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Abstract: Building operation data are important for monitoring, analysis, modeling, and control of
building energy systems. However, missing data is one of the major data quality issues, making data
imputation techniques become increasingly important. There are two key research gaps for missing
sensor data imputation in buildings: the lack of customized and automated imputation methodology,
and the difficulty of the validation of data imputation methods. In this paper, a framework is
developed to address these two gaps. First, a validation data generation module is developed based
on pattern recognition to create a validation dataset to quantify the performance of data imputation
methods. Second, a pool of data imputation methods is tested under the validation dataset to find
an optimal single imputation method for each sensor, which is termed as an ensemble method.
The method can reflect the specific mechanism and randomness of missing data from each sensor.
The effectiveness of the framework is demonstrated by 18 sensors from a real campus building.
The overall accuracy of data imputation for those sensors improves by 18.2% on average compared
with the best single data imputation method.

Keywords: missing data; data imputation; ensemble method; pattern recognition; machine learning;
building sensors

1. Introduction

It is reported by U.S. Energy Information Administration that buildings consumed 32% of primary
energy in 2019 in the United States and global energy consumption in buildings will grow by 1.3%
per year on average from 2018 to 2050 [1]. Building operation data are playing an important role in
building design, retrofit, commissioning, maintenance, operations, monitoring, analysis, modeling,
and control. With the wide adoption of building automation system (BAS), smart sensors, and Internet
of Things in buildings, massive measurements from sensors and meters are continuously collected,
providing a +great amount of data on equipment and building operations and great opportunities for
data-driven tools to improve building energy efficiency based on collected data [2].

Data quality is essential for data-driven tools and missing data is one of the most common
and important issues for data quality. During building operations, it is common for sensors to fail
to record data for several reasons, including malfunctioning equipment or sensors, power outage
at the sensor’s node, random occurrences of local interferences, and a higher bit error rate of the
wireless radio transmissions as compared with wired communications [3]. Cabrera and Zareipour [4]
summarized that missing data can be grouped depending on the reason they are missing: (a) missing
not at random, or systematic missing: when the probability of an observation being missing depends
on the information that is not observed; (b) missing at random: when the probability of an observation
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being missing depends on other observed values; and (c) missing completely at random: when the
probability of an observation being missing is completely at random and not related to any other value.

In statistics, imputation is the process of replacing missing data with substituted values [5].
The theories of imputation are well studied. Early in 2001, Pigott [6] wrote a review of methods
for missing data imputation and he summarized that ad hoc methods, such as complete case
analysis, available case analysis (pairwise deletion), or single-value imputation, are widely studied.
Ad hoc methods can be easily implemented, but they require assumptions about the data that
rarely hold in practice. However, model-based methods, such as maximum likelihood using the
expectation-maximization algorithm and multiple imputation, hold more promise for dealing with
difficulties caused by missing data. While model-based methods require specialized computer
programs and assumptions about the nature of the missing data, these methods are appropriate for a
wider range of situations than the more commonly used ad hoc methods. Harel and Zhou [7] reviewed
some key theoretical ideas, forming the basis of multiple imputation and its implementation, provided
a limited software availability list detailing the main purpose of each package, and illustrated by
example the practical implementations of multiple imputation, dealing with categorical missing data.
Ibrahim et al. [8] reviewed four common approaches for inference in generalized linear models with
missing covariate data: maximum likelihood, multiple imputation, fully Bayesian, and weighted
estimating equations. They studied how these four methodologies are related, the properties of each
approach, the advantages and disadvantages of each methodology, and computational implementation.
They examined data that are missing at random and nonignorable missing. They used a real dataset
and a detailed simulation study to compare the four methods.

Many existing studies are found to apply data imputation in missing data in buildings. Deleting
the missing data is the most direct way to deal with them and, on some occasions, it can be counted
as a data imputation method. In the research from Ekwevugbe et al. [9], all corrupted and missing
data instances due to instrumentation limitations were excluded from further analysis. Xiao and
Fan [10] addressed that missing values can be filled in using the global constant, moving average,
or inference-based models. In their paper, missing values were handled using a simple moving
average method with a window size of five samples. Rahman et al. [11] proposed an imputation
scheme using a recurrent neural network model to provide missing values in time series energy
consumption data. The missing-value imputation scheme has been shown to obtain higher accuracies
than those obtained using a multilayer perceptron model. Peppanen et al. [12] presented a novel
and computationally efficient data processing method, called the optimally weighted average data
imputation method, for imputing bad and missing load power measurements to create full power
consumption data sets. The imputed data periods have a continuous profile with respect to the
adjacent available measurements, which is a highly desirable feature for time-series power flow
analyses. Ma et al. [13] proposed a methodology called the hybrid Long Short-Term Memory model
with Bi-directional Imputation and Transfer Learning (LSTM-BIT). It integrates the powerful modeling
ability of deep learning networks and flexible transferability of transfer learning. A case study on the
electric consumption data of a campus lab building was utilized to test the method.

