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Abstract: Lens distortion is closely related to the spatial position of depth of field (DoF), especially 

in close-range photography. The accurate characterization and precise calibration of DoF-dependent 

distortion are very important to improve the accuracy of close-range vision measurements. In this 

paper, to meet the need of short-distance and small-focal-length photography, a DoF-dependent 

and equal-partition based lens distortion modeling and calibration method is proposed. Firstly, 

considering the direction along the optical axis, a DoF-dependent yet focusing-state-independent 

distortion model is proposed. By this method, manual adjustment of the focus and zoom rings is 

avoided, thus eliminating human errors. Secondly, considering the direction perpendicular to the 

optical axis, to solve the problem of insufficient distortion representations caused by using only one 

set of coefficients, a 2D-to-3D equal-increment partitioning method for lens distortion is proposed. 

Accurate characterization of DoF-dependent distortion is thus realized by fusing the distortion 

partitioning method and the DoF distortion model. Lastly, a calibration control field is designed. 

After extracting line segments within a partition, the de-coupling calibration of distortion 

parameters and other camera model parameters is realized. Experiment results shows that the 

maximum/average projection and angular reconstruction errors of equal-increment partition based 

DoF distortion model are 0.11 pixels/0.05 pixels and 0.013°/0.011°, respectively. This demonstrates 

the validity of the lens distortion model and calibration method proposed in this paper. 

Keywords: lens distortion; DoF-dependent; distortion partition; vision measurement 

 

1. Introduction 

Vision measurement is a subject that allows quantitative perception of scene information by 

combining image processing with calibrated camera parameters. Therefore, the calibration accuracy 

of the parameters is an important determinant of the vision measurement uncertainty. The lens 

distortion is closely related to the depth of field (DoF), which refers to the distance between the 

nearest and the farthest objects that are in acceptably sharp focus in an image. For medium- or high-

accuracy applications, close-range imaging parameters (e.g., short object distance (<1 m) and small 

focal length) are often adopted. In such occasions, DoF has a significant influence on lens distortion 

and, hence, becomes a major cause of vision measurement errors. For instance, to ensure that the 

vision has a micron-level accuracy when detecting the contouring error of a machine tool [1], the 

camera is placed 400 mm away from the focal plane to collect and analyze the image sequence of the 

interpolation trajectory running in the DoF. In this case, measurement errors ranging from dozens to 

hundreds of microns can be caused by a large lens distortion. Therefore, to improve the vision 
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measurement accuracy in close-range photogrammetry, accurate modeling and calibration of the 

DoF-dependent lens distortion are urgently needed. 

The lens distortion model maps the relation between distorted and undistorted image points. 

Models to show the relations vary according to the types of optical systems, which include the 

polynomial distortion model, logarithmic fish-eye distortion model [2], polynomial fish-eye 

distortion model [2–5], field-of-view (FoV) distortion model [6], division distortion model [7,8], 

rational function distortion model [9,10], and so on. In 1971, Brown [11,12] proposed the Gaussian 

polynomial function to express radial and decentering distortion, which is particularly suitable for 

studying the distortion of a standard lens in high-accuracy measurements [13,14]. Later, researchers 

noticed that the observed radial and decentering distortion varies with the focal length, the lens 

focusing state (i.e., focused or defocused), and the DoF position. Since then, researchers have focused 

on the improvement of distortion calibration and modeling methods to obtain a precise 

representation of distortion behavior. For the distortion calibration, the study goes in two directions: 

the coupled-calibration method and the decoupled-calibration method. The former can be generally 

divided into three types: self-calibration method [15], active calibration method, and traditional 

calibration method [16]. Among the traditional ones, Zhang's calibration method [17] and its 

improved method [18–20], used widely in industry and scientific research, are the most popular. In 

this coupled-calibration method, the distortion parameters are calculated by performing a full-scale 

optimization for all parameters. Due to the strong coupling effect, the estimated errors of other 

parameters (i.e., intrinsic and extrinsic parameters) in the camera model would be propagated to that 

of distortion parameters, thus leading to the failure of getting optimal solutions. By contrast, the 

decoupled-calibration method does not involve coupling other factors or entail any prior geometric 

knowledge of the calibration object, and only geometric invariants of some image features, such as 

straight lines [6,12,21–23], vanishing points [24], or spheres [25], are needed to solve the parameters. 

