −2.49
(1.21)

−3.19
(1.07)

−7.06
(1.52)

−0.87
(1.53)

−2.14
(1.36)

−2.75
(1.17)

−6.58
(1.62)

−0.51
(1.68)

−1.91
(1.21)

−2.62
(1.39)

−6.46
(1.68)

−0.24
(1.58)

p value * 0.039 0.003 <0.001 0.569 0.114 0.019 <0.001 0.763 0.114 0.060 <0.001 0.881

RMSE 5.51
(0.86)

5.58
(1.04)

9.31
(1.59)

5.05
(1.29)

5.23
(0.93)

5.23
(1.08)

8.64
(1.66)

4.93
(1.42)

4.82
(0.79)

5.37
(1.15)

8.32
(1.67)

4.93
(1.23)

Si
tt

o
St

an
d

p value # 0.013 0.307 <0.001 0.817 0.134 0.558 0.001 0.923 n/a 0.486 0.003 0.911

Shin MLS LLS

LAT (n =
21 from 7

subs)

MLT (n =
21 from 7

subs)

LLT (n =
21 from 7

subs)

LPT (n =
21 from 7

subs)

LAT (n =
21 from 7

subs)

MLT (n =
21 from 7

subs)

LLT (n =
21 from 7

subs)

LPT (n =
21 from 7

subs)

LAT (n =
21 from 7

subs)

MLT (n =
21 from 7

subs)

LLT (n =
21 from 7

subs)

LPT (n =
21 from 7

subs)

Bias −1.27
(1.57)

−1.34
(1.41)

−7.00
(2.08)

1.33
(1.41)

−0.76
(1.70)

−0.63
(1.61)

−6.27
(2.23)

1.89
(1.63)

−0.75
(1.68)

−0.69
(1.89)

−6.35
(2.36)

1.91
(1.62)

p value * 0.417 0.343 0.001 0.344 0.655 0.695 0.005 0.246 0.656 0.715 0.007 0.240

RMSE 6.16
(0.54)

5.13
(0.78)

8.82
(2.07)

5.67
(0.88)

5.79
(0.69)

4.74
(0.93) 7.78 (2.2) 5.75

(1.06)
5.34

(0.72)
4.78

(1.23)
7.27

(2.49)
5.56

(0.99)

St
an

d
to

Si
t

p value # 0.072 0.262 0.010 0.512 0.148 n/a 0.047 0.538 0.178 0.935 0.140 0.621
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Table 5. Cont.

Shin MLS LLS

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

Bias 1.19
(1.06)

1.62
(1.25)

−0.53
(1.22)

3.44
(0.76)

0.08
(1.01)

0.61
(1.12)

−1.59
(1.15) 2.3 (0.95) 1.19

(0.67)
1.76

(0.70)
−0.49
(0.50)

3.42
(0.78)

p value * 0.265 0.195 0.664 <0.001 0.934 0.588 0.168 0.015 0.076 0.012 0.326 <0.001

RMSE 6.26
(0.56)

6.81
(0.79)

6.31
(0.86)

6.76
(0.71)

6.23
(0.60)

6.64
(0.66)

6.29
(0.90)

6.32
(0.68)

6.37
(0.64)

6.81
(0.72)

6.13
(0.77)

6.94
(0.69)

Tu
rn

1

p value # 0.765 0.327 0.489 0.405 0.814 0.428 0.493 0.840 0.611 0.292 n/a 0.217

Shin MLS LLS

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

LAT (n =
25 from 7

subs)

MLT (n =
25 from 7

subs)

LLT (n =
25 from 7

subs)

LPT (n =
25 from 7

subs)

Bias 1.77
(0.71)

2.61
(0.93)

0.10
(0.56)

4.12
(1.05)

0.11
(0.92)

1.03
(0.94)

−1.51
(0.90)

2.41
(0.88)

−0.52
(1.62) 0.5 (1.46) −2.2

(1.63)
1.76

(1.29)
p value * 0.013 0.005 0.858 <0.001 0.904 0.272 0.094 0.006 0.749 0.730 0.178 0.173

RMSE 5.4 (0.54) 4.84
(1.01)

4.62
(0.63)

5.68
(0.88)

5.48
(0.58)

4.63
(0.82)

