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Abstract: Network security is a crucial challenge facing Internet-of-Things (IoT) systems worldwide,
which leads to serious safety alarms and great economic loss. This paper studies the problem
of malicious interdicting network exploitation of IoT systems that are modeled as a bi-layer
logical–physical network. In this problem, a virtual attack takes place at the logical layer (the layer
of Things), while the physical layer (the layer of Internet) provides concrete support for the attack.
In the interdiction problem, the attacker attempts to access a target node on the logical layer with
minimal communication cost, but the defender can strategically interdict some key edges on the
physical layer given a certain budget of interdiction resources. This setting generalizes the classic
single-layer shortest-path network interdiction problem, but brings in nonlinear objective functions,
which are notoriously challenging to optimize. We reformulate the model and apply Benders
decomposition process to solve this problem. A layer-mapping module is introduced to improve the
decomposition algorithm and a random-search process is proposed to accelerate the convergence.
Extensive numerical experiments demonstrate the computational efficiency of our methods.

Keywords: network interdiction; Internet of Things; logical–physical networks; shortest path;
Benders decomposition

1. Introduction

With the development of information and communication technologies, more and more functional
systems have begun to be built based on information networks. Thanks to the high-speed and massive
data transmission of the information network, the scale and efficiency of the functional system has
been greatly increased. It makes the multi-layer network system represented by Internet of Things
(IoT) widely used in various fields such as energy, health care, communication, transportation and
manufacturing [1]. The combination of networks of different layers makes the whole system have
far more powerful and intelligent functions than ever before. However, the high integration and
connectivity of IoT make them more vulnerable to malicious attacks [2–4]. An error or failure of a
certain layer may have serious effects on the entire system, and the malicious attacks on the system
may be carried out from multiple layers, e.g., the cascading failures of the Italian smart grid on
28 September 2003 [5] and the Stuxnet worm against Iranian nuclear facilities [6]. The great significance
and vulnerability of IoT has inspired researchers to pay attention to the security protection of them.
Recent literature has carried out relevant research on the security of IoT and other layered network
systems from different perspectives [7–14].
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On some occasions, we need to interdict the layered network of functional systems to defend
against malicious attacks. For example, criminals invade the IoT and occupy some important devices,
attempting to issue malicious instructions to destroy key facilities. The network operators hope to
delay the criminals’ attack by interdicting some links to buy time for the deployment of heavyweight
countermeasures [9]. Such malicious attacks usually spread through direct connections in the network,
expand the scope of influence, and ultimately achieve functional damage. To characterize the
propagation behavior of malicious attacks in layered network systems such as IoT and to study the
defense strategy, a suitable network model is necessary. The logical–physical network model (Concept
of logical–physical network. Retrieved from https://www.ibm.com/support/knowledgecenter/en/
SSPHQG_7.2/concept/ha_concepts_physical_logical.html), which provides us a proper approach
to modeling IoT and other real layered network systems, is used in this paper. IoT is a huge
network which combines functional devices with the Internet [15]. In IoT, there are functional
collaboration and dependency relationships among smart devices such as information-sensing devices,
information-processing devices, information-fusion devices, and effectors. In the framework of
logical–physical network models, the network formed by these devices and relationships describes
how the system performs tasks and achieves functions, and we call it the logical-layer network.
Before being functionally connected, these devices need to be physically connected through the
Internet, i.e., they need to transfer information through the actual communication network, which
we call the physical-layer network. The specific realization of system functions, on the logical layer,
needs devices to cooperate according to certain organizational rules; on the physical layer, needs
devices to transmit information through actual communication pathways. Figure 1 shows how the
functional processes in the logical-layer network correspond to real physical communication paths,
and the difference from the single-layer case.

A specific system function, which is determined by a starting node sl and an ending node tl ,
may have different implementations on the logical layer, and these logical implementations may
correspond to different communication paths. In the sense of optimization, the communication paths
are designed to be shortest (i.e., has minimum delay).

How to deploy an effective interdiction strategy when the logical–physical network suffers
malicious intrusion is worthy of attention. Appropriate interdiction strategies can earn sufficient
time for network operators, and the optimization of interdiction strategies, which we call the
logical–physical network shortest-path interdiction (LPNSPI) problem, is exactly what we want to
solve in this paper. LPNSPI is a zero-sum game involving two players: an attacker and a defender.
The attacker’s goal is to find a path which has minimum delay between a particular origin–destination
pair in the logical-layer network, and the defender aims to delay the path as much as possible by
interdicting connections in the physical-layer network. LPNSPI is an expansion and supplement of the
shortest-path network interdiction (SPNI), which is a derivative of the network interdiction problem
(NIP), on logical–physical networks. As an important issue in network attack and defense, NIP has
applications in various fields, such as the supply-chain network [16], infrastructure protection [17],
interdicting nuclear proliferation [18], etc.

