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Abstract: Neurological pathologies can alter the swinging movement of the arms during walking.
The quantification of arm swings has therefore a high clinical relevance. This study developed
and validated a wearable sensor-based arm swing algorithm for healthy adults and patients with
Parkinson’s disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with
wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for
optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope
data from the wearable sensors were used to calculate several arm swing parameters, including
amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were extracted
with systematic errors ranging from 0.1 to 0.5◦ and from −0.3 to 0.3◦/s, respectively. These extracted
parameters were significantly different between healthy adults and PwP as expected based on the
literature. An accurate algorithm was developed that can be used in both clinical and daily-living
situations. This algorithm provides the basis for the use of wearable sensor-extracted arm swing
parameters in healthy adults and patients with movement disorders such as Parkinson’s disease.
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1. Introduction

A distinct feature of human locomotion is the rhythmic swinging motion of the arms [1,2].
The amplitude of the swing is associated with gait speed and cognitive loading [3,4]. Active increase
of arm swings has the potential to stabilize gait [5]. The reduction of arm swing amplitude and
other alterations of the arm swing pattern, including asymmetry and irregularity, can be related to
neurological pathologies. In stroke patients, the arm swing amplitude of the affected arm is smaller
compared to that of the controls [6]. Patients with Parkinson’s disease (PwP) also show a smaller
arm swing amplitude and, in addition, more asymmetry, compared to controls [7–9]. Therefore,
the arm swing is regularly evaluated in a clinical setting and has the potential to improve diagnostic
accuracy [7,10,11] and map disease progression [7,11]. Asymmetry in PwP might be associated with
disease progression, as a study with 16 PwP in an early disease stage reported a positive correlation
between asymmetry and the Hoehn and Yahr (HY) stage in an off-medication state [12]. Similar results
were observed in eight mild PwP, showing a positive correlation between asymmetry and the Unified
Parkinson’s Disease Rating Scale (UPDRS) of the limbs [7]. However, another study analyzed 21 PwP
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with HY stage I and 19 PwP with HY stage II using an ultrasound-based motion analysis system,
and the study found more asymmetry in the HY stage I PwP group compared to the HY stage II PwP
group [8]. Levodopa intake or dopaminergic treatment has shown to improve arm swing amplitude,
peak swing velocity, and asymmetry of the amplitude in 104 moderate to severe PwP [13]. This was
confirmed for asymmetry in another study investigating 16 mild to moderate PwP [12].

Due to the dynamic technical development, the measurement of human movement and mobility
has been revolutionized over the last decades and years. Wearable inertial systems (inertial measurement
units, IMUs) are an especially attractive assessment tool for arm swings, as these techniques make it
possible to measure movements during everyday life [10,14–16]. The relevance of measuring mobility
in everyday lives of patients is increasingly recognized because it is likely to differ substantially from
the mobility that is performed in front of a healthcare professional [17].

This study presents, to our best knowledge for the first time, the technical development and
clinical validation of a wearable sensor-based arm swing algorithm for healthy adults and PwP.

2. Materials and Methods

2.1. Subjects and Data Collection

There were 15 healthy adults and 14 PwP who participated in this study. The study was
approved by the ethical committee of the medical faculty of Kiel University (D438/18) and performed
in accordance with the Declaration of Helsinki of 1975. All subjects provided written informed
consent before participating. The inclusion criterion for the healthy adults was no disorders that affect
movement, and the inclusion criterion for PwP was a Parkinson diagnosis according to UK Brain Bank
Criteria [18].

The healthy subjects walked at three different speeds (2, 3, and 4 km/h) on a treadmill (size: 2.2 by
0.7 m; Woodway, Weil am Rhein, Germany) for 80 s. The PwP walked on their self-selected speed on
the same treadmill for at least 60 s.

2.2. Definition of Arm Swing during Locomotion

In order to develop this algorithm, it was necessary to define the movement “arm swing” in
such a way that on one hand it is coherent with existing information [1,2], and on the other hand also
addresses the characteristics of the technology used. We therefore propose the following definition:

Definition 1. Arm swing is a rotational movement of the arm, occurring during walking and running in bipeds
with a periodicity of around 1–2 Hz. The hand and arm move freely through space in opposite directions with
most of the movement in the sagittal plane of the body frame (backward and forward; Figure 1a).

