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Abstract: Underwater acoustic sensor networks play an important role in assisting humans to explore
information under the sea. In this work, we consider the combination of sensor selection and data
routing in three dimensional underwater wireless sensor networks based on Bayesian compressive
sensing and particle swarm optimization. The algorithm we proposed is a two-tier PSO approach.
In the first tier, a PSO-based clustering protocol is proposed to synthetically consider the energy
consumption and uniformity of cluster head distribution. Then in the second tier, a PSO-based
routing protocol is proposed to implement inner-cluster one-hop routing and outer-cluster multi-hop
routing. The nodes selected to constitute i-th effective routing path decide which positions in the i-th
row of the measurement matrix are nonzero. As a result, in this tier the protocol comprehensively
considers energy efficiency, network balance and data recovery quality. The Bayesian Cramér-Rao
Bound (BCRB) in such a case is analyzed and added in the fitness function to monitor the mean square
error of the reconstructed signal. The experimental results validate that our algorithm maintains a
longer life time and postpones the appearance of the first dead node while keeps the reconstruction
error lower compared with the cutting-edge algorithms which are also based on distributed multi-hop
compressive sensing approaches.

Keywords: Bayesian compressive sensing; particle swarm optimization; three dimensional
underwater wireless sensor network; Bayesian Cramér-Rao Bound

1. Introduction

1.1. Motivation

In recent decades, the research on wireless sensor networks (WSNs) has been a hotspot for
numerous applications, such as, environment monitoring [1], smart cities [2,3], military monitoring [4],
maritime resource gathering [5] and health-care surveillance [6].

As maritime rights and interests are paid more and more attention, underwater wireless sensor
networks (UWSNs), an important extension of WSNs into ocean, is of great value in various application
fields, such as, oceanographic information collection, hydrological and environmental monitoring,
resources exploration, disaster forecast, underwater navigation, military defense, and etc. [7].
For UWSNs, there exist two kinds of topological structures, two dimensional network and three
dimensional network. In this work, we study the three dimensional UWSNs, with which all nodes are
deployed at different depths in the ocean.

Generally, in WSNs, including UWSNs, the information from all sensor nodes, which are equipped
with limited power battery, are gathered to the sink node. When the power of the node is used up, the
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node expires. While most nodes died, the sink node is no longer able to gain necessary information
from common nodes. Considering the fact that the nodes are hard to recharge, energy consumption
remains a key factor that affects the whole network lifetime. On the other hand, in underwater scenario,
as the network usually occupies large area and the effective transmission semidiameter is limited,
those nodes who might not transfer the signal to sink node in one hop will need relay nodes. As a
result, to design an efficient data routing algorithm for UWSN, it is vital to reduce the processing
complexity and traffic overhead and meanwhile ensure that the data are collected efficiently. Wang et
al. [8] render a layering algorithm which divides nodes to different parts according to their depth and
data are forwarding based on opportunistic directional forwarding strategy. Guan et al. [9] improved
opportunistic routing by adding distance-vector. The algorithm uses a query mechanism to establish
the distance vectors for sensor nodes, then opportunistic routing is developed to forward packet based
on the distance vectors. Further studies tend to cluster all nodes in the network, and only transmit the
merged message in the cluster head to the sink node. Common nodes just need to transmit their data
to their cluster heads (CHs) in one hop. For instance, clustering is added as one stage in [10] to save
energy better. This strategy cuts down the energy-consumption efficiently. In [11], clustering and CH
transmission are introduced as well. After the formation of cluster and selection of CH, the courier
nodes are deployed into the clusters to collect the aggregated data from the CHs, and the visiting tour
is scheduled based on the Decisional Welzl’s algorithm.

However, the works above do not consider the facts that in UWSN, while the sensor nodes are
deployed to measure environmental data, for example, maritime temperatures, the signals they collect
usually possess spatial correlations that induce sparsity into practical application. Based on such a fact,
we comprehensively consider the routing strategy and the data sparsity to save energy even further. In
such contexts, compressive sensing (CS) is adopted to reduce communication cost while also preserve
information precisely. In this paper, we propose a CS based schedule which simultaneously considers
routing and nodes selection for overall data reconstructions at the sink node for 3-D UWSNs. We
use Particle Swarm Optimization (PSO) to optimize both the clustering and routing protocols design
while the factors consisting of fitness functions consist of signal recovery quality, energy consumption,
network balance and etc..

1.2. Related Work

CS, which unifies sampling and compression, has been enthusiastically promoted and studied
[12,13]. It states that when the original signal is sparse itself or sparse on some basis, we can reconstruct
it from compressed measurements. Making use of its advantages on simple encoding and efficient
compressing, many researchers apply CS in WSN to achieve advanced compression compared with
conventional compression algorithms [14–16]. CS could also be utilized for sensor selection; that is,
only part of nodes will be chosen to transmit the product of its data with a random coefficient to the
sink [17–19]. In the context that all nodes transmitted their data directly to the sink node in one hop,
Hwang et al. [20] propose both centralized and decentralized algorithms for sensor selection under
multi-variated noise condition. In [21], a tree-based algorithm named CDG is designed to reduce the
payload falling on nodes close to the BS. In [22,23], a WSN is partitioned into clusters. Sensor readings
are sent to CHs and the CHs send the received data to the BS. However, the measurement matrices
they adopt are all full Gaussian ones which consume more power than the sparse measurement matrix
used in our work. In the other word, they do not combine the routing and nodes selection with the
help of CS.