4.96
(0.92)

4.98
(0.68) 6.37(0.89) 6.01

(1.17)
5.96

(1.33)
5.93

(0.86)

Tu
rn

2

p value # 0.150 0.756 n/a 0.014 0.019 0.979 0.481 0.506 <0.001 0.024 0.153 0.013

Shin MLS LLS

LAT (n =
50 from 7

subs)

MLT (n =
50 from 7

subs)

LLT (n =
50 from 7

subs)

LPT (n =
50 from 7

subs)

LAT (n =
50 from 7

subs)

MLT (n =
50 from 7

subs)

LLT (n =
50 from 7

subs)

LPT (n =
50 from 7

subs)

LAT (n =
50 from 7

subs)

MLT (n =
50 from 7

subs)

LLT (n =
50 from 7

subs)

LPT (n =
50 from 7

subs)

Bias 1.65
(0.76) 2.76 (0.5) 1.78

(0.73)
2.73

(0.86)
p value *

−0.45
(0.79)
0.573 0.030

−0.80
(0.67)
0.234 <0.001

−1.43
(1.07)
0.181

0.71
(0.94)
0.451

−1.75
(0.97)
0.071

1.75 (0.94)
0.062

−0.41
(1.05)
0.697 0.015

−0.79
(0.89)
0.376 0.002

RMSE 6.02
(0.34)

6.48
(0.37)

6.02
(0.56)

6.05
(0.33)

6.37
(0.50)

6.53
(0.44)

6.30
(0.66)

5.83
(0.41)

6.43
(0.41)

7.24
(0.41)

6.38
(0.59)

6.51
(0.42)

W
al

k
(1

an
d

2)

p value # 0.717 0.226 0.785 0.276 0.428 0.230 0.566 n/a 0.319 0.014 0.468 0.001
* Bias p-values were calculated from hypothesis test to determine whether the mean bias is different from 0. # RMSE p-values were calculated from the comparison between each RMSE and
the least RMSE among different combinations. The number of samples (n) and number of subjects (subs) included in each analysis are indicated for each sensor combination.
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Table 6. Hip flexion bias and RMSE [least squares mean (standard error)] for each sensor combination versus gold standard MOCAP system.

Sacrum L4–L5

LAT (n = 25
from 7 subs)

MLT (n = 25
from 7 subs)

LLT (n = 25
from 7 subs)

LPT (n = 25
from 7 subs)

LAT (n = 25
from 7 subs)

MLT (n = 25
from 7 subs)

LLT (n = 25
from 7 subs)

LPT (n = 25
from 7 subs)

Bias 0.41 (2.78) −0.33 (2.79) −4.11 (2.97) 2.13 (2.85) 9.50 (5.00) 8.76 (4.27) 4.98 (4.50) 11.21 (5.31)
p value * 0.882 0.907 0.167 0.455 0.058 0.040 0.268 0.035

RMSE 6.95 (1.53) 6.76 (1.49) 7.03 (1.41) 8.44 (1.39) 15.59 (3.70) 14.39 (3.13) 12.69 (2.57) 17.89 (3.76)

Si
tt

o
St

an
d

p value # 0.759 n/a 0.839 0.124 0.045 0.043 0.067 0.014

Sacrum L4–L5

LAT (n = 21
from 7 subs)

MLT (n = 21
from 7 subs)

LLT (n = 21
from 7 subs)

LPT (n = 21
from 7 subs)

LAT (n = 21
from 7 subs)

MLT (n = 21
from 7 subs)

LLT (n = 21
from 7 subs)

LPT (n = 21
from 7 subs)

Bias 1.55 (3.48) 1.37 (3.50) −4.23 (3.92) 4.33 (3.29) 13.53 (5.75) 13.39 (5.14) 7.75 (5.17) 16.30 (6.43)
p value * 0.657 0.695 0.280 0.189 0.019 0.009 0.134 0.011

RMSE 7.18 (2.01) 6.95 (2.04) 7.32 (1.40) 9.31 (1.53) 18.28 (4.06) 17.31 (3.71) 14.41 (2.80) 21.46 (4.52)

St
an

d
to

Si
t

p value # 0.790 n/a 0.863 0.036 0.026 0.025 0.054 0.012

Sacrum L4–L5

LAT (n = 25
from 7 subs)

