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Abstract: Mode shape-based structural damage identification methods have been widely investigated
due to their good performances in damage localization. Nevertheless, the evaluation of mode shapes
is severely affected by the measurement noise. Moreover, the conventional mode shape-based
damage localization methods are normally proposed based on a certain mode and not effective
for multi-damage localization. To tackle these problems, a novel damage localization approach is
proposed based on locally perturbed dynamic equilibrium and data fusion approach. The main
contributions cover three aspects. Firstly, a joint singular value decomposition technique is
proposed to simultaneously decompose several power spectral density transmissibility matrices
for robust mode shape estimation, which statistically deals better with the measurement noise
than the traditional transmissibility-based methods. Secondly, with the identified mode shapes,
an improved pseudo-excitation method is proposed to construct a baseline-free damage localization
index by quantifying the locally damage perturbed dynamic equilibrium without the knowledge
of material/structural properties. Thirdly, to circumvent the conflicting damage information in
different modes and integrate it for robust damage localization, a data fusion scheme is developed,
which performs better than the Bayesian fusion approach. Both numerical and experimental studies
of cantilever beams with two cracks were conducted to validate the feasibility and effectiveness of
the proposed damage localization method. It was found that the proposed method outperforms the
traditional transmissibility-based methods in terms of localization accuracy and robustness.

Keywords: damage localization; singular value decomposition; power spectral density transmissibility;
operational modal analysis; pseudo-excitation method

1. Introduction

Structural damage identification, aiming at detecting and assessing the structural damage at or
near its onset during operation, plays a significant role in maintaining the safety and reliability of
civil and mechanical structures [1–3]. One of the major challenges in this field is that damage is a
local phenomenon that naturally appears and propagates in a small region, which presents a great
difficulty in detection [4–6]. Therefore, an effective damage identification approach should be local
in nature [7–9]. Differently from the traditional vibration-based damage identification methods that
use global damage features, a novel damage localization approach is proposed in this paper based on
the estimated mode shapes to examine the damage-induced local dynamic disturbances. However,
two major issues, that is, noise-robust mode shape estimation and effective damage localization index,
hamper its practical engineering applications, which will be discussed and tackled in this investigation.
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When compared with natural frequencies, mode shape-based damage identification methods
are more sensitive to local damage while being less sensitive to environmental variability [10,11].
Nevertheless, the evaluation of mode shapes is vulnerable to measurement uncertainties, as the data
acquisition at discrete spatial points can be readily contaminated by the measurement noise [12,13].
As for mode shape-based damage identification, it is desirable to obtain mode shapes via operational
modal analysis (OMA), as excitation forces are normally unavailable or impossible to be acquired
under operational conditions [14–16]. A comprehensive review of different OMA methods was
summarized and presented by Rainieri and Fabbrocino [17]. Stochastic subspace identification (SSI)
and frequency domain decomposition (FDD) are two popular OMA approaches that are widely
used [18]. Recently, the second-order blind source identification (SOBI) has attracted much more
attention, which evaluates the modal parameters based on the concepts of sources and mixing matrix [19].
In addition, Yuen and Au [20] proposed a Bayesian operational modal analysis, which could output
the uncertainty quantification of estimated modal parameters. Nevertheless, a major shortcoming of
those OMA methods is that the random (white noise) excitation assumption is adopted, which is not
physically true in practical engineering. To overcome this limitation, identification of modal parameters
based on transmissibility measurements has been widely investigated, which works without any
assumption regarding to the nature of excitation forces [21,22]. Araújo and Laier [23] adopted an
excitation force in the form of colored noise with a predominant frequency of 12 Hz to demonstrate the
effectiveness of the transmissibility-based OMA.

For operational modal analysis, mode shapes are typically estimated by decomposing a matrix
or some linear combinations of matrices, such as power spectral density (PSD) and covariance
matrices. However, those matrices do not exactly possess identical eigen-structure because of limited
measurement data and various uncertainties. To circumvent this, a kind of common eigen-structure is
proposed in this paper. In this method, several power spectral density transmissibility (PSDT) matrices
are simultaneously diagonalized via a joint singular value decomposition (SVD) approach for robust
mode shape estimation, which is the first contribution of this paper.