NIP is also a useful model for researching the protection of IoT, e.g., the defensive resource
allocation [15] and adversarial outbreak detection [19]. Numerous variations of NIP have been
proposed and studied to meet different hypotheses under particular scenarios [16,17,20–24]. Among the
many types of NIP, SPNI is a classic and important branch. Generally, SPNI can be described as
maximizing the shortest path and may be formulated as a bi-level mixed-integer program. Researchers
have applied the SPNI model to transportation [25,26], port security, border patrol and other
aspects [27]. However, most of the literature about SPNI focuses on the single-layer network
where interdiction and pathfinding happen in the same layer [28,29]. In LPNSPI, interdiction is
applied on the physical layer, but the path that the attacker wants to minimize is on the logical layer.
With the physical-layer network alone, it is impossible to judge whether a path meets the functional
requirements; with the logical-layer network alone, it is impossible to confirm the specific delay of
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links in the network and the effect of interdiction. The separation of these two layers brings about
the non-linearity of the objective function (In Section 2, we present the non-linearity in LPNSPI.
The two-layer structure leads to the product term of decision variables in the objective function
(Equation (7))), and also make the traditional single-layer NIP solving methods unable to be directly
applied to LPNSPI. Recently the layered network interdiction problem has attracted more attention.
Kennedy [30] studied the maximum flow interdiction problem in a kind of multi-layer network where
different layers are connected by sharing some common elements (nodes or edges). Wei et al. [31]
studied the shortest-path interdiction problem in a kind of bi-layer network where the interdiction
effects on one layer can be determined by the interdiction on the other layer through logical operations.
Baycik et al. [32] studied the interdiction problem in layered physical and information flow networks.
In this problem, a physical node can only be used when the flow passing through its corresponding
information-layer node is more than a particular demand. Compared to this research, LPNSPI has a
completely different setting on the inter-layer relationships of logical–physical networks, which pays
more attention to the relationships between logical functions and physical communication paths.
Table 1 briefly compares some of the characteristics of LPNSPI and layered network interdiction
problems mentioned above.
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Figure 1. A simple example of the logical–physical network in IoT. The logical layer contains a sensor,
an effector and three different processors. The physical layer is the communication network, where
the time delay of each link is given by the number beside it. Each dotted line between the two layers
connects the functional part and the communicating part of the same entity. The sensor collects
information and sends it to either of the processors. The processor analyzes the information and then
sends order to the effector. As the figure shows, the shortest logical flow Sensor→ Processor3→ Effector
corresponds to a physical path A(Sensor)→ E→ G(Processor 3)→ K→ L(Effector), which weighs 9.
Although the shortest A–L path on the physical layer is A(Sensor)→ E→ H→ L(Effector) with total
weight 8, it is not functionally feasible because no processor is on this path and thus no effective order
can be sent to Effector.

In this paper, we propose the LPNSPI game and model it as a bi-level integer program.
We reformulate the problem and develop a Benders decomposition algorithm framework to solve
LPNSPI. There are two major approaches to solve SPNI problems: the decomposition method and the
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dual method. The advantages of the decomposition approach have been mentioned in [33], and as
shown in Table 1, the dual method is not suitable for LPNSPI. Then we propose a Layer-Mapping
module to reduce unnecessary calculations of the decomposition algorithm. Also, a Random-Search
module is developed to accelerate the convergence of the algorithm with a given approximate ratio.
Simulation experiments are designed, and the computational results prove the significant efficiency of
Layer-Mapping and Random-Search. Finally, we test our algorithms in a real bi-layer IoT network,
and our improving methods perform well in both solving time and interdiction effects.

Table 1. Comparisons with LPNSPI and other layered network interdiction problems.

Kennedy [30] Wei et al. [31] Baycik et al. [32] LPNSPI

objective function
Minimize the

maximum flow
Maximizing the

shortest path
Minimize the

maximum flow
Maximizing the

shortest path

inter-layer
relationship

geographical co-located
relations logic constraints

flow requirement
constraints path constraints

duality Yes Yes Yes No

The paper is organized as follows. In Section 2, the LPNSPI model is defined and formulated.
In Section 3, a basic decomposition algorithm is developed after reformulation. Layer-Mapping
is introduced in Section 4, and Random-Search is proposed in Section 5. Section 6 provides the
experimental results. Conclusions are in Section 7.

2. Shortest Path Interdiction Problem in Logical–Physical Networks

The LPNSPI problem involves two different networks: the logical-layer network which represents
the flow of information between logical entities, and the physical-layer network which represents the
actual transmission path of information in a physical environment. Throughout the present work,
we use normal symbols to represent scalars, and bold symbols for vectors/matrices. The logical-layer
network is defined as a directed graph Gl = (Nl , Al), where Nl represents the set of logical nodes
and Al represents the set of logical arcs. Each logical node corresponds to a logical entity such as a
person, a unit, an organization, etc. Each logical arc el = (il , jl) represents an allowed information
transfer direction between logical nodes. The direction of a logical link is generally defined by
artificial rules (such as process rules, hierarchy rules, etc.) rather than natural ones. For instance,
in the logical network, two nodes are adjacent because they may have a direct functional dependency
(the proper functioning of node i depends on the processed information provided by node j) rather
than because they have a direct physical connection. Unlike a logical-layer network, a physical-layer
network is defined as a bidirected graph Gp = (Np, Ap), where Np represents the set of physical
nodes and Ap represents the set of physical arcs. Physical arcs are bidirected because they correspond
to connections in the actual physical environment, such as road connections, routing connection,
and so on. These connections are not directional in themselves and the flow of information on them
can be two-way. Each logical node il has a corresponding physical node ip, but not necessarily the
other way around (many nodes in the physical network serve only as information transfer nodes
and are not necessary to perform system functions). Each physical arc ep = (ip, jp) ∈ Ap has a cost
of communication cep for the attacker, which will be increased to cep + dep if the arc is interdicted by
the defender. In addition, for the defender, the corresponding resource consumption of interdicting
ep is denoted as rep . The total interdiction resource for the defender is R. The communication cost
of a logical arc wel is the total communication cost of a path that the attacker choose to travel in the
physical-layer network, the corresponding node of endpoints of the logical arc being the start node
and end node of the physical path.

In this problem, we assume both the attacker and the defender have complete information about
the network. The defender pre-deploys the defense strategy according to the attacker’s source node
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sl and target node tl , and blocks some edges in the network. Subsequently, the attacker develops an
optimal attack plan to minimize the communication cost from the starting node to the target node.
Let xep (the vector form is denoted by bold x) denote the defender’s interdiction strategy on ep, and let
yel (the vector form is denoted by bold y) denote the attacker’s pathfinding variable on the logical
layer. Then the attacker’s problem can be formulated as follows:

min
y ∑

el∈Al

wel yel (1)

s.t. ∑
el∈FS(vl)

yel − ∑
el∈RS(vl)

yel =


1 i f vl = sl
−1 i f vl = tl

0 else
, ∀vl ∈ Nl (2)

yel ∈ {0, 1}, ∀el ∈ Al (3)

where wel is the weight of the logical link el = (il , jl), i.e., the minimum total cost of its corresponding
paths on the physical layer:

wel = w(il ,jl) = min
k

∑
ep∈Ap

(cep + xep dep)kel ep (4)

s.t. ∑
ep∈FS(vp)

kel ep − ∑
ep∈RS(vp)

kel ep =


1 i f vp = ip

−1 i f vp = jp

0 else
, ∀vp ∈ Np (5)

kel ep ∈ {0, 1}, ∀ep ∈ Ap (6)

where kel ep (Let K denotes the matrix form) is the pathfinding variable which indicates whether ep

is chosen in the corresponding physical path of el . xep = 1 when the physical arc ep is interdicted
and xep = 0 otherwise. kelep = 1 indicates that ep is in the physical shortest path corresponding to el .
FS(vp) and RS(vp) represent respectively the arc set directed out of and into node vp. ip and jp are
respectively the corresponding physical nodes of il and jl . Constraint (2) and (5) are the flow-balance
constraints. In practice, wel can be calculated by using common shortest-path algorithms such as the
Dijkstra algorithm.