MLT (n = 25
from 7 subs)

LLT (n = 25
from 7 subs)

LPT (n = 25
from 7 subs)

LAT (n = 25
from 7 subs)

MLT (n = 25
from 7 subs)

LLT (n = 25
from 7 subs)

LPT (n = 25
from 7 subs)

Bias −1.12 (1.65) −0.38 (2.20) −2.34 (2.06) 1.38 (1.91) 2.16 (1.75) 2.84 (1.62) 0.91 (1.55) 4.65 (2.17)
p value * 0.497 0.862 0.255 0.471 0.219 0.081 0.558 0.032

RMSE 5.36 (0.58) 6.30 (0.95) 5.34 (1.18) 6.06 (0.74) 6.22 (0.67) 6.48 (0.77) 5.20 (0.63) 7.93 (1.11)

Tu
rn

1

p value # 0.876 0.384 0.917 0.489 0.120 0.010 n/a 0.002
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Table 6. Cont.

Sacrum L4–L5

LAT (n = 25
from 7 subs)

MLT (n = 25
from 7 subs)

LLT (n = 25
from 7 subs)

LPT (n = 25
from 7 subs)

LAT (n = 25
from 7 subs)

MLT (n = 25
from 7 subs)

LLT (n = 25
from 7 subs)

LPT (n = 25
from 7 subs)

Bias −1.00 (1.50) 0.13 (2.24) −2.31 (1.82) 1.57 (1.93) 2.93 (1.94) 4.04 (2.14) 1.59 (1.93) 5.50 (2.71)
p value * 0.505 0.954 0.204 0.416 0.131 0.059 0.410 0.042

RMSE 4.47 (0.64) 5.21 (1.44) 4.74 (0.87) 5.34 (0.95) 6.95 (0.99) 7.14 (1.28) 5.91 (1.04) 8.75 (1.68)

Tu
rn

2

p value # n/a 0.399 0.615 0.095 0.078 0.070 0.316 0.039

Sacrum L4–L5

LAT (n = 50
from 7 subs)

MLT (n = 50
from 7 subs)

LLT (n = 50
from 7 subs)

LPT (n = 50
from 7 subs)

LAT (n = 50
from 7 subs)

MLT (n = 50
from 7 subs)

LLT (n = 50
from 7 subs)

LPT (n = 50
from 7 subs)

Bias −3.08 (1.65) −0.89 (1.97) −3.21 (1.85) 0.14 (1.83) −0.29 (1.57) 1.86 (1.53) −0.47 (1.45) 2.92 (2.01)
p value * 0.062 0.652 0.082 0.939 0.852 0.225 0.747 0.147

RMSE 5.95 (0.90) 6.65 (0.80) 5.37 (1.08) 5.78 (0.87) 5.74 (0.64) 6.46 (0.64) 4.35 (0.64) 7.10 (0.76)W
al

k
(1

an
d

2)

p value # 0.171 0.025 0.463 0.201 <0.001 0.002 n/a 0.003
* Bias p-values were calculated from hypothesis test to determine whether the mean bias is different from 0. # RMSE p-values were calculated from the comparison between each RMSE and
the least RMSE among different combinations. The number of samples (n) and number of subjects (subs) included in each analysis are indicated for each sensor combination.
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4. Discussion

This study evaluated the impact of IMU sensor location on lower limb joint angle accuracy
and bias during the TUG. A brief literature review pointed to common sensor locations that were
incorporated into an experimental protocol comparing joint angles derived from combinations of IMU
sensors to a reference MOCAP system. The results have several implications for research in motion
analysis and clinical implementation of IMU-based joint kinematics.

There are several different approaches to calibration of the sensor coordinate system and calculating
joint angles based on IMU sensor data. In comparing RMSE values to previous studies investigating
joint angles measured with IMUs and MOCAP systems, our results are similar and even surpass the
accuracy reported for other approaches, yielding confidence in the validity of our kinematic calculation.
The average level-walking RMSE values across all sensor combinations in this study were 3.90◦, 6.35◦,
and 5.93◦, for the ankle, knee, and hip, respectively. These values are close to, and even surpass,
the ankle, knee, and hip RMSE values presented by Tadano et al. (9.75◦, 7.88◦, and 10.14◦, respectively)
and Dorschky et al. (4.60◦, 5.30◦, and 8.70◦, respectively) [30,38]. Other studies have reported lower
RMSE values at the same joints [39,40]. A comparison of kinematic calculation approaches was not
within the scope of this paper, but sufficient detail on the methodology was provided such that this
approach can be replicated and applied.