PSO is a computational method that can be used to improve the optimization of candidate
solutions through iteration. The way to adopt PSO for data routing [24] has been studied in several
literatures [25–27]. Ref. [25] proposes a novel bi-velocity discrete PSO approach which extends PSO
from the continuous version to the binary or discrete domain to find routing paths for WSN. Tukisi
et al. [26] presents a PSO based method to find routings for the network with energy harvesting.
Targeting on the problem that some of the nodes would be left out during cluster formation, ref. [27]
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introduces to apply the concepts of PSO and gravitational search algorithm to prevent residual nodes.
All of these studies consider the application of PSO either in the clustering or in the routing, i.e., only
one tier. And they do not consider the application of CS.

To the best of our knowledge, there are few works besides the following literatures that have
considered the application of CS into combination of data routing and nodes selection in WSNs,
especially in UWSNs. In [28], the network is partitioned into clusters. Then each CH collects the
sensor readings within its cluster and generates CS measurements to be forwarded directly to the
base station. As a result, the overall CS measurement matrix at the base station is a block diagonal
matrix. Later on, in [29], an improved method is introduced which allows the multi-hop routing of
generated CS measurements through intermediate CHs. The authors generalize the two methods
in [30]. Compared to our work, they obtain CS measurements in each CH and then forward to sink
node while we postpone this operation to be done in the sink node to reduce the burden in CHs. On the
other hand, while choosing multi-hop routing paths from the CH to the sink node, they use traditional
tree-based algorithm while we design a PSO-optimization based scheme.Specifically targeting on three
dimensional UWSNs as well, distributed multi-hop CS has been proposed by Gong et al. in [31]. This
algorithm randomly chooses a subset with size M of N nodes in the first place, then each chosen
node finds a tour to the sink node. During the traveling of the message through the tour, each node
computes the product of its sensing data and a random weighted coefficient and adds the product to
the intermediate result it received. Finally the sink node obtains M measurements and reconstructs the
whole data.Compared to our work, they ignore the noise and select the nodes which participate in
sensing by Bernoulli generator. To conclude, though these works use sparse measurement matrices
similar to what we do, they only consider energy efficiency while choosing appropriate routs without
considering the sensing quality. Furthermore, they do not consider the optimization of clustering.

In this work, we introduce a two-tier PSO protocol for both clustering and routing. Specifically,
our contributions are listed as below.

(1) In the first tier, a PSO-based clustering protocol is proposed to find appropriate CHs with the
comprehensive consideration of energy consumption efficiency and CH distribution uniformity.

(2) In the second tier, a PSO-based routing protocol is introduced to find appropriate routs. A routing
path consists of inner-cluster one-hop routing and outer-cluster multi-hop routing and each path
corresponds to one cluster. Hence the number of paths equals to the number of clusters. It is
worth mention that the multi-hop routing in our scheme is not restricted to consisting of CHs
only. Note that these paths correspond to the rows of the measurement matrix for CS. In this way,
we implement the combination of routing and nodes selection based on CS. Hence, the fitness
function of PSO-based routing protocol comprises of several factors, including the criterions for
energy efficiency, network balance, and data recovery qualities. To measure network balance,
we divide the nodes in the 3-D model into different layers in accordance with their horizontal
distance to the sink node. As we adopt Bayesian CS (BCS), Bayesian Cramér-Rao Bound (BCRB)
is added in the fitness function to reflect the recovery performance.

(3) With optimization in CH and routing chosen progress, the network could survive longer
with relatively lower measurement error as demonstrated by the simulation results. What’s
more, taking energy-balancing into consideration contributes to form a more balanced
energy-consuming network every round cycle, and also prolongs the network lifetime and
reduces the sensing error.

The remainder of this paper is organized as follows. In Section 2 we present preliminary
knowledge. In Section 3, we introduce our system model for UWSN scenario. The detailed descriptions
of the clustering and routing algorithms based on CS and PSO are given in Section 4. The simulation
results are presented in Section 5. Finally, Section 6 concludes the paper, and introduces the future
work.
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The notation used in this paper is according to the convention. Symbols for matrices and vectors
are in boldface.

2. Preliminary

2.1. Compressive Sensing

CS theory proves that if a signal z of dimension N is sufficiently sparse in a certain domain; that
is z = Ψx and ‖x‖0 = K, K � N, where Ψ ∈ RN×N is an orthogonal basis and x ∈ RN , it is efficient to
recover z from a random measurement vector that is obtained by y = Φz. M, the length of y is much
smaller than N. Φ is named as a measurement matrix or sensing matrix. In the sequel, the random
non-zero coefficients in Φ obey Gaussian distributions.

In general, it is an ill-posed problem to recover signal z from y since y has much smaller
dimensions than z. We have to minimize the solution’s `0 norm to find the sparsest result. However, it
is an NP-hard problem, which is not capable to be represented by mathematical formulas. Candés
et al. [13] state that as long as a measurement matrix satisfies the restricted isometry property (RIP)
condition, the `0 norm can be replaced by `1 norm. A measurement matrix satisfies RIP of order of K
when

(1− ε) ‖x‖2 ≤ ‖ΦΨx‖2 ≤ (1 + ε) ‖x‖2 (1)

for all ‖x‖0 ≤ 2K and some 0 < ε < 1. Afterwards, many methods for such a convex
optimization problem were introduced to solve the `1 norm optimization problem [32–34]. Later
on, iterative-greedy-pursuit recovery algorithms [35–37] are proposed to reduce the time complexity.

2.2. Bayesian Estimation

In the presence of noise, the noisy measurement vector y is

y = ΦΨx + n = Θx + n. (2)

where n ∈ RM denotes the noise.
In the underwater acoustic channel, the overall noise at the receiver contains both the ambient

noise and residual intersymbol interference (ISI) after equalization. Though the ambient noise is not
AWGN in the underwater environment, the use of Gaussian approximation is often convenient and
adequate [38]. In the presence of Gaussian ambient noise, according to [39] and [40], the overall noise
can be treated as Gaussian, although it is not independent with regard to time step, since the signal
after CS transform, i.e., transmitted signal is treated as Gaussian distributed. Hence, in the sequel, n is
approximated as Gaussian distributed.