Apart from the robust mode shape estimation problem, another critical issue is how to quantify the
damage-induced local dynamic disturbances based on the mode shapes of damaged states for damage
localization. Originally, the evaluation of a locally perturbed dynamic equilibrium, also known as the
pseudo-excitation (PE) method, was developed to tackle the local force identification problem [24,25].
As for damage identification, the damage index construction for an impaired structural component
can be considered as equivalent to the computation of PE forces on its pristine counterpart [26–28].
However, the damage localization index constructed in PE method is based on the local dynamic
equilibrium, thereby inheriting several shortcomings. Firstly, some material or structural properties in
the equation of local motion, such as stiffness and cross-sectional area, may be inaccurately described
or even unknown a priori [29]. Secondly, a local dynamic equilibrium with the assumption of no
damping effects is typically adopted, which is limited to non-resonant frequencies [30].

Motivated by addressing the aforementioned issues of the PE method, the current work proposes a
comprehensive method, which is the second contribution of this paper. In this method, a local dynamic
equilibrium model considering viscous damping is defined and statistically evaluated to establish
the damage localization index without requiring the knowledge of material/structural parameters,
thereby extending the PE method to be applied under both resonant and non-resonant conditions.
Consequently, the identified mode shapes by the transmissibility-based OMA can be used in the PE
method for damage identification. Here, the estimated mode shape data can be treated as equivalent
to the normalized displacement data. Moreover, it is impossible to localize all the damage positions
by using a single mode shape, as the sensitivity of mode shapes to damage depends on the damage
locations. Therefore, a data fusion approach inspired by Bayesian fusion is proposed and investigated
to effectively combine the damage information of different modes for robust damage localization,
which is the third contribution of this paper.
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The structure of this paper is as follows. In Section 2, a joint SVD approach is proposed to
simultaneously decompose several PSDT matrices for robust mode shape estimation. Moreover,
an enhanced PE method is developed in Section 3 to construct an effective damage localization index,
which considers the damping effects and does not require the knowledge of the material/structural
properties. In addition, to integrate the PE-based damage location information in different modes,
a data fusion strategy that was inspired by Bayesian fusion is proposed in Section 4, which overcomes
the conflicting damage location information. Numerical and experimental studies are presented to
verify the proposed damage localization method in Sections 5 and 6, respectively. Finally, some key
conclusions are summarized in Section 7.

2. Robust Mode Shape Estimation via Transmissibility-Based OMA

2.1. Traditional Transmissibility-Based OMA

In operational modal analysis, the estimation of mode shapes or operational deflection shapes
requires a set of spatial measurement points. Here, the measurement vector y(t) ∈ Rm×1 is assumed to
be acquired at m measurement points. Without the information of inputs, a general assumption that
the system is subjected to n external excitations is adopted.

The PSDT Tk
i j(ω) between outputs yi(t) and y j(t) with reference to another output yk(t) is defined

as the ratio of cross PSD Sik(ω) and S jk(ω), which is written as

Tk
i j(ω) = Sik(ω)/S jk(ω) (1)

where i, j, k indicate different locations of output responses on a structure; Sik(ω) represents the cross
PSD between output yi(t) and yk(t).

Equation (1) implies that the PSDT function does not require the information of excitation forces.
Therefore, the PSDT method is suitable for output-only analysis and input-output modal analysis.
For stationary stochastic vibration, the relationship between the input and the output PSD matrices is
in the form of

Syy(ω) = H(ω)S f f (ω)H(ω)∗ (2)

where Syy(ω) ∈ Rm×m and S f f (ω) ∈ Rn×n are the PSD matrices of the responses and
inputs (excitation forces), respectively; H(ω) ∈ Rm×n indicates the FRF matrix; and H(ω)∗

represents the Hermitian transpose of H(ω). Therefore, the cross PSD Sik(ω) can be expressed
as Sik(ω) =

∑n
p=1

∑n
q=1 Hiq(ω)Sqp(ω)Hkp(ω)

∗ and the PSDT in Equation (1) can be rewritten as

Tk
i j(ω) =

∑n
p=1

∑n
q=1 Hiq(ω)Sqp(ω)Hkp(ω)

∗∑n
p=1

∑n
q=1 H jq(ω)Sqp(ω)Hkp(ω)

∗
(3)

where Hiq(ω) =
∑nm

r=1 ΦirΦqr/
(
ω2

r −ω
2 + i2ξωωr

)
is the FRF between the output yi(t) and the input

fq(t) with nm, ξ and Φir denoting the number of modes, damping ratio and the mode shape value at
location i for the r-th mode, respectively; Sqp(ω) represents the cross PSD between input fq(t) and
input fp(t) with p and q indicating the locations of the input excitation forces.