To summarize the above research, researchers introduced, developed, and applied a specific
imputation method applied for specific sensor types and missing data scenarios. However, normally
in one building system, there are various types of sensors, including a thermometer, humidity sensor,
flow meter, energy meter, differential pressure sensors, etc. There are also multiple missing data
mechanisms (malfunction, power outage, local interferences, wireless radio transmissions error) and
multiple randomness for missing data (missing not at random, missing at random, missing completely
at random) for various sensors. The single imputation method may not be able to capture various
missing data scenarios from various sensors. Few researchers study the compatibility of a single
technique on various sensors with missing data. A few papers are found to work on the selection and
use of multiple data imputation methods and they are introduced in the following paragraph.
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Inman et al. [14] explored the use of missing data imputation and clustering on building electricity
consumption data. The objective was to compare two data imputation methods: Amelia multiple
imputation and cubic spline imputation. The results of this study suggest that using multiple
imputation to fill in missing data prior to performing clustering analysis results in more informative
clusters. Schachinger et al. [15] focused on improving and correcting the monitored data set. They tried
to identify the reasons for data losses and then look for recovery options. If lengths of periods of
missing data are not exceeding the predefined thresholds, these periods are interpolated. Interpolation
thresholds are set depending on the frequency of sensor monitoring and dynamic behavior. Continuous
data are interpolated using linear and polynomial interpolation. Habib et al. [16] filled the missing
values with regression and linear interpolation for short and long periods. They also addressed that (a)
it is necessary to detect the missing gaps between the data acquired as it is also an important factor
to indicate the reliability of the data, (b) these missing gaps are always undeniable and lowering the
amount of meaningful calculations, (c) it is crucial to make the missing gaps fewer as data with fewer
gaps is considered good quality data, and (d) there are different methods available for handling the
missing values, e.g., regression, depending on the nature of the data and other parameters, such as
computations, precision, robustness, and accuracy. Xia et al. [17] addressed that to get the data in
workable order for calculation, analysis, and benchmarking, the missing or invalid (mainly negative)
data should be replaced with data during time periods or days that were similar to the invalid points,
taking weather condition into account as well. For example, a few missing data would be replaced by
the previous or following few proper data, or their average. Several hours’ missing data would be
replaced by data of the same time periods on the previous or following day, considering weekdays
and weekends. The same goes for missing or invalid data of an even longer period. Garnier et al. [18]
used data anterior and/or posterior to the sensor failure in order to rebuild the missing information.
Two different approaches were presented: an interpolation technique used for the estimation of missing
solar radiation data and an extrapolation technique based on artificial intelligence deals with indoor
temperature estimation.

The papers in the last paragraph addressed the selection among only a few (two or three)
imputation methods according to the length of missing data gaps, sensor types, and the nature of
missing data. Too much domain knowledge is set to select among the sensors, making the method less
automated. Ensemble method, which is a pool-based method that can better address the variation
problem is rarely applied for building sensors. Additionally, few studies are found to apply the
ensemble method to customize the imputation for different sensors with missing data.

One more key issue for data imputation techniques lies in the difficulty of validation. Since the
information of missing data are missed already and the truth data is lost forever, it is hard to create
some testing or validation scenarios to quantify the performance of data imputation methods.

In this paper, a framework is proposed to deal with the above two problems. First, a validation
module is developed based on pattern recognition. This module identifies good data points that have
similar characteristics with the missing data. The selected good data can mimic missing data but with
truth value, which create testing scenarios to validate the effectiveness of the single data imputation
method. Second, with the validation data decided, a pool of data imputation methods is tested under
the validation dataset, to find an optimal imputation method for each sensor, which is basically an
ensemble method. The selected imputation method is expected to be different from sensor to sensor,
which can optimize the accuracy of imputation under different sensor types and different mechanism
and randomness of data missing for each sensor.

The paper is organized as follows. The data imputation framework is developed in Section 2.
The developed framework is applied to a real-building case study to demonstrate its effectiveness in
Section 3. Results and discussion are introduced in Section 4. Conclusions are drawn in Section 5.
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2. Pattern-Recognition-Based Ensemble Data Imputation Framework

The data imputation framework addresses two problems summarized in Section 1: (1) the lack of
validation data to test imputation methods, and (2) the lack of method to automatically customize
the imputation method for various sensors with various mechanism and randomness of missing data.
Correspondingly, there are two modules to solve the problem, respectively, which are: the validation
data generation module (Module 1) and the ensemble imputation module (Module 2). The diagram of
the framework and the two modules are shown in Figure 1.Sensors 2020, 20, x FOR PEER REVIEW 4 of 16 
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2.1. Module 1. Validation Data Generation