Figure 1. (a) Definition of swings. (b) Placement and orientation of the right-handed coordinate system
of inertial measurement unit and reflective markers.
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This arm swing algorithm was developed for the data collected during walking. The periodicity
of an arm swing had to be between 0.3 and 3 Hz. The minimum amplitude to define an arm swing
was set at 5◦. Only rotations around the frontal and sagittal axis were taken into account because
the wearable sensor might not always be aligned with the sagittal plane of the body frame during
the swinging motion of the arms. In this way, all the rotations of the arms are measured except the
longitudinal rotations, since they will also be influenced by turns of the body.

2.3. Equipment

All subjects were equipped with a cluster of three reflective markers (11 mm) and an
inertial measurement unit (IMU) (Noraxon USA Inc., Scottsdale Arizona, AZ, USA) containing
3D accelerometers, 3D gyroscopes, and 3D magnetometers, on each forearm. The position of the
markers was aligned with the position of the IMUs to have a similar orientation of the right-handed
coordinate systems (Figure 1b). The markers were captured with a 3D optical motion capture system
(Qualisys AB, Göteborg, Sweden) at 200 Hz. Both systems recorded simultaneously at 200 Hz.

2.4. Data Processing

2.4.1. Inertial Measurement Unit Data

Only the gyroscope data of the IMU were used in this offline algorithm. The algorithm was
written with MATLAB 2017a.

The gyroscope data were filtered with a zero-phase second order Butterworth low pass filter with
a cut off frequency of 3 Hz to omit noise and possible tremors (ωfilt). A principal component analysis
(PCA) was performed on the x and y component of the angular velocity. The longitudinal component
(z-axis) was not taken into account for the PCA in order to remove any longitudinal rotations (such as
turning) from the data. From here on, only the first component of the PCA (ωPCA1) is used for the
analysis. This first component represents the angular velocity in the direction of the arm swing.
Extracting the angular velocity in the swing direction makes this algorithm insensitive to different
wearing locations of the IMU on the forearm as long as the z-axis is aligned with the longitudinal axis
of the arm. The angle (α) was calculated from the angular velocity in the swing direction (ωPCA1) by
numerical integration using a trapezoidal integration approximation:

α(t) =
∫ t

τ=0
ωPCA1(τ)dτ. (1)

A symmetric moving average (m̂α) was calculated with a window length of 2q + 1, where q is
half a second (representing a window length of 1.005 s with a sample frequency of 200). The moving
average was subtracted from the angular data to remove the low frequency drift.

m̂α(n) =
∑q

j=−q b( j) α(n + j), q < n < N − q;

with b( j) =

 1
4q , i f j = ± q
1
2q , else

(2)

αdetrend(t) = α(t) − m̂α(t). (3)

The frequency was extracted with a fast Fourier transform (FFT) from 3 s rectangular windows
with 75% overlap. The dominant frequency was extracted from each window. The percentage of the
power that was in the 0.3–3 Hz domain was calculated and used to determine whether there was a
periodical movement in this specific frequency domain of arm swing motion. When this percentage
was below an empirically determined threshold of 90%, this window was not taken into account for
further analysis.
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The local maxima and minima from the angle signal (αdetrend) were extracted. Both the positive
and negative peaks needed to have a minimum peak prominence of 2◦ and a minimum distance of
60% of the cycle time that was extracted from the dominant frequency per window from the FFT.
The overlap of the 3 s rectangular windows for the peak detection was 50%. Peaks that were detected
multiple times due to the overlapping windows were only considered once. In between two maxima,
only one minimum was allowed, and in between two minima only one maximum was allowed. In case
of an extra detected peak, the smallest peak was discarded. The magnitudes of a consecutive minimum
and maximum or a maximum and minimum were added to each other to obtain the amplitude of the
swing. The time instants of these extrema were then used to find the extrema in the angular velocity
in the swing direction to obtain the peak angular velocity. When a swing took longer than twice the
average cycle time, it was discarded because of the low probability of it being an actual arm swing.
Any outliers (peaks that were larger than three times the 80th percentile of the peaks detected in the
angle signal) were removed because those were probably other movements than the regular swinging
motion during walking (e.g., scratching the head). Every swing with an amplitude below 5◦ or a peak
angular velocity below 10◦/s was removed from the data because a high detection accuracy cannot be
guaranteed during such small arm movements. An overview of the main steps taken are provided in
Figure 2.