We define Vsl tl as the total communication cost from sl to tl . Then the defender’s problem of
maximizing Vsl tl , which is exactly the LPNSPI problem, can be formulated as follows

[LPNSPI] V∗sl tl
= max

x
min

y
Vsl tl = max

x
min

y ∑
el∈Al

wel (x)yel

= max
x

min
y,k

∑
el∈Al

 ∑
ep∈Ap

(cep + xep dep )kel ep

 yel (7)

s.t. ∑
el∈FS(vl )

yel − ∑
el∈RS(vl )

yel =


1 i f vl = sl

−1 i f vl = tl

0 else

, ∀vl ∈ Nl (8)

∑
ep∈FS(vp)

kel ep − ∑
ep∈RS(vp)

kel ep =


1 i f vp = ip

−1 i f vp = jp

0 else

, ∀vp ∈ Np , ∀el = (il , jl) ∈ Al

(9)

xep = x←−ep
, ∀ep ∈ Ap (10)

∑
ep∈Ap

xep rep ≤ 2R (11)

xep , yel , kel ep ∈ {0, 1}, ∀ep ∈ Ap, ∀el ∈ Al (12)
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where←−ep is the reverse arc of ep and constraint (10) indicates that the interdiction of an arc is effective
for both directions. Constraint (11) is the resource constraint for the defender, where we use 2R as the
resource limit because of the counting for both directions. It is noted that the objective function (7)
is nonlinear, which results from the mapping relationship between the physical-layer network and
the logical-layer network. A Benders decomposition algorithm framework and related improvement
methods are proposed in this paper.

3. Basic Decomposition Algorithm for LPNSPI

The problem of shortest-path network interdiction can be naturally divided into two processes:
blocking resource deployment process and pathfinding process. These two processes respectively
correspond to the max operation and min operation in (7), and correspond to the master problem and
subproblem of the Benders decomposition algorithm. Let d denote the vector of dep and D = diag(d).
ẑ denotes an sp–tp path on the physical layer and Ẑ denotes a collection of sp–tp paths. The master
problem and the subproblem of LPNSPI are defined as follows:

[Master(Ẑ)] VẐ = max
x

V (13)

s.t. V ≤ cT ẑ + xT Dẑ, ∀ẑ ∈ Ẑ (14)

Constraint (10) and Constraint (11)

xep ∈ {0, 1}, ∀ep ∈ Ap (15)

[Sub(x̂)] Vx̂ = min
z ∑

ep∈Ap

(cep + x̂ep dep)zep (16)

s.t. Constraint (8) and Constraint (9)

zep = ∑
el∈Al

yel kelep , ∀el ∈ Al (17)

yel , kel ep ∈ {0, 1}, ∀ep ∈ Ap, ∀el ∈ Al (18)

In contrast to the case in a single-layer network, ẑ does not necessarily represent a simple path.
For the attacker, searching a path with minimum communication cost will lead to the shortest path in
the logical layer, which is definitely a simple path. Although the corresponding path in physical and
may have repeated arcs, the attacker cannot avoid going through them because the topology of logical
layer specifies the process that the attacker must follow to achieve his goal.

Let Z denote the set of shortest physical layer paths that all simple sl-tl paths in logical layer
correspond. Notice that ẑ ∈ Z is always established, then [Master(Ẑ)] is an equivalent formulation of
[LPNSPI] when Ẑ = Z. Benders decomposition algorithm fixes Ẑ and x̂ in turn, and iteratively solves
the master problem and subproblem in turn. [Master(Ẑ)] fixes the set of feasible paths Ẑ and solves
an optimal interdiction strategy from the aspect of the defender, while [Sub(x̂)] gives an optimal path
selection with fixed logical-layer network status, standing at the angle of the attacker.

Israeli and Wood [33] proposed two types of “supervalid inequalities” (SVI) constraints to
strengthen the LP relation of the master problem of Benders decomposition for the shortest-path
interdiction problem of single-layer networks. These inequalities are constructed after the subproblem
gives a currently optimal path and added to the master problem as constraints. SVIs are based on
the following idea: they may make some solutions infeasible but are guaranteed not to eliminate any
optimal solutions unless the incumbent is itself optimal; by reducing the size of the feasible region, SVIs
accelerate the master problem. These inequalities can be extended to the logical–physical networks,
and the proofs are basically the same with the single-layer case. The master problem containing SVIs
is as follows:
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[Master(Ẑ)-SVI] VẐ = max
x

V (19)

s.t. V ≤ cT ẑ + xT Dẑ, ∀ẑ ∈ Ẑ (20)

ẑTx ≥ p + 1, ∀ẑ ∈ Ẑ (21)

z̃Tx ≥ 1, ∀ẑ ∈ Ẑ (22)

Constraint (10) and Constraint (11)

xep ∈ {0, 1}, ∀ep ∈ Ap (23)

where cT ẑ + ∑
p+1
h=1 dmh ẑmh > V ≥ cT ẑ + ∑

p
h=1 dmh ẑmh for p ≤ H and the sequence {dmh ẑmh}. {dmh ẑmh}

is the descending order of the sequence {dh ẑh} (the number of terms is H). z̃ = (diag(1 − x̂))ẑ.
Constraint (21) is the Type-I SVI and Constraint (22) is the Type-II SVI. For detailed introduction and
related proofs of SVI, please refer to [33].