As shown in Figure 1, the original timeseries data have good values (green square) and missing
data (red square). Module 1 creates validation data (yellow square) using pattern recognition technique.
Data with good values (e.g., x7 and x8 in Figure 1) and the generated validation data (x’7 and x’8) are
the same in terms of values; their only difference is that the validation data are used to evaluate the
imputation method. Pattern recognition is applied to identify some good data points that have similar
characteristics with the missing data (red square) and marks them as validation data. The characteristics
include time indicators (such as hour of day, day of week, weekday weekend indicator, and month
of year) and weather variables (such as outdoor air temperature, humidity, and solar radiation).
This means that the pattern recognition technique tries to search among good data and find the ones
that have similar happening time and weather condition with the missing data, trying to mimic the
missing data mechanism. Similarity metrics such as Euclidean distance are used to quantify how
missing data and good data are similar with each other. To be more specific, the problem can be
formulated and simplified using the equation representing that the method tries to search among all
good data (Xg) to select several good data points (xg, a matrix with time and weather variable) with
the highest similarity metrics (defined by fsim), meaning they are the most similar to the missing data
set (Xm). The selected good data points are supposed to be more likely to miss values. Those data sets
that are similar to missing data but have a truth value can be further used as validation datasets to test
the effectiveness of data imputation methods in the next steps. The pattern recognition techniques
can be unsupervised clustering techniques (such as K-means clustering, categorical mixture models,
hierarchical clustering, correlation clustering, and kernel principal component analysis), supervised
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classification techniques (such as neural network, support vector machine, decision tree and random
forest), and any other statistical methods that can classify and cluster data.

argmax
xg ∈ Xg

fsim
(
xg, Xm

)
(1)

2.2. Module 2. Ensemble Imputation Method

After deciding the validation dataset in Module 1, Module 2 applies the ensemble method to find
the data imputation method with the best validation accuracy among a pool of imputation methods
for each sensor using the validation dataset. First, it creates a pool of data imputation methods
including statistical and model-based methods, for example simple (e.g., nearest available value),
linear (e.g., linear interpolation), nonlinear (e.g., quadratic interpolation), piecewise (e.g., piecewise
polynomial interpolation), and machine-learning-based interpolation (e.g., support vector machine).
Since it is an ensemble method whose performance depends on the method with the best performance,
the more diversified and more imputation methods are in the pool, the better performance this ensemble
method can achieve. Then, it tests each imputation method using the validation dataset generated
in Module 1 and selects the method with the highest validation accuracy from the data imputation
method pool for each sensor. The validation accuracy is quantified by some accuracy and error metrics
(such as coefficient of variation of root mean squared error and r-squared) between the imputed value
and the truth value of the validation data. Finally, all missing data are imputed by the selected data
imputation method (blue square shown in Figure 1).

The developed framework can work if there is archiving system to store and manage history data.
There is no additional cost on installation. The only cost to apply this framework is the hardware cost
for computation. The output of the framework is post-processed and repaired missing data. It can be
used for both online and offline missing data imputation, but, in this paper, only an offline process is
considered. To demonstrate the application and the effectiveness of the framework, it is applied to the
sensors from a real campus building in the next section.

3. Real-Building Case Study

3.1. Sensors from a Real Campus Building

The sensors from Nesbitt Hall are used to demonstrate the developed framework. Nesbitt Hall
(Figure 2) is a campus building located at Drexel University in Philadelphia. It is a seven-story, 7246 m2

commercial building that includes classroom, office, and laboratory space. It has one chiller and
two steam-to-hot-water heat exchange systems. It has three air handling units (AHUs) located in
the basement and on the roof. The chiller system is in the basement with the corresponding cooling
tower on the top of the building. More details about heating, ventilation, and air conditioning (HVAC)
systems and equipment of Nesbitt Hall can be found in Appendix A.

Among the 539 sensors from Nesbit Hall, 18 sensors with missing data listed in Table 1 are
selected to test the framework. There are five considerations of choosing these sensors for the case
study: (1) the sensors have adequate missing data; (2) the sensors are typical sensors in BAS; (3) the
sensors cover various sensor types, including an energy meter, flow meter, thermometer, humidity
sensor, ampere meter, valve position, and differential pressure sensors; (4) the sensors cover various
equipment, including a chiller, AHU, and a variable-air-volume (VAV) box, and (5) the sensors have
various patterns and characteristics of missing data, including missing data size and randomness.
The data are downloaded via the Nesbitt Hall BAS web interface from 1st January to 16th August in
2017, which covers summer, winter, and shoulder seasons. Data are collected every 5 min (i.e., with a
5-min sample interval).



Sensors 2020, 20, 5947 6 of 16
Sensors 2020, 20, x FOR PEER REVIEW 6 of 16 

 

 
Figure 2. Appearance of Nesbitt Hall. 

Table 1. Sensors used in the case study of the developed framework. 

