Reflective Bistable Chiral Splay Nematic Liquid Crystal for Low-Power Heat Sensor
Abstract
:1. Introduction
2. Operational Principle
2.1. Swtiching Process
2.2. Bistable Curve
2.3. Phase Transition
2.4. Transition Velocity
2.5. Temperature Measurement
3. Optical Structure of Reflective BCSN Device
3.1. Reflective Structure
3.2. Reflectance
3.3. Contrast Ratio
4. Fabrication of Reflective BCSN
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdulhalim, I. Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter. Chin. Opt. Lett. 2009, 7, 667–670. [Google Scholar] [CrossRef]
- Neitzert, H.C.; Vertuccio, L.; Sorrentino, A. Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans. Nanotechnol. 2011, 10, 688–693. [Google Scholar] [CrossRef]
- Torres, J.C.; García-Cámara, B.; Pérez, I.; Urruchi, V.; Sánchez-Pena, J.M. Wireless temperature sensor based on a nematic liquid crystal cell as variable capacitance. Sensors 2018, 18, 3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirmacek, B.; Riveiro, M. Occupancy prediction using low-cost and low-resolution heat sensors for smart offices. Sensors 2020, 20, 5497. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-H. Bistable reflective cholesteric liquid crystal display. J. Appl. Phys. 1997, 81, 1063–1066. [Google Scholar] [CrossRef]
- Kim, J.-H.; Yoneya, M.; Yokoyama, H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 2002, 420, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.J.; Kwok, H.S. Bistable bend-splay liquid crystal display. Appl. Phys. Lett. 2004, 85, 3711–3713. [Google Scholar] [CrossRef]
- Jhun, C.G.; Chen, C.P.; Lee, S.R.; Yoon, T.-H.; Kim, J.C. Effects of pixel boundary on memory time of bistable chiral splay nematic liquid crystal cell. Mol. Cryst. Liq. Cryst. 2007, 476, 331–339. [Google Scholar] [CrossRef]
- Chen, C.P.; Preman, S.P.; Yoon, T.-H.; Kim, J.C. Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching. Appl. Phys. Lett. 2008, 92, 123505. [Google Scholar] [CrossRef]
- Bae, B.S.; Han, S.; Shin, S.S.; Chen, K.; Chen, C.P.; Su, Y.; Jhun, C.G. Dual structure of cholesteric liquid crystal device for high reflectance. Electron. Mater. Lett. 2013, 9, 735–740. [Google Scholar] [CrossRef]
- Kim, J.-H.; Huh, J.-W.; Oh, S.-W.; Ji, S.-M.; Jo, Y.-S.; Yu, B.-H.; Yoon, T.-H. Bistable switching between homeotropic and focal-conic states in an ion-doped chiral nematic liquid crystal cell. Opt. Express 2017, 25, 29180–29188. [Google Scholar] [CrossRef]
- Jhun, C.G.; Chen, C.P.; Yoon, T.-H.; Kim, J.C. Multidomain structure for infinite memory time of bistable chiral splay nematic liquid crystal device. Jpn. J. Appl. Phys. 2006, 45, 5117–5120. [Google Scholar] [CrossRef]
- Jhun, C.G.; Chen, C.P.; Lee, U.J.; Lee, S.R.; Yoon, T.-H.; Kim, J.C. Tristate liquid crystal display with memory and dynamic operating modes. Appl. Phys. Lett. 2006, 89, 123507. [Google Scholar] [CrossRef]
- Jhun, C.G.; Chen, C.P.; Lee, S.L.; Back, J.I.; Yoon, T.-H.; Kim, J.C. Disclination velocity in bistable chiral splay nematic liquid crystal device. Jpn. J. Appl. Phys. 2006, 45, 5063–5068. [Google Scholar] [CrossRef]
- Jhun, C.G.; Choi, G.J.; Ryu, D.G.; Huh, J.-H.; Gwag, J.S. State transition at electrohydrodynamic convection of twisted nematic liquid crystals. Phys. Rev. E 2018, 98, 052704. [Google Scholar] [CrossRef]
- Peroli, G.G.; Virga, E.G. Annihilation of point defects in nematic liquid crystals. Phys. Rev. E 1996, 54, 5235–5241. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Noguchi, M. Bend transition in pi-cell. Jpn. J. Appl. Phys. 2000, 39, 6368–6375. [Google Scholar] [CrossRef]
- Imura, H.; Okano, K. Temperature dependence of the viscosity coefficients of liquid crystals. Jpn. J. Appl. Phys. 1972, 11, 1440–1446. [Google Scholar] [CrossRef]
- Lien, A. Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence. Appl. Phys. Lett. 1990, 57, 2767–2769. [Google Scholar] [CrossRef]
- Kwok, H.-S. Parameter space representation of liquid crystal display operating modes. J. Appl. Phys. 1996, 80, 3687–3693. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.P.; Jhun, C.G.; Yoon, T.-H.; Kim, J.C. Optimal design of omni-directional viewing angle switching panel. Opt. Express 2007, 15, 17937–17947. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.P.; Jhun, C.G. Reflective Bistable Chiral Splay Nematic Liquid Crystal for Low-Power Heat Sensor. Sensors 2020, 20, 5937. https://doi.org/10.3390/s20215937
Chen CP, Jhun CG. Reflective Bistable Chiral Splay Nematic Liquid Crystal for Low-Power Heat Sensor. Sensors. 2020; 20(21):5937. https://doi.org/10.3390/s20215937
Chicago/Turabian StyleChen, Chao Ping, and Chul Gyu Jhun. 2020. "Reflective Bistable Chiral Splay Nematic Liquid Crystal for Low-Power Heat Sensor" Sensors 20, no. 21: 5937. https://doi.org/10.3390/s20215937
APA StyleChen, C. P., & Jhun, C. G. (2020). Reflective Bistable Chiral Splay Nematic Liquid Crystal for Low-Power Heat Sensor. Sensors, 20(21), 5937. https://doi.org/10.3390/s20215937