Because of the logical–physical structure, [Sub(x̂)] contains nonlinear terms and cannot be solved
directly. However, we can divide the solution process into two steps: first, calculate the current
communication cost ŵ of the logical layer links with the current interdiction strategy x̂, and then
calculate the shortest path of the logical layer. Here we rewrite the subproblem as follows:

[Sub(ŵ)-LM] Vŵ = min
y ∑

el∈Al

ŵel yel (24)

s.t. Constraint (2) and Constraint (3)

We denote the matrix K obtained when calculating ŵ as K̂, and denote the current logical path
given by [Sub(ŵ)-LM] as ŷ, then we have ẑ = K̂T ŷ. [Sub(ŵ)-LM] is also a necessary reformulation of
the subproblem in order to use Layer-Mapping, which we will introduce in the next section. Now we
give the basic decomposition algorithm for LPNSPI:

Algorithm 1 Basic Benders decomposition algorithm for LPNSPI

Input : An instance of LPNSPI
Output: An optimal interdiction plan x∗

1: x̂← 0; Ẑ ← ∅; V ← −∞; V ← ∞
2: while V −V > 0 do
3: Calculate ŵ and K̂ according to x̂ using (4)-(6)
4: Solve [Sub(ŵ)-LM] for ŷ and the objective value Vŵ
5: ẑ = K̂T ŷ; Ẑ ← Ẑ ∪ ẑ;
6: if V < Vŵ then
7: x′ ← x̂; V ← Vŵ;
8: end if
9: if V −V ≤ 0 then

10: break;
11: end if
12: Solve [Master(Ẑ)-SVI] for x̂ and the objective value VẐ;
13: V ← VẐ;
14: end while
15: x∗ ← x′

16: return x∗

The correctness of Algorithm 1 is based on the following facts: Vŵ gives a lower bound on the
attacker’s optimal objective value and VẐ gives a upper bound on the defender’s optimal objective
value. Although the actual path in the physical layer z may no longer be a simple path in the case of
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layered network, the corresponding path in logical layer y is certainly simple, whose number is finite.
The number of possible interdiction plans x is also finite. In addition, once y and x are fixed, z is fixed,
which means that the algorithm converges in a finite number of iterations.

4. Layer-Mapping Module

As shown in Algorithm 1, during the iteration of the decomposition algorithm, the current
interdiction strategy x̂ changes when the master problem finds a better solution. In addition, the change
of the interdiction strategy results in the change of the network status which can be represented by
ŵ and K̂: ŵ indicates the weights of logical links and K̂ indicates the corresponding relationships
between logical links and physical paths. Once the current network status (ŵ and K̂) is determined,
we can solve a relatively simple subproblem [Sub(ŵ)-LM] ([Sub(ŵ)-LM] shares the same representation
form with the subproblem of the single-layer case ) and give the currently optimal logical path ŷ.
However, this process (line 3 in Algorithm 1) contains a lot of double counting during the iteration
because we recalculate ŵel and k̂elep for every logical link and physical arc in each iteration. It inspires
us to add a Layer-Mapping module between the master problem and the subproblem to find the
specific changes of the network status when x̂ changes.

Since the interdiction impact dep is positive, interdicting a physical arc will not shorten any
physical shortest path. So, the change of x̂ has no effect on a physical shortest path (that means
this path is still shortest) if no arc of it is interdicted. Let x0 denote an initial interdiction strategy.
Let w0 denote the corresponding weights (communication costs) of logical links and let K0 denote the
corresponding path-mapping matrix K. When the interdiction strategy changes to x̂ which satisfies
{ep|x0

ep = 1} ⊆ {ep|x̂ep = 1}, we need only to recalculate ŵel and k̂elep for logical link el if there exists a

physical arc ep ∈
{

ep ∈ Ap|x0
ep 6= x̂ep

}
which makes K0

el ep = 1. In practice, we set x0 to 0, and thus K0

indicates the initial network status when there is no interdiction. When the resource limit makes the
number of physical arcs that can be interdicted simultaneously much smaller than the edge number of
the physical network, layer-mapping will significantly reduce the weight calculations for logical links.

Algorithm 2 Layer-Mapping

Input: Initial interdiction strategy x0; initial network status w0 and K0; the new interdiction strategy x̂
Output: The new network status ŵ and K̂;

1: Initialize ŵ and K̂
2: ˆDi f f =

{
ep ∈ Ap|x0

ep 6= x̂ep

}
3: for el ∈ Al do
4: flag← 0;
5: for ep ∈ ˆDi f f do
6: if K0

el ep = 1 then
7: Calculate ŵel and K̂el using (4)-(6);
8: flag← 1;
9: break;

10: end if
11: end for
12: if flag = 0 then
13: ŵel ← w0el , K̂el ← K0

el

14: end if
15: end for
16: return ŵ and K̂

K̂el in Layer-Mapping is the vector of k̂elep when el is fixed (it can also be explained as the
elth row vector of matrix K̂), and K0

el shares the same representation. Layer-Mapping intuitively
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shows the change of the mapping status of the logical–physical network when interdiction happens,
which not only avoids the non-linearity of the objective function from explicitly appearing in the
decomposition algorithm, but also speeds up the solution of the subproblem. For simplicity, we call
this module Layer-Mapping(x0,x̂), where x0 is the initial interdiction strategy and x̂ is the new one.
Applying Layer-Mapping to the basic decomposition algorithm, we get Algorithm 3.