In [41], BCS is proposed to reconstruct a sparse signal from noisy measurements, if a statistical
characterization of the signal is available. The computation time of BCS is comparable to or even faster
than other classical greedy iteration algorithms. In this work, we adopt bayesian learning to recover
the signal in the sink node. Therefore in this part, we make a brief review of BCS method.

ni indicates the i-th element of n in Equation (2), and is approximated as a zero mean Gaussian
variable with variance σ2. From the Bayesian point of view, to obtain the restoration of the original
signal is to seek a full posterior probability function for x. Usually, a Laplacian distribution is a widely
used prior for sparse signals. But considering it is not conjugate to Gaussian likelihood, in BCS, a
hierarchical prior has been defined for x; that is, a zero-mean Gaussian prior is defined on each element
of x

p(x|α) =
N

∏
i=1
N (xi|0, α−1

i ), (3)
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where αi is the inverse-variance of xi and α satisfies a Gamma prior with parameters a and b with
p(α) = ∏N

i=1 Γ(αi|a, b). By marginalizing over the hyperparameter α, the overall prior is given by

p(x|a, b) =
N

∏
i=1

∫ ∞

0
N (xi|0, α−1

i )Γ(αi|a, b)dαi. (4)

Likewise, the hyperparameter α0 = 1/σ2 satisfies a Gamma prior Γ(α0|c, d). Note that a, b, c, and
d are all set to zero to obtain a uniform hyperprior.

The goal of BCS is to estimate three parameters α, α0, and the most important one x. The posterior
function of all unknowns is

p(x, α, α0|y) = p(x|y, α, α0)p(α, α0|y). (5)

The posterior of x is

p(x|y, α, α0) = (2π)−
N
2 |Σ|−

1
2 exp(−1

2
x− µTΣ−1xµ), (6)

with the mean matrix µ and the covariance matrix Σ,

µ = α0ΣΘTy

Σ = (α0ΘTΘ + A−1)−1.
(7)

For the case of uniform hyperpriors,

p(α, α0|y) ∝ p(y|α, α0). (8)

Finally, we can estimate all unknown parameters by maximizing the posterior in Equation (5). To
find a approximate solution, we use EM algorithm to achieve the solution iteratively. In the algorithm,
α and α0 are re-estimated by every iteration with the form

αnew
i =

γi

µ2
i

,

1
αnew

0
=
‖y−Φµ‖2

2
M−∑

i
γi

,
(9)

where µi is the ith posterior mean weight from µ and γi is defined as γi , 1− αiΣii, with Σii the i-th
diagonal element of the posterior covariance weight from Σ. Then new µ and Σ are obtained. The
iterations terminate until the values of α and α0 converges. Finally, x̂MAP = µ.

2.3. Particle Swarm Optimization

PSO was inspired by the social behavior of bird flocking or fish schooling. PSO obtains a set of
candidate solutions according to the mathematical formulas, which are based on the positions and
velocities of the particles. These particles are iterated in the search space to solve the problem. The
motion of each particle is not only affected by its local best known position, but is also guided toward
the best known position in the search-space, which are updated by better positions found by other
particles. PSO is a meta-heuristic algorithm (Algorithm 1) because it makes little or no assumptions
about the problem being optimized and is able to search within a very large candidate solutions space.

Initially, each particle is randomly assigned with a position vector xl = [xl,1, xl,2, ..., xl,D] as well as
a velocity vector vl = [vl,1, vl,2, ..., vl,D], where D is the dimension of a particle and l ∈ (1, 2, ..., S) with
S representing the total particles number. Then each particle keeps track of its personal best position
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Pl and the global best one G in the whole search space. After finding the two best fitness values for the
l-th particle, it updates the position and velocity by the fourmulas

vm+1
l = ωmvm

l + a1[r1,l(Pl − xm
l )] + a2[r2,l(G− xm

l )],

xm+1
l = vm+1

l + xm
l .

(10)

where m represents the current number of iteration, and r1,l , r2,l are random variables between [0, 1].
a1 and a2 are the learning factors while ω is a weight factor that controls the velocity of the particle.

Algorithm 1 PSO algorithm

for each particle do
initialize particle

end for
while target fitness or maximum epoch is not attained do

for each particle do
calculate fitness
if current fitness value better than (pbest) then

pbest=current fitness
end if

end for
set gbest to the best one among all pbest
for each particle do

update velocity
update position

end for
end while

3. Proposed System Model

We consider the scenario that sensor nodes are randomly deployed in a three dimensional
undersea area and sink node (base station) is placed on top of the area as shown in Figure 1. As
introduced before, CS can only be used when the signal has sparsity in some domain. In the next,
we would prove that the monitored oceanic data such as temperature, hardness, and salinity are
indeed sparse in Fourier transform domain because of their spatial correlation. Take the ocean
underwater temperature data rendered by National Aeronautic and Space Administration (NASA)
(https://www.nasa.gov/specials/ocean-worlds) for example, we transform the data into its fast
Fourier transform (FFT) domain and the results validate the sparsity as show in Figure 2.

Figure 1. The segment-divided model of the 3-D network.

Another property of oceanic data is that its sparsity varies in different depth. As a result, we
divide the network into different segments in line with its depth. Note that data with higher sparsity
needs more information for recovery. Therefore, segments with higher sparsity are given higher

https://www.nasa.gov/specials/ocean-worlds
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cluster-heads chosen probability so that for these segments, more measurements are obtained. In our
model, the data in different segments are transmitted to the sink node and reconstructed separately,
hence every segment can be considered as a sub-model. The segment-divided network model is
presented as Figure 1.

Figure 2. The FFT domain signal of temperature data.