No. Equipment Sensor Type Original Sensor Name from BAS Sensor Description 
1 

Chiller 

Energy meter peco_meter/elec_usage_chiller Chiller electricity consumption 
2 Flow meter chws_control/chw_flow Chilled water flow rate 
3 Thermometer chws_control/chws_temp Chilled water supply temperature  

4 
Differential pressure 

sensors 
chws_control/delta_press 

Chilled water supply and return 
pressure difference 

5 
Cooling 
tower 

Differential pressure 
sensors 

chws_control/cw_delta_press 
Cooling water supply and return 

pressure difference 
6 Thermometer chws_control/cwr_temp Cooling water return temperature 
7 Valve position chws_control/cw_vlv_fdbk Cooling water valve feedback 
8 Fan status ct_control/ct_fan_status/trend_log Cooling tower fan status 
9 

AHU 

Thermometer ahu1/ra_temp/trend_log AHU 1 return air temperature 
10 Valve position ahu1/econ AHU 1 economizer valve position  
11 Valve position ahu1/chw_valve AHU1 cooling coil valve position 
12 Humidity sensor ahu1/ra_humidity AHU1 return air humidity 
13 Ampere meter ahu1/sfan_amps AHU 1 supply air fan ampere 
14 Valve position ahu1/htg_stm_vlv_1_3 AHU 1 steam valve position 

15 
Differential pressure 

sensors 
ahu1/stat_press AHU 1 supply air static pressure 

16 Thermometer ahu1/pht_temp 
AHU 1 preheat coil water 

temperature 
17 

VAV 
Flow meter vv-1-b-1/air_flow/flow_input VAV 1 air flow rate 

18 Thermometer vv-1-b-1/da_temp/trend_log VAV 1 discharge air temperature 

  

Figure 2. Appearance of Nesbitt Hall.

Table 1. Sensors used in the case study of the developed framework.

No. Equipment Sensor Type Original Sensor Name from BAS Sensor Description

1

Chiller

Energy meter peco_meter/elec_usage_chiller Chiller electricity consumption
2 Flow meter chws_control/chw_flow Chilled water flow rate
3 Thermometer chws_control/chws_temp Chilled water supply temperature

4 Differential pressure sensors chws_control/delta_press Chilled water supply and return
pressure difference

5

Cooling tower

Differential pressure sensors chws_control/cw_delta_press Cooling water supply and return
pressure difference

6 Thermometer chws_control/cwr_temp Cooling water return temperature
7 Valve position chws_control/cw_vlv_fdbk Cooling water valve feedback
8 Fan status ct_control/ct_fan_status/trend_log Cooling tower fan status
9

AHU

Thermometer ahu1/ra_temp/trend_log AHU 1 return air temperature
10 Valve position ahu1/econ AHU 1 economizer valve position
11 Valve position ahu1/chw_valve AHU1 cooling coil valve position
12 Humidity sensor ahu1/ra_humidity AHU1 return air humidity
13 Ampere meter ahu1/sfan_amps AHU 1 supply air fan ampere
14 Valve position ahu1/htg_stm_vlv_1_3 AHU 1 steam valve position
15 Differential pressure sensors ahu1/stat_press AHU 1 supply air static pressure

16 Thermometer ahu1/pht_temp AHU 1 preheat coil water
temperature

17
VAV

Flow meter vv-1-b-1/air_flow/flow_input VAV 1 air flow rate
18 Thermometer vv-1-b-1/da_temp/trend_log VAV 1 discharge air temperature

3.2. Missing Data Description of Selected Sensors

In Section 3.2, missing data characteristics, including missing data size and missing data
randomness, are introduced. In terms of missing data size, Table 2 shows the total number of
missing data and maximum holes (or gaps, meaning length of consecutive missing data) for each
sensor. Table 2 indicates a varieties of missing data size for the selected sensors.
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Table 2. Missing data description of the selected sensors.

No Sensor Name Number of Missing Data Maximum Hole Size

1 peco_meter/elec_usage_chiller 466 2
2 chws_control/chw_flow 512 2
3 chws_control/chws_temp 439 1
4 chws_control/delta_press 505 2
5 chws_control/cw_delta_press 236 2
6 chws_control/cwr_temp 446 1
7 chws_control/cw_vlv_fdbk 531 3
8 ct_control/ct_fan_status/trend_log 426 1
9 ahu1/ra_temp/trend_log 466 1
10 ahu1/econ 269 2
11 ahu1/chw_valve 315 3
12 ahu1/ra_humidity 446 2
13 ahu1/sfan_amps 334 2
14 ahu1/htg_stm_vlv_1_3 118 2
15 ahu1/stat_press 118 1
16 ahu1/pht_temp 236 2
17 vv-1-b-1/air_flow/flow_input 216 3
18 vv-1-b-1/da_temp/trend_log 571 1