Among these features, straight lines can be easily reflected in scenes and extracted from noise images, 

thus having enormous potential. 

Regarding the distortion modeling, some researchers incorporated the DoF into the distortion 

function. Magill [26] used the distortion of two focal planes at infinity to solve that of an arbitrary 

focal plane. Then, Brown [12] improved Magill’s model by establishing distortion models of any focal 

plane and any defocused plane (the plane perpendicular to the optical axis in the DoF) on the 

condition that the distortions of two focal planes are known. Soon after, Fryer [27], based on Brown’s 

model, realized the lens distortion calibration of an underwater camera [28]. Fraser and Shortis [29] 

introduced an empirical model and solved the Brown model’s problem of inaccurate description of 

large image distortion. Additionally, Dold [30] established a DoF distortion model that is different 

from Brown’s and solved the model parameters through the strategy of bundle adjustment. In 2004, 

Brakhage [31] characterized the DoF distortion of the telecentric lens in a fringe projection system by 

using Zernike Polynomials. Moreover, in 2006, the DoF distortion distribution of the grating 

projection system was experimentally analyzed by Bräuer-Burchardt. In 2008, Hanning [32] 

introduced depth (object distance) into the spline function to form a distortion model and used the 

model to calibrate radial distortion.  

The above DoF distortion models not only depend on the focusing state but also relate to the 

distortion coefficients on the focal plane. For these models, on the one hand, the focusing state is 

usually adjusted by manually twisting the zoom and focus rings, which introduces human errors and 

changes the camera parameters. On the other hand, the focus distance and distortion parameters on 

the focal plane cannot be determined accurately. To overcome the problem, Alvarez [33], based on 

Brown’s and Fraser’s models, deduced a radial distortion model that is suitable for planar scenarios. 

With this model, when the focal length is locked, distortion at any image position can be estimated 

by using two lines in a single photograph. In 2017, Dong [34] proposed a DoF distortion model, by 

which the researcher accurately calibrated the distortion parameters on arbitrary object planes, and 

reduced the error from 0.055 mm to 0.028 mm in the measuring volume of 7.0 m × 3.5 m × 2.5 m with 

the large-object-distance of 6 m. Additionally, in 2019, Ricolfe-Viala [35] proposed a depth-dependent 

high distortion lens calibration method, by embedding the object distance in the division distortion 
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model, and the highly distorted images can be corrected with only one distortion parameter. 

However, these researchers only used one set of coefficients, which is not sufficient to accurately 

represent the distortion. To address this problem, some scholars adopted the idea of partitioning to 

process image distortion, which uses several sets of distortion coefficients to characterize the 

distortion. The study, however, which is only applicable to the partitioning of a 2D object plane, fails 

to take into account the distortion partition within the DoF and the correlation between lens distortion 

and DoF. Our previous work partitioned the distortion with an equal radius [36]. Although it 

improved the vision measurement accuracy, the distortion correction accuracy within the partition 

corresponding to the image edge is still low. Besides, the distortion model we adopted depends on 

the focusing state of the lens, thus is less practical. In general, the current distortion model and 

partitioning method cannot accurately reflect the lens DoF distortion behavior in close-range 

photography, especially for short-distance measurements. 

To solve the above problems, the lens distortion model and calibration method for short-distance 

measurement, which takes into consideration the dimensions of DoF and equal-increment partition 

of distortion, are proposed in this paper. The rest of this paper is organized as follows. In Section 2, a 

focusing-state-independent DoF distortion model, which only involves the spatial position of the 

observed point, is constructed. In Section 3, based on the model in previous section, an equal-

increment partitioning DoF distortion model is proposed, which enables a fine representation of the 

lens distortion in the photographic field. Section 4 details the calibration method for both DoF 

distortion and camera model parameters, as well as the image processing of the control field for 

distortion calibration. In Section 5, experimental verification of the proposed lens distortion model 

and calibration method is carried out. Finally, Section 6 concludes this paper. 