In reality, the data is collected in a 3-dimensional network. We need to ransform them into
one-dimensional data in accordance with its horizontal position and depth first. Hence the data in the
i-th segment is represented as zi = [zi,1, zi,2, ..., zi,N ], where N is the total number of nodes in the i-th
segment. However, for simplicity, in the sequel, we take every sub-model as an integral model and the
data are regarded as z = [z1, z2, ..., zN ]. Its sparse form is denoted as z = Ψx, where x is a sparse vector
and Ψ is the FFT transform matrix.

In each segment, we use CS to reduce the transmission burden to the sink node. Therefore, energy
is saved and the network lifetime is prolonged. Clustering is also applied in our model to further
economize on energy. The noisy measurement vector collected in the sink node is y = Φz + n =

ΦΨx + n. For the purpose of making network energy-consuming balanced and easier for a node to
find the next relay node, we divide all nodes into different layers according to their distances to the
sink node. In the following work, we divided them into four distinct layers, those who are closer to
the sink node are given smaller layer number, which is depicted in Figure 3.

Figure 3. The layer-divided model of the 3-D network.

4. Proposed Algorithm

The overall algorithm contains three main steps illustrated as follows.
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Firstly, we use PSO algorithm to choose M CHs for each segment and divide the nodes in each
segment into M clusters. The second step is to select one routing path for each cluster using PSO
algorithm, hence we obtain M routs to compose an integral routing matrix Φ ∈ RM×N . Figure 4
presents the flowchart of the whole procedure. In the flowchart, E represents the remaining energy of
the whole network and f1, f2 are the fitness functions of clustering and routing steps respectively. f1

considers energy consumption and uniformity of cluster head distribution while f2 focuses on energy
consumption state and BCRB.

The detailed description about how the CHs and routing paths, i.e., the measurement matrix are
chosen will be presented in the next subsections. After we get the measurement matrix, the sink node
receives a M dimensional measurement y and its measurement matrix Φ. Finally, at the sink node, we
use BCS algorithm to reconstruct the sparse signal x and then transform it to the original temperature
signal z. After obtaining signals for all the segments one by one, the base station merges them together
to recover the complete original signal.

 start

initialize parameters

divide nodes' segment

find all cluster 
heads using PSO

find measurement 
matrix using PSO

iteration times>=
threshold

E>0

E>0

restore x

end

yes

no

no

 start

i>=
M(the number of CHs)

update subparticles by PSO

end

no

decide the multi-hop rout for 
CH_i  from subparticle_i 

establish 
measurement matrix 

 start

update particles by PSO

end

obtain the optimal cluster 
heads group from node_ids 
information in the partilce 

Figure 4. The flowchart of proposed algorithm.

To design the final object, there are three important factors to be taken into consideration: the
signal reconstruction accuracy, the remaining energy of the network, and the balance state of the
network.

Usually, mean squared error (MSE) is used to measure the reconstruction quality of the signals. If
x̂(y) denotes the recovered signal based on noisy measurements y represented by Equation (2). The
MSE in estimation of the vector x is given by

MSE = E{‖x− x̂‖2} = Tr{E[
(

x− x̂(y)
)(

x− x̂(y)
)T

]} (11)

However, the calculation of MSE requires the actual estimator which is impossible for us to get
before choosing the measurement matrix. To solve this problem, we introduce Bayesian Cramér-Rao
Bound (BCRB) to measure the lower bound of MSE; that is, MSE ≥ BCRB. Hence, adding BCRB into
the fitness function is beneficial for us to find the solution with lower MSE, since minimizing BCRB is
equal to obtaining minimum acceptable MSE. Subsequently, we will derive the formula of BCRB for
our problem.

4.1. BCRB Derivation

The BCRB is computed as BCRB = Tr{J−1
B } with JB ∈ RN×N being the Bayesian Fisher

information matrix (FIM) [42].
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The i, j-th element of JB, Jij is equal to EXY[∇xi log p(x, y)∇T
xi

log p(x, y)]. Herein, ∇v ,

[ ∂
∂v1

, ..., ∂
∂vq

]. Then Jij can be calculated as

Jij , EXY[∇xi log p(x, y)∇T
xj

log p(x, y)]

= −EXY[∇xi∇
T
xj

log p(x, y)]

= EXY[∇xi log p(y|x)∇T
xj

log p(y|x)]

+ EX [∇xi log p(x)∇T
xj

log p(x)]

= −EXY[∇xi∇
T
xj

log p(y|x)]− EX [∇xi∇
T
xj

log p(x)].

Therefore, the Bayesian FIM is given by

JB = −EXY[∇x∇T
x log p(y|x)]− EX [∇x∇T

x log p(x)]

= −E(y,x){
∂2L(y|x)

∂x∂xT } − E(x){
∂2L(x)
∂x∂xT }. (12)

Firstly, we compute the second part of Equation (12). To solve L(x), we must obtain the density
function of signal x in the first place. In our model, the sparse signal x follows the Gaussian distribution
with a mean vector µ and a covariance matrix Σ. Σ = diag(γ1, ..., γN) is a diagonal matrix with γi
denoting the variance of xi. As a result, the density of x is

p(x; γ) =
N

∏
i=1

(2πγi)
−1/2e−

(xi−µ)2

2γi . (13)

Hence L(x) = ∑N
i=1− 1

2 ln 2πγi −
(xi−µ)2

2γi
.

As the previous part is irrelevant to x, we abbreviate it as g̃. Then the formula in matrix form can
be written as

L(x) = g̃− 1
2

xTΣ−1x. (14)

As a result ∂2L(x)
∂x∂xT = Σ−1.