Figure 2. Block diagram of the arm swing algorithm.

Additionally, the peak angular velocity was divided into forward and backward angular velocities,
based on whether it was a minimum or a maximum in the angular velocity in the swing direction.
This makes it possible to analyze potential differences caused by the direction of the movement.
When there were no periodical movements of the arm or the arm movements were too small, no arm
swing parameters were calculated. To understand whether the amplitude and peak angular velocity
were calculated during the complete walking bout or only for a shorter period, the percentage of time in
which there were swings detected in one arm during the walking bout was extracted. How frequently
the arms moved was represented in the frequency as was extracted with the FFT. The similarity between
neighboring swings was represented with the regularity. The regularity was calculated based on the
autocorrelation of the angle [19]. The autocorrelation was extracted with a 4.5 s Tukey window with
a cosine fraction of 0.3 and a 99% overlap of the windows. The maximum autocorrelation of each
window was extracted, and the average of these values was taken as regularity. A regularity of 1 means
that a swing is exactly similar to its neighboring swings.

When both arms were measured and the IMUs were synchronized, the percentage of
simultaneously occurring arm swings in both arms was calculated. Arm swings were deemed
simultaneous when a change in direction (i.e., forward to backward or backward to forward) of an arm
swing in one arm was within 500 ms from a change in direction of the arm swing in the other arm. If at
least 60% of the walking episode was with simultaneously swinging arms, the asymmetry index (ASI)
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was calculated for the average amplitude and peak angular velocity. For the calculation of the ASI,
only the phases with swings detected in both arms simultaneously were taken into account [20]:

ASI =
(L−R)

max(L, R)
× 100 (4)

where L is the amplitude or the peak angular velocity of the left arm and R the similar parameter of the
right arm. An ASI of 0% reflects identical values of the left and right arm. The coordination between the
left and right arm was calculated when during at least 60% of the walking episode, arm swings were
detected in both arms simultaneously. The coordination was based on the normalized cross-correlation
of which the minimum value was calculated. The absolute of this minimum was calculated for each
swing during the phases where there were arm swings in both arms simultaneously, of which then the
average was taken to obtain the coordination. This is a slightly adjusted version of [12], where they
calculated the maximum of the absolute signal instead of the absolute minimum.

rLR(m) =

∑N−m−1
n=0 ωPCA1_L(n + m) ωPCA1_R(n)√∑N−m−1

n=0 ωPCA1_L(n)
2

√∑N−m−1
n=0 ωPCA1_R(n)

2
, (5)

coordination =
1
n

∑∣∣∣min(rLR(m))
∣∣∣. (6)

withωPCA1_L andωPCA1_R the angular velocity in swing direction of the left and right arms respectively,
and m ranging from 0 ± 0.5 s. A value of 1 indicates that the left and right arms swing with a similar
rhythm that is exactly out of phase with each other. A value of 0 indicates that there is no coordination
between the arms.

The algorithm is available online (https://github.com/EWarmerdam/ArmSwingAlgorithm).

2.4.2. Optical Data

Gaps in the optical data smaller than 250 ms were filled based on marker intercorrelations [21].
The parts of the data with gaps larger than 250 ms were discarded. A local coordinate system was
calculated from the three markers on the wrist. The angular velocity was obtained from the derivative
of the orientation. The orientation was also used to calculate the Cardan angles (order: zxy). The angle
and angular velocity were rotated in the swinging direction based on the results from the PCA of the
IMU data. From there on, the amplitude and peak angular velocity were obtained in the same way as
with the IMU data.

2.5. Statistical Analysis

For the validation, the data of both arms were taken together. To compare the angle and the
angular velocity between both systems, the root mean square errors (RMSe) between the IMU and
the optical data were calculated. A Bland–Altman analysis was performed to extract the systematic
error (average of the difference between the IMU-derived and the optical system-derived data) and the
random error (95% confidence intervals ± systematic error) of the arm swing amplitude and the peak
angular velocity [22]. The average absolute error was calculated to obtain the magnitude of the error
between the two systems.