When the frequency of excitationω approaches the r-th natural frequency, the dynamic response is
dominated by the contribution of this r-th mode and the contributions of other vibration modes can be
negligible for a structure with well separated modes and small damping ratios [23]. Therefore,
Hiq(ω) can be well approximated by ΦirΦqr/

(
ω2

r −ω
2 + i2ξωωr

)
near the r-th natural frequency.

Consequently, the expression of cross PSD Sik(ω) and S jk(ω) at a natural frequency ωr can be
approximated as

lim
ω→ωr

Sik(ω) � Φir
∑n

p=1
∑n

q=1 Ĥiq(ω)Sqp(ω)Hkp(ω)
∗

lim
ω→ωr

S jk(ω) � Φ jr
∑n

p=1
∑n

q=1 Ĥ jq(ω)Sqp(ω)Hkp(ω)
∗ (4)
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where Ĥiq(ω) = Φqr/
(
ω2

r −ω
2 + i2ξωωr

)
, which does not involve the output information at location

i. Similarly, for cross PSD S jk(ω), Ĥ jq(ω) = Φqr/
(
ω2

r −ω
2 + i2ξωωr

)
. Thus, Ĥiq(ω) = Ĥ jq(ω). In this

case, Tk
i j(ω) in Equation (3) will converge to Φir/Φ jr when ω approaches the r-th natural frequency

lim
ω→ωr

Tk
i j(ω) = lim

ω→ωr

Φir
∑n

p=1
∑n

q=1 Ĥiq(ω)Sqp(ω)Hkp(ω)
∗

Φ jr
∑n

p=1
∑n

q=1 Ĥ jq(ω)Sqp(ω)Hkp(ω)
∗
=

Φir
Φ jr

(5)

Moreover, the PSDT matrix T j(ω) is assembled by PSDT Tk
i j(ω) with different output point i and

reference output point k as

T j(ω) =



T1
1 j

· · · Tk
1 j · · · Tm

1 j
...

T1
i j
...

· · ·
... · · ·

· · · Tk
i j · · ·

· · ·
... · · ·

...
Tm

ij
...

T1
mj

· · · Tk
mj · · · Tm

mj


, j = 1, 2, · · · , m (6)

It is worth noting that the transmissibility Tk
i j(ω) for different reference points such as Tk1

i j (ω)

and Tk2
i j (ω) will converge to the same ratio of amplitudes of mode shapes at corresponding natural

frequencies. Thus, when approaching the r-th natural frequency, the columns of the PSDT T j(ω) will
be identical with each other, given by

lim
ω→ωr

T j(ω) =
1

Φ jr


Φ1r Φ1r
Φ2r Φ2r

· · ·
Φ1r
Φ2r

...
...

. . .
...

Φmr Φmr · · · Φmr

, j = 1, 2, · · · , m (7)

From Equation (7), it indicates that the column rank of T j(ωr) will be one at a certain natural
frequency. With this property, the system natural frequencies can by identified through a traditional
approach [31], which is

∆T−1(ω) =
∑m

j=1, j,i

∑m

i=1

∑m

k1=1,k1,k2

∑m

k2=1

1∣∣∣∣Tk1
i j (ω) − Tk2

i j (ω)
∣∣∣∣
 (8)

At an identified natural frequency, Equation (7) is normally processed by SVD method to evaluate
the singular vector corresponding to the largest singular value as a good estimate of the mode shape [23].

2.2. The Proposed Transmissibility-Based OMA by Using Joint SVD

However, the identification approach based on Equation (8) tends to introduce some additional
false natural frequencies [32]. To overcome this, a novel approach is proposed to evaluate the
natural frequencies based on the SVD of PSDT matrices. T j(ω) is decomposed by singular value
decomposition as

T j(ω) = U j(ω)D j(ω)V j(ω)
∗ (9)

where D j(ω) is a diagonal matrix with non-negative singular values in a descending order
σ j1 ≥ σ j2 ≥ · · · ≥ σ jm. At a certain natural frequency, the rank of T j(ω) should be one in theory
and practically the first singular value will be much larger than all the other singular values. This can be
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reflected by using the ratio δ j
1,l(ω) = σ j1/σ jl (l = 2, 3, · · · , m), and a system natural frequency indicator

γ(ω) is proposed by a combination of singular values as

γ(ω) =
m∏

l=2

δ
j
1,l (10)

where Π indicates the multiplication operator. To reduce the effects of measurement noise, the last
several smallest singular values are not suggested to be used in Equation (10).