Secondly, we turn to deal with the first part of FIM. To obtain −E(y,x){
∂2L(y|x)

∂x∂xT }, we need to know
p(y|x). Since y = ΦΨx + n, the probability density function of y is related to the noise term n given

the information of x. The noise can be the Gaussian distribution; that is, p(n) = ∏N
i=1(2πσ2)−1/2e−

n2
i

2σ2 .
Hence, we have

p(n) = (2πσ2)−N/2e−
‖y−ΦΨx‖2

2σ2 . (15)

Subsequently,

p(y|x) = −N
2
× log 2πσ2 − ‖y−ΦΨx‖2

2σ2

= −N
2

log 2πσ2 − 1
2σ2 (y−ΦΨx)T(y−ΦΨx),

and then

E(y,x){
∂2L(y|x)

∂x∂xT } = −
1
σ2 ΨTΦTΦΨ. (16)
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Finally, we put the two parts together as the description of FIM,

JB = −E(y,x){
∂2L(y|x)

∂x∂xT } − E(x){
∂2L(x)
∂x∂xT }

=
1
σ2 ΨTΦTΦΨ + Γ−1

Therefore, in our model, BCRB is represented by Tr{ 1
σ2 ΨTΦTΦΨ + Γ−1}.

4.2. Underwater Energy Consumption Model

Ref. [43] gives an in-depth analysis of the energy consumptions of underwater acoustic networks
according to the conceptions of underwater acoustic channel attenuation model, noise model and
bandwidth model. The total energy consumption associated to one hop (which includes both the
transmit and the receive energy at the two ends of the link), is determined by the power Pr, acoustic
electric conversion power Pel

t (l) which is the power required to transform acoustic signal to electric
signal and single hop transmission delay thop(L, l). Specifically, the energy consumed by each single
hop, Ehop is calculated as:

Ehop(L, l) = thop(L, l)× (Pr + Pel
t ). (17)

The single hop transmission delay thop(L, l) is determined by package length L and the distance l
between two transmitting nodes as well as channel effective bandwidth αB(l) where α means channel
utilization rate. So the formula becomes

Ehop(L, l) = thop(L, l)× (Pr + Pel
t ) =

L
αB(l)

× (Pr + Pel
t ) (18)

Pel
t (l) is calculated as

Pel
t (l) =

Pt(l)× 10−17.2

η
. (19)

Herein, 10−17.2 is the conversion factor from acoustic power in dBreµPa to electrical power in Watt, η

represents electronic circuit conversion efficiency and Pt(l) is the transmitting power of underwater
nodes, which is calculated as

Pt(l) = B(l)× A
(

l, f0(l)
)
× N

(
f0(l)

)
× SNRtgt. (20)

N( f (l)) and A(l, f (l)) are noise parameter and attenuation coefficient, respectively. AN =

A
(

l, f (l)
)

N
(

f (l)
)

is the channel parameter and can be plotted as a curve in terms of f for given

l. Therefore, for certain l, we can obtain its best frequency f0(l) and then find its corresponding AN

product, N
(

f0(l)
)
× A

(
l, f0(l)

)
from the AN curve.

SNRtgt denotes the target signal noise rate for the terminal to receive signals correctly. B(l) is
the usable bandwidth given SNRtgt, which is B(l) = b× l−β. The positive parameters b, β depend on
the target SNR as well. Unlike the transmit power, the receive power Pr is independent of distance,
and rather depends on the complexity of the receive operations. So it could be set as a constant value.
More details can be found in [44].

In conclusion, the energy consumed for each hop in the terms of package length L and distance l
is calculated as:
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Ehop(L, l)

= thop(L, l)× (Pr + Pel
t )

=
L

αB(l)
× (Pr +

B(l)N( f0(l))A(l, f0(l))SNRtgt × 10−17.2

η
) (21)

Based on such a model, we can calculate the energy consumed by each node which participates
the routing.

4.3. PSO for Clustering

First we use PSO to find appropriate nodes to be CHs. Because we divided the network into
different segments, the percentage of CHs within each segment is highly related to the sparsity of the
segment. In general, we set the CH ratio q to be 0.4, only in some segments which have relative low
sparsity, the value of qi increases slightly in a trend like qi = 0.4 + 0.05× dsi − 0.08e where si is the
sparsity of the ith segment.

The particle’s dimension is the same as the number of CHs. To initialize the particle, we generate
M random integer numbers within [1, N]. For example, the i-th particle Pi is M dimensional and Pi,m
represents the m-th value of it. If Pi,m = 25, it means that in this particle, we choose node 25 to be the
m-th CH. As a node cannot be chosen repeatedly in one particle, if a particle has duplicated numbers,
it will be assigned a penalty fitness value −1 to be excluded during later progress.

After initializing all the particles, we calculate the fitness value for each particle. According to
their fitness value, we choose the local best and the global best particles, update the particle position
which corresponds to the coordinates of the nodes in this particle and velocity to get new fitness values.

In this part, we mainly focus on energy consumption and uniformity of cluster head distribution,
hence the fitness function f does not include the measurements for signal recovery qualities in current
stage. The fitness function f1 comprises of three parts as below:

• Ep, represents the energy evaluation factor and Ep is given by

Ep =
∑M

m=1 Eresm

∑N
i=1 Einiti

, (22)

which measures the remaining energy of the chosen CHs.

Note that Einiti is the initial energy of the i-th node while Eresm is the residual energy of the m-th
node and equals to Einim − Ecm , and

Ecm =

{
0 if node m was not involved in the routing

thop(L, lm,r)× Pr + thop(L, lm,t)× Pel
t if node m was involved in the routing,

where lm,r measures the hop length when node m is the receiver and lm,t measures the hop length
when node m is the transceiver.

We tend to choose nodes with higher residual energy to be CHs due to the fact that cluster heads
consume more energy than normal nodes.

• Ec indicates the evaluation factor for the intra-cluster compactness and measures the average
distance between nodes and their cluster heads.