For the clinical validation, the arm swing parameters of the healthy participants walking at
different speeds were compared to those of the PwP group. The amplitude, peak angular velocity,
percentage of walking bout with arm swing, frequency, and regularity were calculated with averaged
data of the left and right arms. The percentage of the walking bout with the arm swing in both arms
simultaneously, asymmetry, and coordination were calculated by comparing left versus right arm data.
For the asymmetry, the magnitude was taken for the analysis. A Mann–Whitney U test was used to
test for significance (p < 0.05).

https://github.com/EWarmerdam/ArmSwingAlgorithm
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3. Results

One PwP was taken out of the analysis because all amplitudes of the arm movements did not
reach the 5◦ threshold. An overview of the remaining participants taken into the analysis is provided
in Table 1.

Table 1. Demographics (mean ± standard deviation) of the subjects.

Healthy Adults PD Patients

n (male) 15 (9) 13 (5)
Age [years] 31 ± 9 71 ± 9

Body mass index [kg/m2] 23.4 ± 2.7 28.5 ± 5.9
Hoehn and Yahr stage (1–5) NA 2.8 ± 0.7

3.1. Healthy Adults

Fifteen healthy adults walked at three different speeds on a treadmill. The RMSe of the angle
and angular velocity between the IMU- and optical system-derived signals were below 1◦ and below
0.05◦/s, respectively (Figure 3, Table 2). The systematic errors were in the range of 0.1 to 0.5◦ for the
amplitude and −0.1 to 0.3◦/s for the peak vertical velocity of the different speeds (Figure 4, Table 2).
The random error of the amplitude was between 2.2 and 2.7◦, and the random error of the peak angular
velocity was between 4.2 and 5.3◦/s. The absolute errors ranged from 0.9 to 1.1◦ for the amplitude and
from 1.4 to 1.9◦ for the peak angular velocity.

Figure 3. The angle of the inertial measurement unit (IMU) and optical data of a healthy participant
and of a patient with Parkinson’s disease.

Table 2. Error measures of IMU-derived arm swing data, compared to optical system-derived data.

Healthy
Adults
2 km/h

Healthy
Adults
3 km/h

Healthy
Adults
4 km/h

PwP
Preferred

Angle RMSe [◦] 0.83 0.91 0.72 1.18
Angular velocity RMSe [◦/s] 0.03 0.03 0.03 0.16

No. of swings 3885 3788 4103 1762

Amplitude [◦]
Systematic error 0.1 0.4 0.5 0.2
Random error 2.6 2.2 2.7 3.8
Absolute error 0.9 0.9 1.1 1.1

Peak angular velocity [◦/s]
Systematic error −0.1 −0.1 0.3 −0.3
Random error 4.2 4.4 5.3 6.8
Absolute error 1.4 1.6 1.9 2.0

PwP: patients with Parkinson’s disease; RMSe: root mean square error.
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Figure 4. Bland–Altman plots are shown with the arm swing amplitude and peak angular velocity at
2 km/h (a), 3 km/h (b), and 4 km/h (c) for the healthy adults and at the preferred speed (d) for patients
with Parkinson’s disease. On the x-axes, the average of the IMU and optical results are presented,
and on the y-axes the differences between IMU and optical results (IMU-optical) are presented.

3.2. Patients with Parkinson’s Disease

Thirteen PwP walked at their preferred speed (average 1.4 km/h) on a treadmill. The RMSe
between the IMU-derived and optical system-derived data was 1.16◦ for the angle and 0.16◦/s for the
angular velocity (Figure 3, Table 2). The systematic errors were 0.2◦ and −0.3◦/s for the amplitude and
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peak angular velocity, respectively (Figure 4, Table 2). The random errors were 3.8◦ and 6.8◦/s, and the
absolute errors were 1.1◦ and 2.0◦/s for the amplitude and peak angular velocity, respectively.

3.3. Clinical Validation

All the arm swing parameters were extracted with the algorithm and compared between the
groups. The percentage of the walk with swinging motion in one arm was the only parameter that was
significantly different between the groups on all speeds. On higher speeds, more significant differences
were found between the groups (Table 3).

Table 3. IMU-based arm swing parameters for the healthy adults and the patients with
Parkinson’s disease.