Most sensor data listed in Table 1 are systematically missed. The best example is the chiller
energy meter. Figure 3 shows the Kernel Density Estimation plot reflecting density distribution of
missing data happening time (hour of day). It shows that data are more frequently missed during
the chiller’s start-up time (around 7–8 am) of the HVAC system, where energy suddenly increases.
This indicates that the missing mechanism of chiller energy meter data is somehow systematic and
not random. In this study, the systematic missing of each sensor are quantified by the randomness
of time indicators for the time when data are missing, including hour of day, day of week, month of
year, and weekday indicator (0 for weekday and 1 for weekend). For example, the randomness for
the energy meter in terms of hour of day is low because data are missed following a pattern of fault
happening time, or data are systematically missing in terms of hour of day in energy meters. We use a
statistical test to quantify the randomness of missing data in this study. The null hypothesis is that the
data are generated in a random manner, and the equation of randomness is shown in Equation (1),
which can be found in the book [19]. In Equation (2), R is the number of runs. The concept of run is
defined as a series of consecutive positive (or negative) values of the difference between one data point
and the median of all data. n1 is the number of data that is greater than the median of all data, and n2
is the number of data that is less than the median.

Z =
R− 2n1n2

n1+ n2
− 1√

2n1n2(2n1n2−n1− n2)

(n1+ n2)
2(n1+ n2−1)

, (2)

The calculated Z-score indicates the randomness of a series of data: under a 10% significance
level, the Z-score over 1.65 indicates non-randomness of data. The results of missing data randomness
quantification by Z-score by sensor and time indicator are shown in Table 3. By comparing the calculated
Z-score, missing data in sensors such as “chws_control/chw_flow” and “peco_meter/elec_usage_chiller”
are more systematically missed, while sensors such as “ahu1/htg_stm_vlv_1_3” and “ahu1/stat_press”
are less systematically missed. To compare the average of Z-scores among the time indicators,
the missing mechanism seems less random and more correlated with hour of day. In other words,
the missing data in most sensor are missed under some hourly pattern. It is worth mentioning that this
paper will not study the truth of the mechanism of missing data in each sensor but only describe general
randomness using Z-score. Moreover, the randomness test is not part of the framework, but it will
help readers to better understand the characteristics of missing data for each sensor in the case study.
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Table 3. Randomness of missing data (Z-score) for each sensor in terms of hour of day, month,
and weekday indicator.

Sensor Name Hour Day Weekday Indicator Month Average

peco_meter/elec_usage_chiller 2.30 1.17 2.06 2.18 1.93
chws_control/chw_flow 2.26 0.79 2.01 2.15 1.80

chws_control/chws_temp 2.09 0.22 1.86 1.96 1.53
chws_control/delta_press 2.24 0.71 1.99 2.12 1.77

chws_control/cw_delta_press 1.53 0.57 1.26 1.35 1.18
chws_control/cwr_temp 2.11 0.27 1.80 1.97 1.54

chws_control/cw_vlv_fdbk 2.15 0.68 1.88 2.02 1.69
ct_control/ct_fan_status/trend_log 2.06 0.18 1.78 1.92 1.49

ahu1/ra_temp/trend_log 2.15 0.25 1.82 2.02 1.56
ahu1/econ 1.63 0.60 1.35 1.46 1.26

ahu1/chw_valve 1.77 0.82 1.41 1.61 1.40
ahu1/ra_humidity 2.11 0.68 1.83 1.99 1.65
ahu1/sfan_amps 1.82 0.55 1.43 1.67 1.37

ahu1/htg_stm_vlv_1_3 1.08 0.36 0.61 0.86 0.73
ahu1/stat_press 1.08 0.01 0.59 0.82 0.62
ahu1/pht_temp 1.53 0.56 1.17 1.35 1.15

vv-1-b-1/air_flow/flow_input 1.46 0.70 1.18 1.27 1.15
vv-1-b-1/da_temp/trend_log 2.39 0.39 2.14 2.27 1.79

Average 1.85 0.49 1.54 1.70 1.39

3.3. Create Validation Dataset

A random-forest-based pattern recognition technique is applied to the case study to create the
same number of validation data (or “fake” missing data) from good data, by mimicking the real missing
data characteristics. Pattern recognition here means we want to recognize the pattern of real missing
data to find some good data with similar characteristics with real missing data, so that we can use
those good data as validation dataset to test various data imputation methods.
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We apply a supervised random-forest-based pattern recognition technique to realize the generation
of validation dataset, or “fake” some missing data but with truth value. For each sensor, we label the
missing data with 1 and good data with 0, which is the output of a random forest regressor. The inputs
for the regressor are weather and time indicators, including outdoor air temperature, outdoor humidity,
outdoor air enthalpy, hour of the day, day of the week, weekday indicator (0 for weekday and 1 for
weekend), and month of the year. All the information from inputs are from timestamp of sensors and
the corresponding weather that is recorded at the timestamp. We train the regressor based on the
inputs and output. The model can predict under what time and weather the sensor will possibly miss
a value. With that trained model, test the training inputs again and check the value of the output.
The larger the testing output (or closer to 1), the more likely the data has the characteristics of missing
data in terms of time and weather. Besides the n real missing data from one sensor, selected the other n
good data with the highest testing output, which will show similar characteristics with the real missing
data. Figure 4 shows an example of how a validation data point is generated based on its similar
characteristics with one of the missing data in the chiller energy meter. The random forest algorithm is
realized by a Python machine-learning library called scikit-learn. The parameters of random forest
algorithm are all set to default.
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chiller energy meter.