Algorithm 3 Improved decomposition algorithm with Layer-Mapping

Input: An instance of LPNSPI
Output: An optimal interdiction plan x∗

1: x̂← 0; Ẑ ← ∅; V ← −∞; V ← ∞
2: while V −V > 0 do
3: if x̂ = 0 then
4: x0 ← x̂; Calculate w0 and K0 using (4)-(6);
5: ŵ← w0;
6: else
7: Solve Layer-Mapping(x0,x̂) for ŵ and K̂;
8: end if
9: Solve [Sub(ŵ)-LM] for ŷ and the objective value Vŵ

10: ẑ = K̂T ŷ; Ẑ ← Ẑ ∪ ẑ;
11: if V < Vŵ then
12: x′ ← x̂; V ← Vŵ;
13: end if
14: if V −V ≤ 0 then
15: break;
16: end if
17: if [Master(Ẑ)-SVI] is feasible then
18: Solve [Master(Ẑ)-SVI] for x̂ and the objective value VẐ;
19: V ← VẐ;
20: else
21: break;
22: end if
23: end while
24: x∗ ← x′

25: return x∗

5. A Random-Search Method for Accelerating Convergence

To accelerate the convergence speed of the decomposition algorithm, we try to use the information
of ẑ obtained by the subproblem as much as possible in each iteration to limit the feasible domain of
the master problem. We propose a Random-Search procedure to increase the number of paths added
to Ẑ for each iteration, which shares the basic idea of Local-Search proposed by Wood [33] in the
NIP of a single-layer network. We hope to find more near-optimal paths in one iteration. However,
the existence of inter-layer relationships in multi-layer networks makes the search for near-optimal
paths complicated, and the time cost of finding all near-optimal paths in each iteration, which is
what Local-Search does, is not small in the face of the large-scale layered network. The process of
Random-Search is described as follows. The total communication consumption of these paths is limited
by a set constant λ and the current lower bound V. Let ẑλ denote an near-optimal path found by
Random-Search and let V̂λ denote the communication cost of this path with an interdiction plan x̂λ ,
of which the initial value is set to x̂. For a path ẑ found by the subproblem, Random-Search first selects
one of its edges (denoted as epa1) at random and interdict it, i.e., set x̂λepa1

= 1 and provisionally set

depa1
= ∞. Then, for each edge el in logical layer, recalculate the weight ŵel of it if k̂el epa1

= K̂el ,epa1
= 1.
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As for the edges of the logical layer that satisfy K̂el ,epa1
= 0, their weights will not change. epa1 does

not appear in the physical paths they correspond, so the blocking of epa1 will not change the mapping
relationship between them and these paths. Please note that the process of recalculating ŵel can be
represented by Layer-Mapping(x̂,x̂λ). The shortest path calculated based on the updated edge weights
is a near-optimal path. If the total weight of the path newly found is no more than λV , the path will be
added into Ẑ as ẑλ. After that, Random-Search will choose a new edge epa2 of the path ẑλ to interdict
and repeat the searching process. The process ends when the blocking of edge epan leads V̂λ > λV.
Figure 2 shows the execution of Random-Search.

Figure 2. The process of Random-Search.

As ẑλ ∈ Z is naturally established, adding constraint V ≤ cT ẑλ + xT Dẑλ to the master problem
will not eliminate any optimal solution. We can still use [Master(Ẑ)-SVI] with the Ẑ extended by
Random-Search even if (22) and (23) are not supervalid (for convenience, we name these inequalities
“λ-SVIs”). Since we keep V̂λ > λV in every iteration, adding corresponding λ-SVIs to [Master(Ẑ)-SVI]
will finally lead to an approximate objective value V∗λ which satisfies V∗λ ≥

1
λ V∗. We give the properties

of λ-SVIs and prove it as follows.

Theorem 1. For an interdiction plan x̂ given by [Master(Ẑ)] during an iteration of Algorithm 2, let ẑλ denote
a feasible solution of [Sub(x̂)] that may be non-optimal. Let V̂λ = ∑ep∈Ap(cep + x̂ep dep)ẑλep

and let V∗ denote
the global optimal objective value of [Master(Z)]. Then Type-I inequality ẑT

λ x ≥ 1 does not eliminate all optimal
solutions of [Master(Z)] unless the incumbent solution x̂ leads to a lower bound V ≥ 1

λ V∗, providing that
V̂λ ≤ λV.

Proof of Theorem 1. Let x∗ denote the global optimal solution of the defender’s interdiction plan.
Assuming that V < 1

λ V∗ during an iteration, if Type-I inequality ẑT
λ x ≥ 1 eliminates all optimal

solutions, which means ẑT
λ x∗ = 0, then

V∗ ≤ cT ẑλ + x∗
T

Dẑλ (is naturally established)

= cT ẑλ (because ẑT
λ x∗ = 0)

= V̂λ − x̂T Dẑλ

≤ V̂λ



Sensors 2020, 20, 5943 11 of 19

≤ λV

< V∗ (which is a contradiction)

In fact, the two types of SVIs and their corollaries can be modified to apply to a non-optimal
pathfinding result ẑ if ẑ is an approximate optimal solution of the current subproblem [Sub(x̂)].
The modified inequalities are not supervalid, which means that the inequalities may eliminate all
optimal solutions. However, when this happens, we will already have an approximate global optimal
interdiction solution.

Corollary 1. For a feasible solution ẑλ of [Sub(x̂)], which leads to an objective value V̂λ ≤ λV. Order the
dm ẑλm > 0 so that dm1 ẑλm1 ≥ dm2 ẑλm2 . . . ≥ dmH ẑλmH . Then, if λV ≥ cT ẑλ + ∑

p
h=1 dmh ẑλmh for p ≤ H,

the Type-I inequality of Theorem 1 can be tightened to ẑT
λ x ≥ p + 1

Proof of Corollary 1. Assuming that ẑT
λ x ≤ p, then

V∗ ≤ cT ẑλ + x∗
T

Dẑλ

≤ cT ẑλ +
p

∑
h=1

dmh ẑλmh
(because ẑT

λ x ≤ p and ẑλmh
∈ N imply that

the number of edges selected by both ẑλ and x∗ is no more than p)

≤ λV < V∗ (which is a contradiction)

Theorem 2. For an interdiction plan x̂ given by [Master(Ẑ)] during an iteration of Algorithm 2, let ẑλ denote
a feasible solution of [Sub(x̂)] that may be non-optimal. Let z̃λ = (diag(1− x̂))ẑλ. Then, the Type-II inequality
z̃T

λ x ≥ 1 does not eliminate all optimal solutions of [Master(Z)] unless the incumbent solution x̂ leads to a lower
bound V ≥ 1

λ V∗, providing that V̂λ ≤ λV.