Moreover, in a narrow frequency band (ωr1 ≤ ωr ≤ ωr2) around a natural frequency ωr, the rank
of PSDT matrix T j(ω) is still almost 1 and the mode shape ϕr is the dominant mode as well. Thus,
the dominant mode shape ϕr can be estimated by applying joint SVD to the PSDT matrices of this
frequency band (ωr1 ≤ ωr ≤ ωr2):

T j(ωr+kk) = UrD j(ωr+kk)Vr
∗ + E j(ωr+kk), kk = −K,−K + 1, · · · , K (11)

where the joint unitary diagonalizers Ur and Vr are identical but diagonal matrix D j(ωr+kk) and
noise matrix E j(ωr+kk) are different at each kk. A traditional approach of solving the joint SVD is
the least-squares method, in which the over-determined decomposition is treated as a minimization
problem of variables Ur, Vr and D j(ωr+kk):

J
(
Ur, Vr, D j

)
=

K∑
kk=−K

‖T j(ωr+kk) −UrD j(ωr+kk)Vr
∗
‖ (12)

There are several numerically efficient algorithms for solving Equation (12), such as power
iterations, Givens rotations and matrix gradient flows [33]. In this study, the joint SVD problem is
readily addressed via a joint approximate diagonalization (JAD) approach based on Givens rotations.
In the regime of JAD, the estimation of Ur in Equation (12) is transformed to minimize the following
function as

J1
(
Ur, D1

j

)
=

K∑
kk=−K

‖T j(ωr+kk)T j(ωr+kk)
∗
−UrD1

j (ωr+kk)Ur
∗
‖ (13)

By solving Equation (13), the mode shape at natural frequency ωr is the column of Ur which
corresponds to the largest diagonal element in D1

j (ωr) = D j(ωr)D∗j(ωr). It can be seen that joint SVD
is an extension of the singular value decomposition to a set of more than two matrices. Furthermore,
joint SVD is a more general tool for non-symmetric, possibly rectangular matrices than JAD method
which is limited to Hermitian or symmetric matrix set.

3. Damage Localization Based on the Improved PE Method

In this section, an improved PE method is proposed, which identifies the damage locations
without the information of the unknown material/structural properties. Without loss of generality,
the transverse vibration of a beam component is taken as an example and the equation of motion is
given according to the Euler–Bernoulli beam theory as

EI
∂4w(x, t)
∂x4

+ C
∂w(x, t)
∂t

+ ρA
d2w(x, t)
∂t2 = f (x, t) (14)

where w(x, t) and f (x, t) are the transverse displacement and transverse distributed load at location x,
respectively; E, I, C, ρ and A represent the Young’s modulus, the second moment of the cross-sectional
area, damping coefficient, mass density and cross-sectional area, respectively.
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Specifically, in a harmonic regime, the steady-state vibration w(x, t) can be written as W(x)eiωt.
Assuming that the beam has a uniform cross-section and constant material properties within the
inspection area, Equation (14) can be expressed under harmonic regime as

EI
∂4W(x)
∂x4

+ iCωW(x) − ρAω2W(x) = f (x,ω) (15)

In Equation (15), without the external excitation, the right-hand side becomes zero for a pristine
beam. Nevertheless, with the occurrence of damage in this beam component, the left-hand side of
Equation (15) does not equal zero anymore when f (x,ω) = 0, which can be adopted as a damage
index (DI).