3.4. Pool of Data Imputation Methods

As introduced in Section 2, the developed framework applies the ensemble method for missing data
imputation, where multiple imputation methods are used as candidate methods to test the performance
on the validation dataset. The method with the best validation accuracy will be the final imputation
method for a specific sensor Table 4. lists a pool of the candidate data imputation methods for the
real-building case study. The ensemble method is independently conducted for each sensor, meaning
that one single imputation method will be selected for each sensor. As can be seen from Table 4, there
are five categories of the imputation methods in the pool for the case study: (1) simple interpolation
using the next, last, or nearest valid observation to fill the missing data gap (bill, ffill, and nearest); (2)
linear interpolation (linear); (3) nonlinear interpolation (quadratic and cubic); (4) piecewise splines
(piecewise_polynomial, from_derivatives, pchip, akima); and (5) machine-learning-based interpolation
techniques (artificial neural network, or ANN). These data imputation methods are realized by Python
libraries including pandas, scipy, and sklearn. It is worth mentioning that the parameters of each
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method from Python libraries are default and untuned in the case study. The case study is just a
showcase or example of the ensemble method with a different single imputation algorithm. The single
algorithms can be tuned to get better performance, and chances are that the ensemble method can
also achieve better performance accordingly. However, the focus of this paper is not tuning of single
algorithm so only default parameters are considered. In the next section, the results and discussion of
applying the developed framework on the real-building case study are introduced.

Table 4. Pool of data imputation methods for the case study.

No. Category Abbreviation Definition and Description Library or Reference

1 Simple bfill use next valid observation to fill gap pandas.DataFrame.fillna
2 Simple ffill use last valid observation to fill gap pandas.DataFrame.fillna
3 Simple nearest Use the nearest available value scipy.interpolate.interp1d
4 Linear linear Linear interpolation pandas.DataFrame.interpolate
5 Nonlinear quadratic Interpolation of second order scipy.interpolate.interp1d
6 Nonlinear cubic Interpolation of third order scipy.interpolate.interp1d

7 Spline piecewise_polynomial Piecewise polynomial curve specified
by points and derivatives scipy.interpolate.PiecewisePolynomial

8 Spline from_derivatives Piecewise polynomial in the
Bernstein basis scipy.interpolate.BPoly.from_derivatives

9 Spline pchip Piecewise Cubic Hermite
Interpolating Polynomial scipy.interpolate.PchipInterpolator

10 Spline akima Akima spline interpolation scipy.interpolate.Akima1DInterpolator

11 Machine
learning ANN

Use Multi-layer Perceptron to predict
the missing value based on weather

and time
sklearn.neural_network.MLPRegressor

4. Results and Discussion

With the developed framework introduced in Section 2 and real-building case study and experiment
settings in Section 3, we will implement the developed framework to the case study and discuss the
results in Section 4.

The framework generates a set of validation data from each sensor listed in Table 1 according
to the real missing data characteristics and pattern recognition techniques introduced in Section 3.3.
Then, for each sensor, multiple data imputation methods listed in Table 4 (Section 3.4) are tested under
the generated validation dataset. The performance of the data imputation method is quantified by the
coefficient of variation of root mean squared error (CVRMSE) of the imputed value calculated by each
imputation method and the truth value from the validation dataset. The smaller the error, the better
the performance of imputation. The results of imputation performance are summarized in Table 5.
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Table 5. Summary of the performance (coefficient of variation of root mean squared error (CVRMSE)) of imputation methods for each sensor.

Sensors\Imputation Methods bfill ffill ANN Linear Nearest Quadratic Cubic pp * Fd * pchip akima Avg * Ensemble

peco_meter/elec_usage_chiller 0.03 0.04 0.02 0.02 0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.03 0.02
chws_control/chw_flow 0.43 0.33 0.14 0.23 0.27 0.26 0.27 0.23 0.23 0.23 0.24 0.26 0.14

chws_control/chws_temp 0.03 0.03 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
chws_control/delta_press 0.83 0.50 0.30 0.37 0.48 0.26 0.27 0.37 0.37 0.29 0.30 0.39 0.26

chws_control/cw_delta_press 0.07 0.14 0.02 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.02
chws_control/cwr_temp 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

chws_control/cw_vlv_fdbk 0.49 0.49 0.16 0.44 0.49 0.66 0.68 0.44 0.44 0.45 0.47 0.47 0.16
ct_control/ct_fan_status/trend_log 1.94 1.82 0.53 1.58 1.87 2.03 2.08 1.58 1.58 1.62 1.65 1.66 0.53