Proof of Theorem 2. Assuming that V < 1
λ V∗, if Type-II inequality z̃T

λ x ≥ 1 eliminates all optimal
solutions, which means z̃T

λ x∗ = x∗
T
(diag(1− x̂))ẑλ = x∗

T
(I − diag(x̂))ẑλ = 0, we can obtain that

x∗
T
(I − diag(x̂))Dẑλ = 0 because all elements in vector x∗

T
(I − diag(x̂)) are 0 or 1. Then

V(x∗, ẑλ) = cT ẑλ + x∗
T

Dẑλ

= cT ẑλ + x∗
T
(diag(x̂))Dẑλ

≤ cT ẑλ + x̂Dẑλ = V̂λ

≤ λV

< V∗ (which contradicts the fact that

x∗ and V∗ are global optimal solutions)

Corollary 2. For a Type-II inequality z̃T
λ1

x ≥ 1, let M̃λ1 = {m|z̃λ1m = 1} and let M̃λ2 be any subset of M̃λ1

such that ∑m∈M̃λ2
dm + (cT ẑλ1 + x̂T

1 Dẑλ1) ≤ λV. Then, the Type-II SVI of Theorem 2 can be tightened to

z̃T
λ2

x ≥ 1 , where z̃λ2m = z̃λ1m for all m ∈ M̃λ1 \ M̃λ2 and 0 otherwise.
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Proof of Corollary 2. Assuming that V < 1
λ V∗, if Type-II inequality z̃T

λ2
x ≥ 1 eliminates all optimal

solutions, which means z̃T
λ2

x∗ = 0, let M̂λ1 = {m|ẑλ1m ≥ 1}, then

V(x∗, ẑλ1) = cT ẑλ + x∗
T

Dẑλ

= ∑
m∈(M̂λ1

\M̃λ1
)

(cm ẑλm + x∗mdm ẑλm) + ∑
m∈M̃λ2

(cm ẑλm + x∗mdm ẑλm)+

∑
m∈(M̃λ1

\M̃λ2
)

(cm ẑλm + x∗mdm ẑλm)

= ∑
m∈(M̂λ1

\M̃λ1
)

(cm ẑλm + x∗mdm ẑλm) + ∑
m∈M̃λ2

(cm ẑλm + x∗mdm ẑλm)

= ∑
m∈M̃λ2

x∗mdm ẑλm +

 ∑
m∈(M̂λ1

\M̃λ1
)

(cm ẑλm + x∗mdm ẑλm) + ∑
m∈M̃λ2

cm ẑλm


≤ ∑

m∈M̃λ2

dm + (cT ẑλ1 + x̂T
1 Dẑλ1)

≤ λV < V∗ (which leads to a contradiction)

Based on Algorithm 3, we add the Random-Search module and get Algorithm 4 as follows:

Algorithm 4 Improved decomposition algorithm with Layer-Mapping and Random-Search

Input: An instance of LPNSPI and a tolerable approximation ratio 1
λ

Output: A tolerable near-optimal interdiction plan x∗λ

1: x̂← 0; Ẑ ← ∅; V ← −∞; V ← ∞
2: while V −V > 0 do
3: if x̂ = 0 then
4: x0 ← x̂; Calculate w0 and K0 using (4)-(6);
5: ŵ← w0;
6: else
7: Solve Layer-Mapping(x0,x̂) for ŵ and K̂;
8: end if
9: Solve [Sub(ŵ)-LM] for ŷ and the objective value Vŵ;

10: ẑ = K̂T ŷ; Ẑ ← Ẑ ∪ ẑ;
11: if V < Vŵ then
12: x′ ← x̂; V ← Vŵ;
13: end if
14: if V −V ≤ 0 then
15: break;
16: end if
17: Solve Random-Search(x̂, ẑ, K̂, λ, V) for Ẑλ ;
18: Ẑ ← Ẑ ∪ Ẑλ;
19: if [Master(Ẑ)-SVI] is feasible then
20: Solve [Master(Ẑ)-SVI] for x̂ and the objective value VẐ;
21: V ← VẐ;
22: else
23: break;
24: end if
25: end while
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26: x∗λ ← x′

27: return x∗λ

6. Computational Experiments

We tested our algorithms in a set of generated layered networks with directed random networks
as their logical layers. Random networks, small-world networks, scale-free networks and grid
networks are used as physical layer in these instances. The network in the logical layer are smaller
than the physical-layer network in each instance, and each node of the logical layer correspond a
randomly selected node of the physical layer, which means that these two nodes share the same
entity. We generated random networks by connecting newly added nodes to previous nodes with
a certain probability p. p is adjusted for each instance to ensure that all the random networks have
the same expected average degree. The small-world networks are generated by first constructing
a nearest-neighbor coupling network and then reconnecting the edges with different probabilities.
For the scale-free case, we first generate a small random network, and then assign the connection
probabilities according to the degrees of nodes, and finally preferentially connect the newly added
nodes to the nodes with better connectivity in the light of the probabilities. As for the grid networks,
conventional square lattice networks are used. The communication costs of edges cep s and the
interdiction increments dep s in physical layer are integers that are randomly distributed on [1, 20] and
[200, 1000], respectively. The resource consumption of interdiction r is set to 1 in practice. A time limit
of 3600 s is set for each experiment.

Table 2 shows the parameters of the test problems we used. The blank cells repeat values from
cells above. The numbers in the brackets of the column “Nl” and column “Np” represent the average
degree of the generated networks. For each problem we generated ten instances. We programmed
the algorithms presented above using the MATLAB toolbox YALMIP and CPLEX 12.8 callable library.
Computation is performed on a Windows 10 64-bit laptop with an Intel Core i7-9700K CPU (3.60 GHZ)
and 16 GB of RAM.

Table 2. Test problem statistics.