DI(x,ω) = EI∇4W(x) + iCωW(x) − ρAω2W(x)[
(EI − ∆EI)∇

4W(x) + i(C− ∆c)ωW(x) −
(
ρA− ∆ρA

)
ω2W(x)

]
+

[
∆EI∇

4W(x) + i∆cωW(x) − ∆ρAω
2W(x)

] (16)

where ∆EI, ∆c and ∆ρA represent the damage-caused changes in the structural properties corresponding

to its stiffness, damping and mass, respectively; ∇4W(x) becomes ∂4W(x)
∂x4 for a beam with ∇4 denoting

the double Laplacian operator. Due to the local dynamic equilibrium of the damaged beam component,
Equation (16) can be rearranged as

(EI − ∆EI)∇
4W(x) + i(C− ∆c)ωW(x) −

(
ρA− ∆ρA

)
ω2W(x) = 0

DI(x,ω) = ∆EI∇
4W(x) + i∆cωW(x) − ∆ρAω

2W(x)
(17)

From Equations (16) and (17), it can be seen that the transverse vibration of a damaged beam
component is equivalent to its corresponding pristine counterpart subjected to a pseudo-excitation
force [25,30]. Consequently, the damage-induced local pseudo-excitation force can be harnessed for
damage detection, localization and quantification.

However, the values of EI, C or ρA in Equation (16) are normally unavailable or inaccurately
described in practice. Instead of evaluating the individual material or geometric parameters,
an integrated parameter is proposed by converting Equation (16) into

DI(x,ω) = ∇4W(x) + c0W(x) (18)

where c0 =
(
iCω− ρAω2

)
/EI is a constant value at a given ω. Provided that damage zones only occupy

a small area of the inspected structure, the majority of the structure still satisfies DI(x,ω) = 0 within
the inspection region when f (x,ω) = 0. Therefore, coefficient c0 can be readily determined based on
the least-squares criterion at each interested ω. In this case, the proposed DI in Equation (18) is capable
of localizing damage without the knowledge of material/structural properties.

4. Robust Damage Localizations Based on a Novel Data Fusion Approach

Naturally, for any given ω, the sensitivity of DI(x,ω) to damage depends on damage locations.
Hence, an integrated damage index that incorporates damage-induced characteristics at different
modes should be more robust and effective. However, the damage location information contained in
different modes is often in conflict with each other. For instance, one mode provides damage location
evidence at position i, while another mode may suggest somewhere else. Therefore, a novel data
fusion approach is proposed in this paper to circumvent the conflicting damage location information
for robust damage localization. Before introducing the proposed data fusion method, a review of the
Bayesian fusion is presented first.

At a given ω, the damage probability of each measured point is defined as

P(xi,ω) = P(ω|xi) =
DI2(xi,ω)∑m

k=1 DI2(xk,ω)
(19)
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The basic probabilities at different angular frequencies can be combined based on the Bayesian
fusion. Consider that there are two damage information sources at ω1 and ω2. According to the
Bayesian formula, the combination of two damage information sources is

P(xi|ω1,ω2) =
P(ω1,ω2|xi)P(xi)∑m

k=1 P(ω1,ω2|xk)P(xk)
(20)

where the prior probability values are assumed as P(xi) = 1/m (i = 1, 2, · · · , m) [34]. Furthermore,
when each damage location information can be treated as independent, Equation (20) is expressed as

P(xi|ω1,ω2) =
P(ω1|xi)P(ω2|xi)P(xi)∑m

k=1 P(ω1|xk)P(ω2|xk)P(xk)
(21)

Similarly, the Bayesian fusion of damage information at M angular frequencies is

P(xi|ω1,ω2, · · · ,ωM) =
P(xi)

∏M
r=1 P(ωr|xi)∑m

k=1 P(xk)
∏M

r=1 P(ωr|xk)
(22)

From Equation (22), if damage information is not present at a source ω, the Bayesian fusion
will not be able to provide effective damage localization, as individual damage information will be
disappear in the multiplication operator. Thus, to circumvent this drawback of Bayesian fusion, a
variant form of Bayesian fusion is proposed in this paper for robust damage localization, which is
defined as

P(xi|ω1,ω2, · · · ,ωM) =
P(xi)

∑M
r=1 P(ωr|xi)∑m

k=1 P(xk)
∑M

r=1 P(ωr|xk)
(23)

5. Numerical Study

A finite element model of a cantilever beam with two open cracks was coded based on the
Euler–Bernoulli beam theory to validate the effectiveness of the proposed mode shape estimation method
and the constructed damage localization index. Rayleigh damping, C = αM + βK (α = 8.0272 and
β = 1.0170× 10−5, which sets a 2% damping ratio for the first and third modes), was utilized to include
the damping effects. The beam was discretized into 40 elements, as shown in Figure 1, which is
fine enough to provide a convergence solution. Other material and geometrical parameters of this
cantilever beam are given in Table 1.