Healthy
Adults

(2 km/h)

Healthy
Adults

(3 km/h)

Healthy
Adults

(4 km/h)

PwP
(Preferred)

Amplitude [◦] 16 23 * 36 * 17
Peak angular velocity [◦/s] 57 84 * 122 * 60

Forward peak angular velocity [◦/s] 59 87 * 124 * 60
Backward peak angular velocity [◦/s] 55 80 * 120 * 59

Percentage of walk with swinging motion in an arm [%] 93 * 99 * 99 * 78
Frequency [Hz] 0.9 0.9 0.9 0.9
Regularity (0–1) 0.8 0.9 * 0.9 * 0.7

Percentage of walk with swinging motion in both arms
simultaneously [%] 90 * 97 * 98 * 64

Absolute amplitude asymmetry index [%] 20 17 20 36
Absolute peak angular velocity asymmetry index [%] 19 18 21 33

Coordination (0–1) 0.7 0.8 0.8 0.8

*: significantly different from patients with Parkinson’s disease (p < 0.05); see the data processing part in the methods
for the calculations and interpretation of the parameters. For the asymmetry and coordination, seven PwP could
be included in the analysis; the other four did not fulfil the criteria for the calculation of these parameters (see
Methods section).

4. Discussion

This study presents the development and the validation of an arm swing algorithm based on
wearable sensors (i.e., IMUs) positioned on the wrists for healthy adults and PwP. Based on our data,
the algorithm is extremely accurate. Arm swing amplitude and peak angular velocity can all be
extracted with a very small systematic error compared to the reference system.

The random errors are slightly higher for the PwP group compared to the healthy adults group.
This may—at least partly—be due to the less fluent movement of the arms in PwP. It can be seen in
Figure 3 and in the RMSe (Table 2) that the IMU and optical data do not overlap as well in the PwP
compared to the curves derived from a healthy adult. This deviation between the IMU and optical
data is especially seen around the peaks.

The healthy adults were measured at multiple speeds. Based on visual interpretation, the walking
speed was not of influence on the accuracy of the algorithm. This should make the algorithm suitable for
measuring arm swings in usual daily-living situations, which is particularly relevant for longitudinal
and therapy studies. However, the algorithm itself cannot detect when someone is walking and might
therefore include other repetitive movements of the arm that are performed throughout the day. Ideally,
the arm swing algorithm should therefore be combined with a gait detection algorithm [23,24] when
used for measurements outside the lab to make sure as much as possible that arm swings are only
analyzed during walking. It should also be noted that a walking bout needs to be at least 3 s for
the algorithm to work. For daily-living assessments, a higher minimum walking bout length might
need to be set to exclude artefacts. This can omit wrongly increased variability of the data. Users of
the algorithm should also take arm swing data from longer walking bouts with a certain degree of
caution, as also during such walking episodes, arm movements that are not arm swings as defined in
the introduction can occur. Examples are arm movements that are not based on freely moving hands
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(e.g., when swinging a bag or using Nordic walking sticks) and animated movements (e.g., performed
based on a given rhythm that comes from earphones of external sources).

According to the protocol of a future study or the main objectives of clinical management that
aim to integrate this algorithm in their approaches, the algorithm may be adapted to individual needs
and situations. For example, in this particular study, arm swings with an amplitude below 5◦ were
excluded. This is a very low threshold (corresponding to a horizontal displacement of 6 cm with an
arm length of 70 cm), and can lead to false positive results in less strictly defined data sets (for example,
it may detect movements of the arms and hands that are in the pockets during walking). Therefore, for
daily-living assessments, we suggest increasing the threshold for the amplitude and combining it with
a gait detection algorithm. Future studies must evaluate which thresholds have the highest accuracies,
especially when recording unsupervised daily-living data. It should be mentioned again that this
inaccuracy falls within the clinical and phenomenological domain and does not call into question the
high technical validity of the algorithm (i.e., the compliance with the reference; see above).

For an initial clinical validation, all the parameters from the algorithm were extracted and
compared between healthy adults and PwP. The percentage of the walk with swinging motion of the
arms was significantly different in PwP, compared to all walking conditions performed with healthy
adults. This makes a comparison of the arm swings between the groups difficult because we have to
assume that in the PwP group, those arm swings are exactly the ones not included in the calculation
that fall below the specified threshold of 5◦. Therefore, the following qualitative comparisons must be
interpreted with caution. Nevertheless, differences can be found in all group comparisons (Table 3).