ahu1/ra_temp/trend_log 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
ahu1/econ 0.47 0.09 0.16 0.16 0.07 0.16 0.18 0.16 0.16 0.13 0.13 0.17 0.07

ahu1/chw_valve 0.26 0.28 0.11 0.12 0.06 0.19 0.20 0.12 0.12 0.09 0.09 0.15 0.06
ahu1/ra_humidity 0.04 0.04 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02
ahu1/sfan_amps 0.13 0.16 0.09 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08

ahu1/htg_stm_vlv_1_3 0.16 0.10 0.06 0.10 0.08 0.10 0.12 0.10 0.10 0.09 0.10 0.10 0.06
ahu1/stat_press 0.06 0.13 0.09 0.06 0.13 0.16 0.17 0.06 0.06 0.07 0.07 0.10 0.06
ahu1/pht_temp 0.03 0.01 0.02 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00

vv-1-b-1/air_flow/flow_input 0.44 0.52 0.26 0.23 0.43 0.23 0.25 0.23 0.23 0.21 0.25 0.30 0.21
vv-1-b-1/da_temp/trend_log 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Avg * 0.30 0.26 0.11 0.19 0.23 0.24 0.25 0.19 0.19 0.19 0.19 0.21 0.09

* pp: piecewise_polynomial, fd: from_derivatives, avg: average.
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Several conclusions can be drawn by comparing the imputation accuracy among various sensor
types and imputation methods from Table 5:

• The listed imputation methods have vastly different performance (imputation accuracy). In terms
of sensor average, the best imputation method, the developed ensemble method can outperform
the worst (bfill) method by 70.0%. The developed ensemble method can increase the accuracy of
imputation by 57.1% on average compared with single imputation method. It can also increase
the accuracy of imputation by the best single imputation method (ANN in this case) by 18.2%.
The results show the effectiveness of improving imputation accuracy and indicate the necessity of
the pool-based ensemble imputation methods developed in the framework.

• The performance of single imputation methods differs from sensor to sensor. Here, single
imputation methods refer to all imputation methods that are not the ensemble imputation method.
Some single imputation methods can have high accuracy for one sensor but will loses accuracy
when used for another. For example, ANN outperforms other single imputation methods on
average, but it is worse than pchip when imputing the sensor “vv-1-b-1/air_flow/flow_input”.
Moreover, the best single imputation method selected is different from sensor to sensor.

• The difficulty of sensor prediction is different from sensor to sensor. The fan sensor
“ct_control/ct_fan_status/trend_log” has a relatively low testing accuracy with all the imputation
methods in the pool, while sensors such as “chws_control/chws_temp” can be easily imputed
even with the simplest imputation methods.

• To further analyze the single imputation method performance in terms of sensor types,
the machine-learning-based imputation method is most suitable for the energy meter, and
piecewise-spline imputation methods are suitable for some temperature sensors and some
pressure sensors. Although the above conclusion may be biased to the specific building and
sensors, the result indicates the importance of ensemble method to automatically customize the
selection of imputation method based on different sensor types and missing data characteristics.

• To further analyze the result in terms of the five imputation types, machine-learning-based
imputation generally has the best overall performance. Besides, machine-learning methods have
even better performance improvement, especially when there are large holes in the missing data,
such as the sensor “chws_control/cw_vlv_fdbk”. However, the ensemble method can still always
select the best performance among all candidate single imputation methods.

To sum up, the results show that different single imputation methods are suitable for different
sensor types and missing data characteristics. The results also show that the proposed framework
can optimize the accuracy of imputation under different mechanisms and the randomness of data
missing for different sensors. The ensemble imputation method outperforms the best single imputation
method by 18.2% in the case study. The result also indicates the importance of the ensemble method to
automatically customize the selection of the imputation method based on different sensor types and
missing data characteristics.

5. Conclusions

This paper developed a framework of data imputation for sensors from building energy systems.
The first module of this framework is developed based on pattern recognition, which identifies good
data points that have similar characteristics with the missing data. The selected good data can mimic
missing data but with truth value, which create testing scenarios to validate the effectiveness of the
data imputation method. In the second module of this framework, a pool of data imputation methods
is tested under the validation dataset to find an optimal imputation method for each sensor, which is
termed as an ensemble method. The selected imputation method is expected to vary from sensor to
sensor, which can reflect the specific mechanism and randomness of missing data from each sensor.

The effectiveness of the framework is demonstrated in a real-building case study. The results show
the importance of the ensemble method to automatically customize the selection of the imputation
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method based on different sensor types and missing data characteristics, after finding in the case
study that (1) the ensemble method outperforms the best single imputation method by 18.2% and (2)
the single imputation method cannot achieve good performance in all types of sensors and missing
data characteristics.

The framework can automate the data cleaning process due to very little domain knowledge being
required. Users of this framework do not need any knowledge on the characteristics of the sensor and
its missing data. Instead, the pool-based ensemble imputation method can automatically evaluate
each single imputation method and find the most suitable one for each sensor. The automation process
is essentially important with the development of BAS and Internet of Things, where a high automation
is required for building analysis, modeling, and control.