We calculate
f = max

m=1,2,...,M
∑

∃ni∈Cm

di,CHm /|Cm|,
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which measures the maximum average Euclidean distance between nodes and their CHs. di,CHm

measures the distance between node i and CHm. |Cm| is the number of nodes that belong to
cluster Cm. Our aim is to minimize f because the nodes are closer to its cluster heads with smaller
f . Therefore, Ec = 1/ f .

• Ee is the evaluation factor of the uniformity of CH distribution. It measures the uniformity of
CH distribution. Firstly we calculate all nodes’ distances to each other. D = d1, ..., dN where
dj = dj,1, ...dj,i, ..., dj,N , i 6= j and dj,i measures the distance between node j and node i. In an
unevenly distributed network, the sum of D must be higher than relatively evenly distributed
network. As a consequence, we add this value Ee = ∑M

j=1 dj/|Cm| on our fitness function.

To sum up, the final form of fitness function f1 of our cluster choosing algorithm is given by:

f1 = w1Ep + w2Ec + w3Ee,

where

{
w1 + w2 + w3 = 1

wi ≥ 0, i ∈ {1, 2, 3}

and wi is the weighting factor for the i-th item. To think about the problem in a balanced way, w1 and
w2 are randomly chosen from the range [0.2, 0.4] while w3 = 1− w1 − w2.

When a particle contains duplicated nodes, we set a penalty factor to it to exclude it from iterations.
This iteration keeps going on until either the global best fitness value is lower than the threshold

we set or the maximal iterative times is reached. The global best particle obtained by the last iteration
is the output of the cluster head selection scheme.

4.4. PSO for Choosing Routing Paths

The final step of our algorithm is to find the routing paths, then the measurement matrix. PSO is
used in this stage as well and herein each particle contains M sub-particles, where M is the number of
CHs. A sub-particle includes the nodeID information while sub-particle position includes priorities
corresponding to all the nodes denoted in the sub-particle.

Each sub-particle determines a single rout from each cluster to the base station. Since we have
already chosen all the CHs, there are two steps left for each CH to fulfill the corresponding routing
path: (1) Each CH chooses the nodes in its cluster which transmit the messages to it in one hop; (2)
After collecting messages in its cluster, each CH starts a multi-hop rout to the base station.

In one word, a complete routing path contains two parts, the one-hop inner cluster part and the
multi-hop outer part. Therefore we divide the sub-particle into two parts, a and b. Part a determines
which nodes from the inner cluster transmit their data to the CH while part b finds the routing path
from the CH to the base station. It is difficult to jointly optimize these two part. Instead, we construct
inner cluster part and outer cluster part separately.

The dimension of part a of sub-particle i equals to Ki, where Ki is the node numbers of each cluster
except the i-th CH. The sub-particle i selects ε×Ki nodes with highest priorities from part a to transmit
data to the i-th CH in one hop. ε is the ratio controlling parameter which we would optimize in the
simulation section. Figure 5 gives an example on how to choose nodes within one cluster and how to
map part a of a sub-particle into real measurement matrix. The measurement matrix with dimension
M× N is initially set to all zero matrix, where M is the number of CHs and N is the total number of
nodes. Once a node is chosen into i-th rout, its corresponding position in the i-th row of measurement
matrix is set to a randomly distributed coefficient which obeys Gaussian distribution.
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n1

the  i-th subparticle and its corresponding position

part    , the dimension = ��

Node ID

Priority

part   ,  the dimension = �  �
  '

... ...
n1 n2 n3 n4 n5 nk-3 nk-2 nk-1 nk

4.58 4.23 4.69 4.54 4.32 ... 4.13 4.7
9

4.46 4.87

...

n1,n2,...nk   represent k nodes in i-th cluster 

Measurement 
Matrix c1 0  c3  0  0  ... 0  ck-2 0  ck

...

...
... the i-th row

Figure 5. The demo for mapping part a of sub-particle i into Φ, where cj denotes random measurement
coefficient.

The algorithm to find a multi-hop routing path from the i-th CH to the base station from part b is
more sophisticated and will be illustrated in detail in the following.

i. Choosing candidate nodes
Regarding that if we take all nodes into consideration for each rout, the dimension of a sub-particle

would be too large. Given the fact that when a node try to find its rout, those nodes in the opposite
area from sink node may never be included. Therefore, before the initialization, we calculate the
distances of all nodes to the sink node Diss and the distance of all nodes to the CHs Disc. Then
choose an appropriate group of candidate nodes for each CH first. Diss = ds,1, ..., ds,N represents
nodes’ distances to the sink node while Disc = dc,1, ..., dc,N represents nodes’ distances to the CH.
dis =

√
(xs − xc)2 + (ys − yc)2 + (zs − zc)2 is the distance between the CH and sink node where

xs, ys, zs represent the coordinates of the sink node and xc, yc, zc are the coordinates of the CH. Note
that these coordinates values could be obtained by range-based or range-free localizations before the
data transmission. Only when a node k satisfies ds,k ≤ dis and dc,k ≤ dis, it would be added to the
candidate group. Once the candidate groups are chosen, they will not be altered during the whole
iteration period. Suppose the size of candidate group for the i-th CH is N′i , then the dimension of part
b of the sub-particle i equals to N′i .

ii. Initialization
To find part b, we make use of the network’s layered structure as we need to take directions into

consideration. The nodes that are in the closer layer to the base station ought to have higher priority.
This layer-based initialization method can control the routing path’s direction towards the sink node
as well as avoid trapping into a dead cycle and accelerate iterative process.

The priorities of the nodes in the farthest layer are initialized by randomly generating numbers
between 0 to 1. In our layered model, the fourth layer is the farthest layer, so the priorities of the
nodes in the fourth layer are set from 0 to 1, while the priorities of the nodes in the third layer are from
1 to 2. In one word, when the number of the layer decreases by 1, the initial priorities of the nodes
increase by 1. Hence the priority is not initialized completely randomly but related to the layer the
node belongs to.