2. Focusing-State-Independent DoF Distortion Model 

The observed distortion of a point varies with its position within the DoF. Though the close-

range imaging configuration increases the visible range, it enlarges the DoF image distortion, 

consequently affecting the measurement accuracy. To break the limitations of the aforementioned in-

plane and DoF distortion model in the vision measurement of short-distance and small-focal-length 

settings, a DoF-dependent yet focusing-state-independent distortion model is proposed in this paper. 

2.1. Pinhole Camera Model with Distortion 

As illustrated in Figure 1, the linear pinhole camera model depicts the one-to-one mapping 

between the 3D points in the object space and its 2D projections in the image. Let li lip u v（ ） be 

undistorted coordinates mapped from a spatial point in the world coordinate system w w w wO X Y Z  to 

the image coordinate system ouv  through the optical center CO . Then, camera mapping can be 

expressed as [17] 

1
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w
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w
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Z

 
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   
         
   
       

K M   

 

(1) 

where z   describes the scaling factor; K  is the intrinsic parameter matrix, which quantitatively 

characterizes the critical parameters of the image sensor (i.e., Charge Coupled Device (CCD) or 

Complementary Metal-Oxide Semiconductor (CMOS)); Matrix M , expressing the transformation 

between the vision coordinate system (VCS) and the world coordinate system, consists of the rotation 

matrix R  and translation matrix T . 
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Figure 1. Schematic diagram of camera model and lens distortion: (a) camera model; (b) barrel 

distortion; (c) pincushion distortion. 

However, manufacturing and assembly errors can lead to radial and decentering lens distortion. 

Consequently, the pinhole assumption does not hold for real camera systems, and the image 

projection of a straight line would be bent into a curve (Figure 1b,c). To characterize the lens distortion, 

Brown proposed the distortion model in a polynomial form [11,12]: 
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 (2)

where li liu v（ ） is the distorted coordinates; 
liu  and 

liv
  are the distortion functions of an image 

point in the u  and v  direction respectively; 0 0( )u v  denotes the distortion center; 

2 2
0 0( ) ( )li lir u u v v     stands for the distortion radius of the image point; 1K  and 2K  are 

the first and second-order coefficients of radial distortion respectively; while, 1P  and 2P  are the 

first and second-order coefficients of decentering distortion respectively. 

2.2. Distortion Model in the Focal Plane 

2.2.1. Radial Distortion Model 

Let r   be the radial distortion for a lens that is focused on plus infinity, while r   on the 

minus infinity. sm  refers to the vertical magnification in the focal plane at object distance s . 

According to Magill’s model [26], sr , the lens radial distortion in the focal plane, can be expressed 

as 

s sr r m r       (3)

Let 
ms

r  and 
ks

r  be the radial distortions in the focal planes when the lens is focused on the 

distances of ms  and ks  respectively. Then, the distortion function for focal plane sr  at distance 

s  can be written as 
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 1
m ks s s s sr r r          (4)

where, f  is the focal length; 
( ) ( )

( ) ( )
k m

s
k m

s s s f

s s s f


  


  
. The i -th radial distortion coefficients s

iK  

for focused object plane at distance s  are 

 1   1,2.m ks ss
i s i s iK K K i        (5)

where ms
iK  and ks

iK  are the i -th radial distortion coefficients when the lens is focused on the 

distances of ms  and ks  respectively. As can be easily noticed in Equation (5), if the radial distortion 

coefficients of two different focal planes are known, the radial distortion coefficients of any focal 

plane can be obtained. 