Figure 1. A cantilever beam with two open cracks.

Table 1. Properties of cantilever beam.

Properties Length
(m)

Cross-Section
(m2)

Young’s Modulus
(GPa)

Mass Density
(kg/m3) Poisson Ratio

Values 0.7 0.02 × 0.02 210 7850 0.33

Moreover, the details about the two cracks are presented in Table 2 and the modelling of cracks is
based on the fracture mechanics [35]. The stiffness matrix of intact elements is treated as unchanged
while the stiffness matrix for a cracked element is defined as

Kc = Ts
TG−1Ts, (24)
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in which the transformation matrix Ts and flexibility matrix G of a cracked element are expressed as

Ts =

[
−1,−le, 1, 0
0,−1, 0, 1

]
G = 1

6EI

[
2l3e 3l2e
3l2e 6le

]
+

18π(1−v2)
Ebh2

[
l2e 2le
2le 4

] ∫ hc/h
0 ηF2

I (η)dη
(25)

where le denotes the element length, b is the beam width, h is the beam depth and hc is the depth of
crack. FI(η) is an approximate expression of the mode-I stress intensity factor as

FI(η) =

√
tan(πη/2)
πη/2

0.923 + 0.199(1− sin(πη/2))4

cos(πη/2)
, η = hc/h (26)

Table 2. Crack information of the numerical study.

Cracks Location (m) Measurement Points Depth Percentage

Crack 1 0.249 7∼8 5%
Crack 2 0.499 14∼15 5%

In addition, the random excitation force F possesses a normal distribution with the mean value
and standard deviation being 0 and 50 N, respectively. Velocity time series are acquired at the labelled
20 points shown in Figure 1.

Firstly, while aiming to study the noise robustness of different mode shape estimation approaches,
Gaussian white noise was introduced to contaminate the acquired velocity responses in the form of

ŷi(t) = yi(t) + dnlevelσ(yi(t)) (27)

where d implies a random value of normal distribution with a zero mean and variance being 1,
nlevel is the noise level range of [0, 1] and σ(yi(t)) denotes the standard deviation of vibration
responses at the i-th measurement point. To better represent the noise level nlevel, it is quantified using
signal-to-noise-ratio (SNR).

The output responses were polluted by the same noise level SNR = 40 dB 1000 times. With each
noise realization, the mode shapes were evaluated by SVD of PSDT and joint SVD of PSDT methods,
respectively. For both SVD of PSDT and joint SVD of PSDT methods, the system natural frequencies
were determined by the proposed natural frequency indicator in Equation (10), and examples of the
identified natural frequencies of this numerical case are illustrated in Figure 2. The first three natural
frequencies can be clearly detected, which demonstrates the effectiveness of the proposed system’s
natural frequency indicator. With the obtained natural frequencies, their corresponding mode shapes
were estimated by applying SVD of PSDT and joint SVD of PSDT methods, respectively. The first
three mode shapes and their coefficients of variation (CVs) over 1000 noise realizations are shown in
Figure 3. It is worth noting that the peaks in the CV plots in Figure 3d,f are located around the node
points of corresponding mode shapes. The reason is that the mode shape values around node points
are almost zero, which led to a very low signal-to-noise-ratio and large CV values.
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Figure 2. System natural frequency indicator based on the singular value decomposition (SVD) of the
PSDT method.

Figure 3. Estimated mode shapes and their CVs for the first three modes: (a) the 1st mode shape;
(b) CV of the 1st mode shape; (c) the 2nd mode shape; (d) CV of the 2nd mode shape; (e) the 3rd mode
shape; (f) CV of the 3rd mode shape.

From Figure 3a,c,e, it can be seen that the estimated mode shapes by both methods are highly
similar to each other. However, Figure 3d,f manifest that the CVs of the joint SVD method are smaller
than those of the SVD method for the second and third modes, which shows that the mode shapes
estimated by joint SVD of PSDT method are more noise-robust than those by SVD of PSDT method.
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Here, the CV of the first mode as given in Figure 3b indicates no obvious difference for these two mode
shape estimation methods. The possible reason is that the first mode, which is the dominant mode
shape of the random vibration in this study, is more robust to the influences of measurement noise
than the mode shapes associated with higher natural frequencies. Furthermore, the proposed damage
localization index based on identified mode shapes by joint SVD of PSDT should be more accurate and
effective. For the validation of this conclusion, a numerical case containing two cracks of 5% depth
reduction was studied and the damage localization results under noise level SNR = 40 dB are depicted
in Figure 4.