Figure 6 shows an example of our initialization. In this example, for the CH, there are altogether
12 candidate nodes dispersed in 4 different layers. It can be easily observed that the nodes in the higher
layers have lower initialized priorities. That is how we achieve hierarchical initialization and obtain
initialized multi-hop routing path from the CH to the sink node.
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Figure 6. An example of hierarchical priorities initialization for part b and its corresponding topological
routing path in the cross-section view.

iii. Iteration
After initializing the particles, in each iteration, we are going to calculate particles’ fitness values in

terms of measurements matrices and select local best and global best ones. Then the particle positions
are updated.

We have already introduced how to map part a of the sub-particle i to the corresponding row.
Here we introduce how we map part b of sub-particle i to the i-th row of the measurement matrix.

Firstly we set the corresponding position of the i-th CH in the i-th row of Φ to a random Gaussian
distributed coefficient. Then we find the next relay node by two steps iteratively until the complete
routing path is found.

Step 1: If the previous node’s distance to the sink node is smaller than its transmission range Rc,
stop searching since we already obtain a single rout from the i-th CH to the sink node. Otherwise, we
go to step 2.

Step 2: Find all nodes that are not only in the candidate group but also within the previous node’s
transmission range, compare their priorities and find the largest one as the next relay node. Meanwhile,
we set the corresponding position of chosen relay node in the i-th row of Φ to a random Gaussian
distributed coefficient.

After mapping M sub-particles to M rows, the measurement matrix Φ is determined. The
generated Φ is then used to compute the fitness value of corresponding particle. The fitness function
includes two main items, the measurement of reconstruction quality, Br, which is related to BCRB and
the measurement of energy consumed, Es.

As we calculated before, the formula of the BCRB is given by

BCRB = Tr{( 1
σ2 ΨTΦTΦΨ + Γ̂

−1
)}. (23)

As BCRB implies a theoretical lower bound of reconstruction’s mean square error, we wish it to
be as small as possible. So Br = 1/Tr{( 1

σ2 ΨTΦTΦΨ + Γ̂
−1

)}.
The energy consumption of the routings we chose is measured by Es. It consists of three factors

like
Es = 1/Er + El + Eb. (24)

The first item Er = ∑N
k=1

Eck
Eresk

, where Eck is the energy consumed at this round by node k and
Eresk is the rest energy of this node. It measures the energy cost ratio of nodes and should be small
considering the durability of a network.

Besides Er, El = ∑N
k=1

Eresk
Einitk

, where Einitk is the initial energy of the k-th node.

On top of that, the balance of this network also needs to be considered. A well-known fact is that
the nodes near the sink node are prone to consume more energy than the nodes far away. Those nodes
burden heavier transmission tasks and are easier to convey their data to the sink repeatedly because
they are more likely to be relay nodes. So to obtain a balanced network, we introduce a factor Eb to
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describe a energy consumption ratio of different layer. Eb = E1/E4 + E2/E3, where Ei represents the
remaining energy of the i- th layer. Eb should be as large as possible as the lower layer tends to remain
more energy in a balanced network than in an uneven network.

In a conclusion, the final fitness function consists of two parts as below,

f2 = W1Br + W2Es (25)

where Wi is a weighting factor and W1 + W2 = 1, Wi ≥ 0, i ∈ {1, 2}. In the simulation, W1 is chosen
randomly from the range [0.4, 0.6] while W2 = 1−W1.

5. Simulation Results

We use the real ocean temperature data provided by NASA (https://www.nasa.gov/specials/
ocean-worlds) to test our algorithm against the two cutting-edge methods. Note that the sensor
network they deploy to monitor the environment is huge and we only choose 1000 nodes from this
network which are deployed in a 3-D undersea region divided into 10× 10× 10 grids. The size of the
area is 18.5 km × 14.5 km × 0.8 km. We compare our method with other two cutting edge method
which also applies CS into routing. The method introduced in [31] for 3D UWSN is named as “DRMCS”
which is the abbreviation of “distributed random multi-hop compressive sensing”. The other method
is called “ICCS” following its name in [29] and later on in [30]. We extend it to 3D scenario by changing
the clustering and routing methods to 3D protocol through replacing the 2D distance (x, y) to 3D
distance (x, y, z). The parameters we set for the energy consumption model in Section 4.1 are listed in
Table 1 according to [43].

Table 1. Energy Consumption Parameters.

Energy Consumption Parameter Values

η 0.5
α (bps/Hz) 0.5

k 1.5
SNRtgt (dB) 8

Pr (W) 2
b (dB re kHz) 14.39

β (dB re kHz/km) −0.55
Rc (km) 3.5

Before the whole simulations, we firstly select the appropriate value of parameter ε. It is
impossible for us to obtain the signal z before the algorithm is run. To solve this problem, we
do some preparatory experiments to decide an appropriate ε. In the first five rounds, we set ε = 0.9,
run the experiments once, and then we obtain the reconstructed signal ẑ. The reconstructed signal ẑ is
regarded as the approximation of the original signal z in order to compute the reconstruction error
in the following simulations. That is, afterwards we ran the first five rounds with different ε ranging
from 0.2 to 0.8, respectively. The average consuming energy and the reconstruction error are compared.
For example, the results of round 1, 3 and 5 are shown in Table 2. Considering the reconstruction error
and energy consumption state integrally, we found that in our algorithm ε = 0.4 is the most suitable.
As a result, for the rest rounds, ε is set to be 0.4.