When we compared the 4 km/h condition of the healthy adults, which comes probably closest to
their preferred speed, we found significant differences in arm swings between the groups, and this
finding corresponds to the literature [25–27]. Since we found less significant differences on 2 km/h,
it could be that walking speed has an influence on the differences found between healthy adults and
PwP, which certainly has to be investigated in future studies.

The lateralization of the disease may also have a relevant influence on arm swing parameters
in PwP. A study with slow walking speeds on a treadmill only found significant differences for the
amplitude between the most affected side of PwP compared to healthy adults [8]. Our results on
asymmetry corroborate these preliminary results. The percentages of the walks with simultaneously
performed swinging motions in both arms were substantially lower in PwP, compared to healthy adults
at all measured walking speeds. We assume similarly according to our reasoning in the above paragraph
that all qualitative evaluations that were performed in the PwP group may thus underestimate the real
asymmetry and lack of coordination of arm swings because it is exactly those arm swings with high
asymmetry and low coordination values that are excluded based on our threshold (arm swing > 5◦).
Nevertheless, it is noticeable (see also Table 3) that PwP have higher amplitude and peak angular
velocity asymmetry indices than healthy adults. In conclusion, our preliminary clinical results indicate
that the known differences in arm swing between PwP and healthy adults can be reliably and accurately
detected with this algorithm, and future clinical studies may include this algorithm.

A study reporting about prodromal changes of gait in PD was recently published [28], but it
did not report about arm swing behavior. The algorithm presented here can now be used to analyze
such data sets with higher granularity and more exhaustive information about body movement.
The algorithm can also extend the movement assessment for observational studies, clinical trials,
and clinical management to the daily-living environment, an area that we have not been able to
investigate and understand in much detail so far. The evaluation of disease progression and response
to treatment in PwP has a similar or even higher relevance, not only for the amplitude of arm swings
but also for all other parameters presented in Table 3. Arm swing parameters could help to differentiate
healthy adults from PwP, and they may be useful for the detection and diagnosis of additional diseases
associated with impaired mobility (such as multiple sclerosis). Of course, the application of this
algorithm also opens up new options in the evaluation of arm swings in the context of aging in general,
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with respect to the significance of arm swings in fallers, and how arm swings differ between supervised
and unsupervised environments, to name a few examples.

Some aspects should be taken into account when using the algorithm in future studies. First,
turns during walking in daily living have no influence on the algorithm itself, since rotations around
the longitudinal axis are not taken into account. When the walking turns should be separated from
the walking data, a turning algorithm should be used to detect the turns [29,30]. Second, in general,
the tarm moves in phase with the contralateral leg. However, on slower speeds, the arms can swing in
a 2:1 ratio with the legs instead of 1:1 [31,32]. This in itself is no issue for the algorithm. However,
during the transition phases between these two ratios (Figure 3, about 7 s), it depends on how fast
the frequency changes and whether the swing is above the set thresholds if this swing in between
is detected. When it is detected, it might influence the variance of the data, since the amplitude,
peak angular velocity, and average angular velocity are smaller compared to the other swings. Third,
people can be measured on one or two wrists. It is self-explanatory that in case of only one wearable
device, the percentage time where there was a swing in both arms, the asymmetry, and the coordination
cannot be calculated. Fourth, for some of the PwP, there were only a few arm swings detected during
the walking bout because the arm movements did not exceed the 5◦ threshold. This is likely to happen
more often in severe PwP.

The study faces the limitation that during the measurements the participants walked on a
treadmill, which results in slightly different upper body movements compared to over ground
walking [33]. However, we consider this a minor issue, as the main aim of the study was the validation
of the IMU-derived arm swing algorithm against a reference that was assessed simultaneously.
Moreover, the healthy controls were in their young adulthood and thus substantially younger than
PwP. This implies that we are mapping an age effect in the clinical validation data for which we cannot
correct in this data set. However, we are optimistic that we will still map a Parkinson-associated
difference, as our data confirm the data from previously published studies. We are also working on
a detailed representation of arm swings in existing data sets of large cohorts, including the TREND
study (https://www.trend-studie.de/).

5. Conclusions

An arm swing algorithm was developed and validated for both healthy adults and PwP.
The algorithm is highly accurate in a clinical environment and has high potential to be used in
a daily-living environment as well.
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