In Figure 4, the damage localization results of the joint SVD of PSDT method outperform the SVD
of PSDT method in terms of accuracy and noise robustness. In addition, by comparing Figure 4b with
Figure 4a, it can be concluded that the proposed data fusion approach provides more accurate damage
localization results than the traditional Bayesian fusion approach. Later on, the defects of the Bayesian
fusion are further illustrated by using the experimental studies in Section 6.

Figure 4. Damage localization results of two cracks with 5% depth reduction. (a) Proposed data fusion
approach; (b) Bayesian fusion.

In addition, to test the sensitivity and robustness of the proposed damage localization method to
different damping ratios, noise levels, severity of damage and damage positions, different damage
scenarios were simulated and damage localization results are illustrated in Figures 5 and 6.

Figure 5. Damage localization results of two cracks with 5% depth reduction under (a) different damping
ratios and (b) different noise levels.
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Figure 6. Nosie free damage localization results of (a) two cracks with different depth reductions and
(b) different numbers of cracks with 10% depth reduction.

In Figure 5a, the damage localization accuracy decreases for large damping ratios, but the
damage index peaks still appear around the damage positions and provide useful damage localization
information. The reason is that a higher damping ratio will degrade the estimation accuracy of resonant
frequencies, and thus the corresponding mode shapes, as the resonant frequency peaks shown in
Figure 2 will become flatter and harder to be identified in the proposed OMA method. For high noise
levels, such as given in Figure 5b, the lower SNR undermines the damage localization results, as the
two damage locations cannot correctly detected when SNR decreases to 30 dB. In addition, the two
damage index peaks in Figure 5b have different heights, which indicates different damage sensitivities.

It can be seen from Figure 6a that the proposed damage localization method fails when the depth
reduction of the two cracks gets as low as 3%. However, being able to identify depth reduction just
above 3% should be considered to be highly accurate. Naturally, the larger the damage depth reduction,
the sharper the damage index at the damage locations. In addition, the proposed method examines
the local dynamic equilibrium point-by-point by using the mode shape data and it is suitable for
multi-crack localization, as demonstrated in Figure 6b. In Figure 6b, the two damage cases with three
and four cracks are clearly localized by the damage index peaks.

6. Experimental Studies

The purposes of this part were twofold. First, the mode shapes calculated by joint SVD of PSDT
were experimentally proven to be more accurate and effective in damage localization than those by
SVD of PSDT method. Secondly, the proposed data fusion approach was validated to be more robust
and effective for damage localization than the Bayesian fusion.

Two cantilever beams of 0.7× 0.02× 0.02 m3 with two cracks of different damage severities were
used. A PSV-500 Scanning Laser Vibrometer was used for the velocity response acquisition at the
prescribed 21 measurement points shown in Figure 7b. A pseudo-random excitation with frequency
range of 0–800 Hz was adopted to excite the cantilever beam at the free end via a shaker (LDS V406).
The excitation has a normal distribution with mean value and standard deviation being 0 and 13.2 N,
respectively. Furthermore, damage was machined as narrow slots, and its details are tabulated in
Table 3. In addition, the cracks are on the opposite sides of the measurement surface and marked as the
blue lines in the front view in Figure 7b. For each measurement point, as shown in Figure 7b, a total
data acquisition time of 12.5 s was used with a sampling frequency of 2000 Hz. The PSV-500 system
successively moved to the next measurement point while repeating the excitation. For information,
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the time domain signals of the excitation force and velocities at measurement points 1, 10 and 21 are
shown in Figure 8.

Figure 7. (a) Experimental set-up and (b) a cantilever beam with two cracks.

Table 3. Crack parameters of the two damage scenarios.