In terms of the limitation and future work, first, the framework only considers offline missing data.
In the future, it can be extended for an online process. Second, the pool of imputation methods does
not exhaust all the existing imputation methods. More sophisticated data imputation methods, such as
Amelia, Self-Organization Maps, and K-nearest neighbors, can be included into the pool of imputation
methods to further improve the performance of the whole framework. Moreover, the frequency of
readings in this paper is 5 min for all sensors; in the future, the impact of sensor reading frequency
on the accuracy of the developed framework can be further studied. Finally, the validation data
generation module will not find appropriate (or similar enough) validation data when the missing data
is a very rare case (in terms of weather and happening time) or no such pattern appears in the dataset.
In the future, the impact of this situation on imputation accuracy should be evaluated. Generally
speaking, the future work should focus on extending the developed framework to a more generic and
plug-n-play tool for BAS.

Funding: This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.
Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building
Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or
the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Nesbitt Hall has one chiller and two heating exchange systems for hot water and VAV reheat. It has
three AHUs in the basement and on the penthouse. Figure A1 shows the diagram of the arrangement
of AHUs in Nesbitt Hall.
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Appendix A 

Nesbitt Hall has one chiller and two heating exchange systems for hot water and VAV reheat. It 
has three AHUs in the basement and on the penthouse. Figure A1 shows the diagram of the 
arrangement of AHUs in Nesbitt Hall. 
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The chiller plant system is in the basement with the corresponding cooling tower on top of the
building. All the HVAC equipment is connected to BAS. Table A1 lists the equipment on each floor.

Table A1. Equipment on each floor in Nesbitt Hall.

Location Equipment Name Equipment Function

Basement

VV-1-B-1 VAV box for basement room 1
VV-1-B-2 AMD-33 VAV box for basement room 2

HX-1 Heat water exchange for hot water
HX-2 Heat water exchange for VAV reheat

Chilled water system Provide chilled water for AHU_1 2 3
AHU_1 AHU_1 meets thermal load in basement

First floor
VV-1-1-1 to 12 VAV boxes for the first floor (served by AHU_1)

AC-1-1 Air control panel
Second floor VV-2-2-1 to 11 VAV boxes for the second floor (served by AHU_2)

Third floor
VV-2-3-1 to 10 VAV boxes for the third floor (served by AHU_2)

AC-3-1 Air control panel
Fourth floor VV-2-4-1 to 10 VAV boxes for the fourth floor (served by AHU_2)
Fifth floor VV-2-5-1 to 10 VAV boxes for the fifth floor (served by AHU_2)

Sixth floor
VV-2-6-1 to 10 VAV boxes for the sixth floor (served by AHU_2)

AC-6-1 Air control panel

Seventh floor
laboratory

SV-3-1 to 2 & Hood EV-3-1 to 2 VAV boxes for the seventh-floor lab (served by AHU_3)
SV-3-3 to 6 & Hood EV 3-3 to 6 VAV boxes for the seventh-floor lab (served by AHU_3)

Lab exhaust system Lab air exhaust system
Seventh floor VV-2-7-1 to 9 VAV boxes for the seventh-floor lab (served by AHU_2)

Penthouse

Cooling tower Cooling tower
AHU_2 AHU_2
AHU_3 AHU_3

Generator temperature control Generator temperature control

OA conditions Outside air condition (temperature humidity and
enthalpy)

EF-1 Exhaust fan
UH-1 Unit heating (for equipment anti-freezing)

Chiller plant system: The variable primary flow (VPF) system is used in the chiller plant in Nesbitt
Hall. In the chiller plant, one chiller, one primary pump (variable speed), one spare pump (constant
speed) provide chilled water for AHU_1, AHU_2, and AHU_3 in the building. Figure A2 shows the
configuration of the chiller plant loop in Nesbitt Hall from the web interface of BAS. A cooling tower is
installed on the roof to dispose of heat from the chiller.
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AHU system: The AHU regulates and circulates zone air to provide heating, cooling and
ventilating in Nesbitt Hall. There are three AHUs in the Nesbitt Hall. AHU_1 and AHU_2 are equipped
with returned air ducts. AHU_3 does not have a return air duct. AHU_1 is in the basement. AHU_2
and 3 are on the penthouse. Figure A3 provides the configuration of AHU_1 from the web interface
of BAS.
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Figure A3. Configuration of AHU_1 in Nesbitt Hall from the web interface of BAS.

Air terminal system: Nesbitt Hall uses VAV system. As shown in Figure A4, two types of VAV
boxes, with and without heating coils, are used in different zones to meet the requirement of the
thermal load.
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boxes, with and without heating coils, are used in different zones to meet the requirement of the 
thermal load. 

  
Figure A4. The configuration of VAV box with and without reheat in Nesbitt Hall from the web 
interface of BAS. 
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