Problem Name Type of Gp Type of Gl Nl Np R

rd2000 random random 100 (3) 2000 (2) 2
rd5000 200 (3) 5000 (2) 3
rd10000 500 (3) 10,000 (2) 4
rd20000 1000 (3) 20,000 (2) 5
sf2000 scale-free 100(3) 2000 (3) 2
sf5000 200 (3) 5000(3) 3
sf10000 500 (3) 10,000 (3) 4
sf20000 1000 (3) 20,000 (3) 5
sw2000 small-world 100 (3) 2000 (4) 2
sw5000 200 (3) 5000 (4) 3
sw10000 500 (3) 10,000 (4) 4
sw20000 1000 (3) 20,000 (4) 5
gd1000 grid 100 (3) 1000 (2) 2
gd2000 100 (3) 2000 (2) 2

The value of λ in Algorithm 4 is set as 1.05, 1.10 and 1.15, respectively, and the error range of the
corresponding optimal objective value is 95.2%, 90.9% and 87.0%. The basic results for LPNSPI are
shown in Table 3. The column “instance” represents the number of instances we used for comparison
in the problem of a certain scale. T, average solution time in seconds; Std.T, the standard deviation
of the solution time; N, average iteration times; Std.N, the standard deviation of the iteration times.
The numbers in brackets of the column “T” indicate the number of the instances which were solved
within 3600 s. The “–”s of the same rows indicates “not applicable” because there was at least one
instance which was not successfully solved within the allotted time. It can be intuitively seen from
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Table 3 that the Layer-Mapping module make Algorithm 3 much faster than the basic decomposition
algorithm with almost the same number of iterations, especially when the scale of the physical layer
is large. However, despite this, Algorithm 3 cannot solve all the instances within the stipulated time.
Combining Random-Search with Layer-Mapping, Algorithm 3 takes significantly less time and fewer
iterations, and successfully solved all the instances. It should be noted that among the ten instances of
’gn1000’, there are two extreme instances, which increase the average solving time of ’gn1000’ problem
(even more than the average solving time of ’gn2000’). However, it does not affect the comparison
between the performance of different algorithms.

Table 3. The computational results for networks of different scale and different types.

Problem Algorithm 1 Algorithm 3 Algorithm 4 (λ = 1.05)

T Std.T N Std.N T Std.T N Std.N T Std.T N Std.N

rd2000 5.7 2.5 17.3 6.9 3.5 1.4 17.3 6.9 3.0 1.2 8.9 4.8
rd5000 22.4 12.9 30.4 16.5 8.7 5.8 30.4 16.5 6.9 3.2 11.7 5.7
rd10000 163.5 113.7 64.3 43.6 39.2 33.5 64.3 43.6 16.5 9.3 14.3 10.6
rd20000 (7) – – – (8) – – – 86.5 132.8 25.0 26.7
sf2000 8.4 2.7 24.1 6.8 5.3 1.8 24.1 6.8 3.4 1.2 11.1 3.2
sf5000 39.9 20.3 47.1 22.5 17.8 11.4 47.1 22.5 8.4 3.3 15.6 5.5
sf10000 406.2 272.4 127.2 75.1 134.6 118.9 127.2 75.1 28.5 8.9 23.3 6.7
sf20000 (8) – – – (9) – – – 95.4 39.9 26.4 7.2
sw2000 7.2 2.9 19.7 6.6 4.4 1.6 19.7 6.6 2.6 0.6 8.7 2.3
sw5000 46.1 30.9 49.1 28.0 20.2 15.7 49.1 28.0 6.3 2.0 12.8 4.0
sw10000 560.2 518.8 145.2 111.2 224.2 264.6 145.2 111.2 26.6 14.8 23.9 12.4
sw20000 (6) – – – (7) – – – 84.0 41.3 27.7 12.7
gn1000 933.2 969.7 579.6 359.8 812.7 867.4 579.6 359.8 192.0 144.8 57.1 31.0
gn2000 757.3 675.9 488.4 267.8 655.5 622.1 488.4 276.8 157.5 126.7 45.0 24.9

To analyze the specific running time of each part (i.e., the master problem, the subproblem and
the Random-Search part) of the three algorithms, we selected some “easy” instances of the hardest
problems of each network type in Table 3 (that is, rd20000, sf20000, sw20000 , gn1000 and gn2000),
where “easy" means that all three algorithms can solve the problem within 3600 s. The results are
shown in Table 4. T.M is the running time of the master problem; T.S is the running time of the
subproblem; T.RS is the time spent on Random-Search. Initialization, formatting, and other parts
of the program only account for a small portion of the time and are not listed. Err is the average
error rate of the results obtained by Algorithm 4, and the numbers in parentheses indicate the number
of instances where Algorithm 3 find a near-optimal solution rather than an exact optimal solution.
Std.Err is the standard deviation of Err. As Table 4 shows, Algorithm 3 takes almost the same time
in solving the master problem as Algorithm 1, but takes much less time to solve the subproblem.
With Random-Search, Algorithm 3 greatly reduces the time of the master problem and the subproblem,
but it also takes a considerable amount of time in Random-Search to find near-optimal paths.

Table 4. The running time of the main parts and the error of Algorithm 4.

Problem Instance
Algorithm 1 Algorithm 3 Algorithm 4 (λ = 1.05)

T.M T.S T.M T.S T.M T.S T.RS Err Std.Err

rd20000 7 108.7 695.0 107.2 16.9 6.9 9.3 13.6 0.28% (2) 0.005
sf20000 8 300.9 1435.0 313.4 67.4 19.5 14.8 48.9 0.11% (1) 0.003
sw20000 6 321.0 1473.0 337.1 29.4 20.7 12.3 29.0 0 (0) 0
gn1000 10 746.7 183.5 740.6 69.0 97.9 6.5 87.2 0.23% (5) 0.003
gn2000 10 582.7 171.2 597.8 54.2 91.2 4.4 61.4 0.30% (4) 0.005
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A suitable value of λ allows Random-Search to find a large number of near-optimal paths, but at
the same time, the final result may have some errors from the actual optimal solution. In our test
instances, Algorithm 3 solved many instances accurately, with an overall average accuracy of more
than 99.7%. Of course, we can set the value of λ to 0, which will make the final result the global
optimal solution, but also make it difficult for Random-Search to find near-optimal paths. We tested
Algorithm 3 on the case when λ = 0, and found that the running time results are not so satisfying
because much fewer near-optimal paths were found.