Many studies have investigated the effectiveness of using IMUs for diagnosing and
monitoring diseases in clinics and at home, where cost and space requirements make MOCAP
infeasible [12,14,22,23,25–28]. The interest in using IMUs for clinical diagnosis and rehabilitation
makes the question of their accuracy paramount. Optimization of sensor placement for measuring
kinematics is one step towards making this technology a reliable tool for clinicians. Our experimental
and analysis approaches allow for the determination of the best sensor placement based on task being
performed and the joint being evaluated. For example, if the Sit-to-Stand movement were being
investigated across the ankle, knee, and hip joints, the results presented in Tables 4–6 suggest the DFoot,
MLS, LAT, and Sacrum sensors would produce unbiased, accurate results across all joints. Similarly,
these data can be used to inform sensor placement for a specific joint. For example, unbiased and
accurate measurements for knee flexion can be derived using the MLS/LAT, MLS/MLT, or LLS/LAT
sensor combinations (Table 5). Sensor combinations that are highly biased and inaccurate were also
identified in this study. The L4-L5/LPT sensor combination for hip flexion produced some of the
highest bias and RMSE values across all functional movements of the TUG test (Table 6).

Determining an overall best configuration of sensors across all functional movements and joints
would be useful. Based on the data, a configuration of sensors including the sacrum, lower anterior
thigh, lower lateral shank, and heel locations will generally perform well. However, this may not be the
best approach in all cases. While the current study expands on previous work by investigating multiple
functional movements of interest, recommendations are based on data from healthy individuals
and may have limited applicability to clinical populations with impaired gait. Further research in
determining ideal sensor locations for clinical populations is needed. The analysis in this study was
also limited to sagittal plane kinematics to enable comparisons between previous studies. Although
the sagittal plane kinematics are more commonly reported in IMU gait studies, meaningful clinical
information can be derived from frontal and transverse plane kinematics. Additional analysis is needed
to assess accuracy in other planes of motion to determine the optimal sensor placements for all DOFs
during specific functional activities. We also acknowledge that our sample size was small, although
significant differences in the sensor combinations were still identified. To increase confidence in the
generalizability of these results to a healthy, unimpaired population, additional participants should be
included in the analysis.

The IMU coordinate systems are also slightly offset from those used in the PiG model.
IMUs inherently cannot measure absolute location relative to anatomical landmarks meaning there
are inherent differences in how both systems align segments [9]. The assumption is made that the
axes of the sensors are parallel when the participant is standing still and that the joint angles are
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zero. This provides a good estimate of segment orientation but does not perfectly align axes with
Vicon which uses its own calibration procedure. The direct attachment of reflective markers to the
IMU sensors would allow for direct alignment of the IMU and Vicon coordinate systems and a
more technical comparison of the kinematic models, but there is value in understanding the IMU
kinematic output independent of Vicon since this more accurately reflects how the IMUs will be used
in real-world scenarios.

In conclusion, this study compared accuracy and bias of lower limb joint kinematics derived from
various IMU sensor locations to a reference MOCAP system. The findings can be used to inform the
wearable sensors community of anatomical locations that are less prone to error when measuring joint
angles for specific lower limb tasks. The findings here are of interest in clinical research, diagnosis,
and rehabilitation by making IMU technology more reliable for measuring gait kinematics. It can be
suggested that the sacrum, lower anterior thigh, middle lateral shank, and heel sensors will produce
relatively low error for the three joints as compared to the reference system. However, the combination
of sensor locations used should ultimately be driven by the motions and/or joints of interest.

The mention of commercial products, their sources, or their use in connection with material
reported herein is not to be construed as either an actual or implied endorsement of such products by
the Department of Health and Human Services.

The data and code used for the current analysis are available online at: https://github.com/dbp-
osel/IMU-Sensor-Placement-Optimization.