2.2.2. Decentering Distortion 

As for the decentering distortion, the equations are as follows [12]: 

 

2 2
1 2

2 2
1 2
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(1 )( ( 2 ) 2 )

(1 )( ( 2 ) 2 )
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s s

fr P r u P u v
s

fr P r v P u v
s

s f s
r

s f s







              
     

 (6)

where ,(1 ) s sf r
s

  is the compensation coefficient; ur and  vr represent the components of the 

decentering distortion in the u  and the v  direction respectively; s and s   depict the object 

distances corresponding to the two focal planes, respectively. 

2.3. DoF-Dependent Distortion Model for Arbitrary Defocused Plane 

2.3.1. DoF-Dependent Radial Distortion Model 

Fraser and Shortis [29] proposed an empirical model for describing the distortion of any object 

plane (or defocused plane), which solved Brown model’s problem of inaccurate description of severe 

distortion caused by the image configuration of short-distance and small-focal-length settings. The 

equation is as follows: 

 
,

( )p ps s ss sK K g K K     (7)

where 
, ps s

K  denotes the radial distortion coefficient in the defocused plane with the depth of ps  

when the lens is focused at distance s ; g  is the empirical coefficient; psK  and sK  represent the 

radial distortion coefficients in the focal planes at distances ps  and s  respectively. By extending 

the equation, we can get the radial distortion function , ns sr  at ns  expressed by the , ms sr  at ms  

when the lens is focused at the distance of s : 

 
,

, ,

( )

( ) ( )

m m

n m n m

s s ss s

s s s s s ss s s s

r r g r r

r r r g r r r g r r

   
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    
         

 (8)

From the above equation, we can easily obtain , , ,
, ( ) ( )n m m

m n

s s s s s ss
s s sr r r r        . Then, 

by extending the results to the radial distortion of a point in the defocused plane at distance ks , the 

relationship between , ns sr , , ms sr  and , ks sr  can be given by 
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in which 
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

 
. 

After eliminating the focus distance and the distortion in the focal plane, we can obtain the 

following equation: 
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Then, we can have , , ,( ) ( )k m ks s s s s ss m
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. , ns sr  can be expressed as 
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 (11)

Obviously, when the lens is focused at distance s , through two distortions corresponding to 

object distances ms  and ks  respectively, radial distortion coefficient in any defocused plane with 

the depth of ns  when the lens is focused at distance s  can be obtained: 

 

, , ,
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When two object planes are set, 
, ms s

iK , 
, ks s

iK , ms , ks  
and f  are known. Thus, 

, ns s
iK  in 

Equation (12) is only dependent on ns , and it is independent of the distortion coefficient s
iK  on 

the focal plane and the focus distance s . 

2.3.2. DoF-Dependent Decentering Distortion Model 

In Equation (6), since , ,m ms s s sP r P    , the distortion in the focal plane can be written as 
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where , ms sP , , ks sP  and , ns sP  are the decentering distortion functions in the defocused plane at 

the object distances of ms , ks  and ns  when the lens is focused at distance s  respectively. From 

the first two lines of the above equation, we get 

,
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Put the first line into the second one, and we obtain 

 

,

, , ,2,

, , , ,

,

1

1
=

1 1

k m

k m k m k mn

m k m k m k m

k m

s s

m s s s s s ss s
k m n m k m n

s s s s s s s s
m mn k m n

n s s
k m

M
s

s s M s s s s M M sP

s sP M s s s s M M
s

s s M








      
  

      


 

 (15)

Equation (15) can be simplified to 
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Put 
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P
  ( 1,2i  ) into Equation (16), and the following equation is obtained: 
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Given the parameters 
, ms s

iP , 
, ks s

iP , ms  
and ks  are known, it can be illustrated from Equation 

(17) that the decentering distortion coefficient 
, ns s

iP  in any defocused plane is dependent only on the 

object distance, ns , and is independent of the focus distance s  and the distortion s
iP  in the focal 

plane. Moreover, since focal length f  is not included in Equation (17), decentering distortion is not 

affected by this parameter. 