Cases Cracks Positions
(m)

Measurement
Points

Crack
Depths (m)

Damage
Percentage

Crack Widths
(m)

1 Crack 1 0.2 6∼7 0.004 20% 0.001
1 Crack 2 0.4 12∼13 0.004 20% 0.001
2 Crack 1 0.2 6∼7 0.006 30% 0.001
2 Crack 2 0.4 12∼13 0.006 30% 0.001

Firstly, the proposed system natural frequency indicator defined in Equation (10) is presented
for experimental case 1 in Figure 9, and the first three natural frequencies can be clearly determined,
which experimentally validates the effectiveness of the proposed system natural frequency indicator.
After this, the corresponding mode shape and damage localization results at each natural frequency
were computed by joint SVD of PSDT and SVD of PSDT methods respectively, which are illustrated
in Figure 10.
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Figure 8. The acquired time domain signals of (a) excitation force, (b) measurement point 1,
(c) measurement point 10 and (d) measurement point 21.

Figure 9. System natural frequency indicator based on the SVD of the PSDT method.
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Figure 10. Estimated mode shapes and their individual damage localization results: (a) the 1st mode
shape; (b) damage index of the 1st mode shape; (c) the 2nd mode shape; (d) damage index of the 2nd
mode shape; (e) the 3rd mode shape; (f) damage index of the 3rd mode shape.

Figure 10b,d,f illustrates that the mode shape at a frequency is sensitive to damage, depending on
locations. Therefore, a single mode shape is not robust for multi-damage localizations. Furthermore,
Figure 10b,d,f validates that the mode shapes estimated based on joint SVD of PSDT matrices present
more accurate damage localization results than those by SVD of PSDT matrix. To achieve a robust
damage index, the Bayesian fusion and the proposed data fusion in Equation (23) are harnessed to
construct the integrated damage localization index, whose results are graphed in Figure 11.
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Figure 11. Integrated damage indexes of experimental case 1. (a) Proposed data fusion approach;
(b) Bayesian fusion.

It can be seen from Figure 11 that damage localization results based on the joint SVD method
are more accurate and provide fewer misleading alarms than those by the SVD method. Moreover,
by comparing Figure 11b with Figure 11a, it can be concluded that damage localization based on the
proposed data fusion approach outperforms the traditional Bayesian fusion method, as the damage
localization of Bayesian fusion cannot correctly detect crack 1 and provides more misleading alarms.
To further verify the proposed data fusion approach for robust damage localization, experimental case 2
with two cracks of 30% depth reduction was also tested and the damage localization results are presented
in Figure 12.

Figure 12. Integrated damage indexes of experimental case 2. (a) Proposed data fusion approach;
(b) Bayesian fusion.

A comparison of Figure 12a with Figure 12b shows that both the proposed data fusion approach
and Bayesian fusion methods produce accurate damage localization results for the joint SVD method,
but the Bayesian fusion cannot provide useful information for crack 2 for the SVD method. Besides,
by considering the damage localization results in Figure 11, it can be concluded that the proposed
data fusion approach always achieves accurate damage localization results and is more reliable,
especially for less severe damage cases. Furthermore, the damage localization results based on the
joint SVD method are always more accurate than those by SVD method. Therefore, the proposed
mode shape estimation method and data fusion approach, when combined, significantly improve the
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damage localization accuracy that cannot be obtained based on the existing methods, and also have
the potential to be applied in practical applications under ambient excitation.

7. Conclusions

This paper improves the accuracy of mode shape-based damage localization in three aspects:
mode shape estimation, baseline-free damage index and data fusion. From both numerical and
experimental perspectives, the proposed damage identification method was demonstrated to work
effectively for beam-type structures without requiring the baseline-data in a pristine state. Moreover,
the proposed method is naturally suitable for multi-crack localization, as it examines the local dynamic
equilibrium point-by-point based on the estimated mode shapes. However, the proposed method
performs poorly at high measurement noise levels and high damping ratios, as they degrade the
estimation accuracy of mode shapes. Without the effects of measurement noise, the minimum damage
that can be detected by the proposed method is about 4% depth reduction in the numerical simulation.

Other major conclusions are summarized as follows:

1. The joint SVD method was demonstrated to be more noise-robust in mode shape estimation
than the traditional SVD method. The reason behind this is that mode shapes evaluating as
the common eigen-structure of a set of matrices are more noise-robust than that just using a
single matrix.

2. Mode shapes have their blind inspection zones, which are localized around their node points.
Therefore, damage features of different mode shapes should be integrated to guarantee a robust
and accurate damage localization.

3. The proposed transmissibility-based operational modal analysis method can provide robust
estimation of natural frequencies and mode shapes without any assumption about the excitation
force. Consequently, the proposed damage localization approach is promising for applications
under various operational conditions.
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