To study the effect of the value of λ on the solution speed of Algorithm 3, we set three cases of
λ = 1.05, λ = 1.1, and λ = 1.15, and tested the algorithm on all the instances of the problems in Table 4.
Table 5 compares the algorithm time, number of iterations, and errors of the near-optimal solution in
the three cases. We used all ten instances of each problem when comparing the running time and the
number of iterations of the algorithm. However, for “rd20000”, “sf20000” and “sw20000”, there were
instances where Algorithm 1 and Algorithm 2 could not give the exact optimal results. The numbers
in parentheses in the column “Err” indicate the number of instances used in calculating the average
error rate and the number of non-optimal solutions given by Algorithm 3. For example, “0.25%(2 in 8)”
means that in 8 verifiable instances, Algorithm 3 gives 2 approximate solutions (and 6 exact solutions),
with an average error of 0.25%.

Table 5. Results for Algorithm 4 when λ changes.

Problem

Algorithm 4

λ = 1.05 λ = 1.1 λ = 1.15

T N Err T N Err T N Err

rd20000 86.5 25.0 0.25% (2 in 8) 48.9 14.3 0.15% (1 in 8) 36.4 9.7 0.46% (2 in 8)
sf20000 95.4 26.4 0.10% (1 in 9) 83.3 19.7 0.66% (4 in 9) 75.1 15.4 1.91% (5 in 9)
sw20000 84.0 27.7 0 (0 in 7) 66.2 18.5 0 (0 in 7) 51.0 11.7 0.50% (1 in 7)
gn1000 192.0 57.1 0.23% (5 in 10) 110.1 29.6 0.69% (7 in 10) 75.6 17.0 1.17% (8 in 10)
gn2000 157.5 45.0 0.30% (4 in 10) 89.9 25.1 0.68% (6 in 10) 74.0 16.7 0.81% (8 in 10)

Due to the randomness of the pathfinding results of Random-Search, the number of near-optimal
paths found in a specific iteration will fluctuate, and the contribution of these paths and the
corresponding SVIs to the master problem is also uncertain. In some instances, the algorithm took
more time with a larger λ than with a smaller one. However, in general, as Table 5 shows, a slightly
larger λ makes the algorithm converge faster.

Furthermore, we examine our improving methods in commercial data of a bi-layer network
which is obtained from scanning over the Internet. This bi-layer network includes a physical layer
of 36,409 nodes and 49,084 edges, and a logical layer of 32,490 nodes and 51,340 edges. The physical
nodes contain switching equipment, terminal equipment, storage equipment, control equipment, etc.,
and they are connected by physical links which consist of optical fibers, twisted-pair lines, coaxial
cables, wireless media links, etc. On the logical layer, nodes represent operating systems and other
software, and links represent information transfers, remote logins, network sessions, etc. The network
structure is shown in Figure 3.
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(a) logical layer (b) physical layer

Figure 3. The structure of a real bi-layer IoT network (after data cleaning).

After data cleaning of the original network (remove isolated nodes and connected components
which do not include the source-destination pair), we designed experiments to test the changes of the
algorithm running time and blocking effect with the increase of interdiction resources. The time limit
is set to 3600 s.

As shown in Table 6, the processing time of the algorithms increases rapidly when the number of
interdicted edges (R) grows larger. Both Algorithm 3 and Algorithm 4 solve the problem with much
less time than Algorithm 1 (benchmark) when interdicted edges are no more than 8, which confirms the
effectiveness of Layer-Mapping. As a large number of near-optimal paths are found by Random-Search,
when R is small, the solution of Algorithm 3 is faster than that of Algorithm 4. However, when R
grows up to 9, neither Algorithm 1 nor Algorithm 3 can solve the problem within 3600 s. Algorithm 3
with both Layer-Mapping and Random-Search successfully solves the problem when R is no more than
12. The interdiction effects of the three algorithms are compared in Figure 4. The objective function,
which is the length of the shortest sl-tl path, increases when R grows. We find that even if the λ in
Algorithm 4 is set to 1.15, which leads to a potential error range of 87%, accurate optimal solutions are
found in comparable cases (i.e., when R is no more than 8).

Table 6. The processing time when defender’s resources increase.

R
Processing Time

Algorithm 1 Algorithm 3 Algorithm 4 (λ = 1.15)

1 81.3 18.7 48.4
2 187.8 33.5 55.5
3 275.5 51.6 74.5
4 299.0 92.4 103.5
5 258.2 81.8 116.9
6 265.0 115.8 83.6
7 605.2 276.4 211.6
8 828.2 403.0 292.9
9 - - 384.2
10 - - 499.5
11 - - 1528.7
12 - - 2456.1
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Figure 4. Interdiction effects in the bi-layer IoT network.

7. Conclusions

This paper focuses on blocking malicious network behaviors in IoT systems which can be modeled
as logical–physical networks. The problem is represented as the shortest-path interdiction problem in
layered networks, where the target paths and the interdiction behaviors are on different layers of the
network. The attacker seeks to minimize the total communication cost of the attacking path from the
source node to the target node on the logical layer, and the defender aims to maximize this path by
interdicting edges on the physical layer. The interdiction of edges on the physical layer affects edges
on the logical layer through the inter-layer relationship. In this problem, every node in the logical-layer
network has a corresponding node on the physical layer, and the weight of each logical-layer edge is
decided by a shortest path on the physical layer, with the endpoints of the logical-layer edge being the
start node and the end node.

By referring to the experience of interdiction problems in monolayer networks, we model LPNSPI
as a solvable form of Benders decomposition algorithm and apply “supervalid inequalities” (SVIs)
on it. A Layer-Mapping module is proposed to deal with the explicit non-linearity of the objective
function and reduce double counting of the subproblem. Layer-Mapping recalculates the status of
the physical layer, basing on the current solution of the master problem and the initial network status.
To accelerate the convergence of the decomposition algorithm, we raise Random-Search. By specifying
an acceptable approximation range, Random-Search can randomly find multiple near-optimal paths
in an iteration; as a result these paths and the corresponding SVIs can be added as constraints to the
master problem. Computational results show the effectiveness of Layer-Mapping and Random-Search.
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