All experiments were performed on MATLAB 2018b and a computer with intel(R) Core(TM)
i7-8700K 2.50 GHz CPU, 16.00 GB RAM and the Windows 10 system.

https://www.nasa.gov/specials/ocean-worlds
https://www.nasa.gov/specials/ocean-worlds
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Table 2. Performances by Different ε for round 1, 3, 5.

ε Energy Consumption Reconstruction Error

0.2 3.164 0.01419
0.4 3.643 0.01201
0.6 4.445 0.01249
0.8 5.050 0.01240

ε Energy Consumption Reconstruction Error

0.2 3.157 0.01421
0.4 3.655 0.01203
0.6 4.426 0.01251
0.8 5.039 0.01242

ε Energy Consumption Reconstruction Error

0.2 3.168 0.01437
0.4 3.637 0.01208
0.6 4.439 0.01257
0.8 5.012 0.01248

In Figures 7 and 8, we compare the total energy consumption and the remaining energy for each
round while the measurement ratio M/N is set to 0.4. Obviously our algorithm survives longer than
the other two state-of-the-art methods.The first tier utilizes PSO to find the best cluster heads group
while the second tier utilizes PSO to find the best routing matrix so that the whole network has the
lowest average consuming energy per cycle while maintaining the sensing error in an acceptable range.
Note that in the second tier, the optimization of the routing path can not only reduce the average
energy cost per round but also help to make the network more balanced. In other words, besides the
fact that our PSO-based routing scheme consumes less energy each round, another important reason
for longer network lifetime is that our scheme obtains more balanced energy-consumption condition.

Figure 7. The comparison results in terms of total energy consumption.
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Figure 8. The comparison results in terms of remaining energy.
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The more balanced condition and less energy-consuming phenomenon of our scheme can also
be proved in Figure 9, which shows the remaining living nodes of the network in each round. From
Figure 9, we can observe that by our algorithm, the first dead node appears much later. The proposed
algorithm has its first dead node at round more than 100 while the other algorithms has its first dead
node at about round 70. Such a fact indicates that the proposed two-tier protocol consumes less
energy each round as well as consumes energy more equally for each node of the whole network.
The improvement attributes to the fact that in order to better balance the whole network, we add
a factor named “network-balancing” in the particles’ fitness value calculation. Considering that
the nodes closer to the sink burden heavier transmission load and hence are easier to die, we put
energy consumption ratios of inner and outer layers into consideration. Reducing the ratio can avoid
repeatedly choosing inner layer nodes and balance the network energy consumption better.

Figure 9. The comparison results in terms of remaining living nodes.

In order to observe the impact of node density on the network performance, we fix the total
node number as 1000 and vary the volume of the area where these nodes are deployed. As shown in
Figure 10, the average energy consumption in each round decreases with the increase of node density.
Since the node number is fixed, the initial energy is fixed. Hence lower average energy consumption
in each round means larger round cycles. This is due to the fact that we shrink the volume so that the
average distances from CHs to sink node are shortened. From Figure 10, it can also be observed that
compared with other two schemes, our algorithm consumes less average energy each round in the
whole range of node density. To measure the delay of relevant schemes, we calculate the average hop

numbers in the case of two different node densities. Average hop number is obtained by
M
∑

i=1
hopi/M,

where hopi measures the hop numbers from the i-th CH to the sink node. Obviously, since the total
node number is fixed and the volume is decreased, average hop numbers, i.e., delay is lower with
higher node density as shown in Figure 11. On the other hand, our algorithm always presents the
lowest delay compared with relevant schemes.
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Figure 10. The comparison results in terms of average energy consumption with different node
densities.

Another performance we compare is the sensing quality which is measured by MSE between the
original signal and reconstructed error. It can be observed from Figure 12 jointly with Figure 8 that our
proposed algorithm tends to build a matrix Φ that leads to the smallest sensing error and meanwhile
the energy consumed by our algorithm is the least in each round.

Figure 11. The comparison results in terms of average hop numbers with two different node densities.

Besides the previous experiments, we vary the measurements ratio M/N as well to observe
the MSE with varying ratio. We test the average MSE for first 20 rounds. It can be observed that
the MSE decreases with the increase of measurement ratio for each algorithm. Figure 13 validates
that our algorithm presents significant advantage when the measurement ratio is less than 0.5. The
reason is that we add the factor Br, which considers the reconstruction quality, into the fitness function
while performing PSO for routing. Our proposed algorithm works well to reduce the MSE when the
measurement ratio is low. While the measurement ratio goes up, the superiority of our proposed
algorithm becomes less significant.



Sensors 2020, 20, 5961 19 of 22

Figure 12. The comparison results in terms of data recovery qualities.
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Figure 13. The comparison results in terms of MSE in different measurement ratio.

6. Conclusions and Future Work

In this paper, we proposed a two-tier Particle Swarm Optimization (PSO) algorithm in the
clustering and routing stages for distributed multi-hop compressed sensing in 3-D UWSN. We divided
the whole network into different segments according to the vertical distances of the nodes. On top of
that, we also divided the whole network into different layers according to the horizontal distances
from the nodes to the sink and the PSO algorithm we apply in the network is firmly associated
with the layers. Dividing the layers help to define the energy consumption in different layers to
measure energy-consuming balance and to initialize the particle hierarchically so as to accelerate the
particle convergence speed. And a factor to forecast the signal recovery performance is added on
the fitness function of the PSO algorithm for routing to control the MSE of the reconstructed signal
while maintaining a relatively long lifetime. Our proposed algorithm is compared with recently
proposed algorithms for distributed multi-hop compressive sensing routing problem using real marine
temperature data rendered by NASA. The results validate that our proposed algorithm has a longer
life time with lower measurement error and postpones the round that has the first dead node.
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For the future work, we will focus on the synthesized consideration of the clustering and routing
stage while doing optimization. In the current study, the two stages are considered separately. On the
further study, we will conduct the two steps consistently to improve the performance a step further.
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