Author Contributions: Conceptualization (K.K.); Methodology (K.K., W.N.); Software (W.N., W.W.); Validation
(W.N., W.W.); Formal Analysis (W.N., W.W.); Investigation (K.K., W.N.); Resources (K.K.); Data curation (K.K.,
W.N.); Writing—original draft (W.N.); Writing—reviewing and editing (K.K., W.N., W.W.); Visualization (K.K.,
W.N.); Supervision (K.K.); Funding acquisition (K.K.). All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the FDA Critical Path Initiative, and base funding from the Division of
Biomedical Physics and Division of Applied Mechanics (FDA). The research was also supported in part by an
appointment to the Research Participation Program at the U.S. FDA administered by the Oak Ridge Institute for
Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and
FDA. The funders had no role in data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments: The authors would like to thank Stephen Cain from the University of Michigan and Melissa
Goodman from the Mayo Clinic for their valuable insights regarding the use and calibration of body worn IMUs.

Conflicts of Interest: The authors have no conflict to disclose.

References

1. Hodgins, D. The importance of measuring human gait. Med. Device Technol. 2008, 19, 44–47.
2. Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview

of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394.
[CrossRef] [PubMed]

3. Weygers, I.; Kok, M.; Konings, M.; Hallez, H.; De Vroey, H.; Claeys, K. Inertial sensor-based lower limb joint
kinematics: A methodological systematic review. Sensors 2020, 20, 673. [CrossRef] [PubMed]

4. Reinfelder, S.; Hauer, R.; Barth, J.; Klucken, J.; Eskofier, B.M. Timed Up-and-Go phase segmentation in
Parkinson’s disease patients using unobtrusive inertial sensors. In Proceedings of the 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy,
25–29 August 2015; pp. 5171–5174.

5. Maqbool, H.F.; Husman, M.A.B.; Awad, M.I.; Abouhossein, A.; Mehryar, P.; Iqbal, N.; Dehghani-Sanij, A.A.
Real-time gait event detection for lower limb amputees using a single wearable sensor. In Proceedings of
the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5067–5070.

6. Picerno, P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of
methodological approaches. Gait Posture 2017, 51, 239–246. [CrossRef]

https://github.com/dbp-osel/IMU-Sensor-Placement-Optimization
https://github.com/dbp-osel/IMU-Sensor-Placement-Optimization
http://dx.doi.org/10.3390/s140203362
http://www.ncbi.nlm.nih.gov/pubmed/24556672
http://dx.doi.org/10.3390/s20030673
http://www.ncbi.nlm.nih.gov/pubmed/31991862
http://dx.doi.org/10.1016/j.gaitpost.2016.11.008


Sensors 2020, 20, 5993 15 of 16

7. Bolink, S.; Naisas, H.; Senden, R.; Essers, H.; Heyligers, I.; Meijer, K.; Grimm, B. Validity of an inertial
measurement unit to assess pelvic orientation angles during gait, sit–stand transfers and step-up transfers:
Comparison with an optoelectronic motion capture system. Med. Eng. Phys. 2016, 38, 225–231. [CrossRef]

8. Janssen, W.G.; Bussmann, H.B.; Stam, H.J. Determinants of the sit-to-stand movement: A review. Phys. Ther.
2002, 82, 866–879. [CrossRef]

9. Adusumilli, G.; Lancia, S.; Levasseur, V.A.; Amblee, V.; Orchard, M.; Wagner, J.M.; Naismith, R.T. Turning
is an important marker of balance confidence and walking limitation in persons with multiple sclerosis.
PLoS ONE 2018, 13, e0198178. [CrossRef]

10. Panebianco, G.P.; Bisi, M.C.; Stagni, R.; Fantozzi, S. Analysis of the performance of 17 algorithms from a
systematic review: Influence of sensor position, analysed variable and computational approach in gait timing
estimation from IMU measurements. Gait Posture 2018, 66, 76–82. [CrossRef]

11. Anwary, A.R.; Yu, H.; Vassallo, M. Optimal foot location for placing wearable IMU sensors and automatic
feature extraction for gait analysis. IEEE Sens. J. 2018, 18, 2555–2567. [CrossRef]

12. Kianifar, R.; Joukov, V.; Lee, A.; Raina, S.; Kulić, D. Inertial measurement unit-based pose estimation:
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