Hereto, the DoF-dependent yet focusing-state-independent distortion model suitable for close-

range, short-distance measurement scenes is established, which overcomes the limited practicability 

caused by the way of calibrating DoF distortion by manual adjustment of the focus and zoom rings, 

and it also solves the problem when the current position and the distortion parameters of the focal 

plane are not exactly known. 

3. Equal-Increment Partition Based DoF Distortion Model 

The distortion coefficients are solved by minimizing the straightness error of the observed 

points. If a set of distortion coefficients is used to describe the distortion in the whole image, the 

distortion coefficients will be the error balance of all points. However, for each region of the image 

the error is not the minimum. Hence, an equal-increment partition based DoF distortion model is 

proposed in this section. The distortion spreads outward from the image center along a 

circumferential contour, with the characteristics of the image being small in the middle and large on 

the image edge. In this paper, we first partition the in-plane distortion in an equal-increment way, 

then the 2D partition strategy is extended to the 3D photographic field. 

3.1. Equal-Increment Based Distortion Partitioning Method 

Figure 2 presents two distortion partitioning methods. The X  axis represents the distance from 

an image point to the distortion center 0 0( , )u v , namely the distortion radius. The Y  axis describes 

the distortion in pixels. The blue curve is the distortion curve calculated by the features in the whole 
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image. As illustrated in Figure 2a, when DoF distortion is partitioned by an equal radius, the 

distortion increment of each partition is different ( ＜ ＜ ＜ ＜1 2 3 4 5     ) despite the same distortion 

radius increment ( 1 2 3 4 5R R R R R    ) [36]. For a polynomial-based distortion function, it is 

well known that the more scattered the distorted points and the larger the distortion increments are, 

the lower the regression accuracy of the function to the distortion is. As a result, the estimated 

accuracy of the partition’s distortion parameters decreases gradually from inside to outside  

( ＞ ＞ ＞ ＞1 2 3 4 5     ). 

 
(a) 

 
(b) 

Figure 2. Two distortion partitioning methods: (a) equal-radius partition; (b) equal-increment 

partition. 

To solve the problem, a DoF distortion model based on the equal-increment partition is proposed 

in this paper, and the procedures are as follows: 

(1) Estimate the distortion curve using all features in the whole image (Figure 2b). Then, 

determine the maximum value of image distortion max  according to the maximum distortion 

radius and distortion curves. The maximum distortion radius of the image is 

2 2
max 0 0

1
( ) ( )

2
l hr I u I v     , where lI  and hI  are the length and height of the image, 

respectively. 

(2) In the central image region, the distortion is so tiny that it cannot converge after iteration, 

which results in a poorer quality of the undistorted image than that of the original one. Therefore, we 

use limited , the minimum distortion value when the algorithm converges in the central image region, 

as the threshold to estimate limitedr , the minimum value of the image distortion radius. 

(3) Determine the number of partitions pn . 

(4) Use the maximum distortion max , the lower-limit distortion limited , and pn  
to determine 

the distortion increment of each partition max( ) ( 1)equ limited pn     , 

2 3 4 5=equ         (Figure 2b). 

(5) Calculate the radius increment of each partition using equ  and the distortion curve, 

1 2 3 4 5R R R R R     (Figure 2b). 

(6) Calibrate the distortion curve of each partition by the features in the corresponding partition 

of the image utilizing the decoupled-calibration method (see Section 4). 

Then the distortion partition of the 2D object plane is extended to the 3D DoF. As can be known 

from Equation (1), the object-to-image mapping satisfies the following: 

 

m k

m k

m k

m k

X X
x f f

Z Z

Y Y
y f f

Z Z

    
    

 (18)
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where ( )m m m mP X Y Z  and ( )k k k kP X Y Z  are two points in the VCS. The 2D point ( )p x y  

(in millimeters) is the image projection of the mP  and kP  ( mP , kP , and CO  are collinear). Let   

be the partition radius, then 2 2 2x y   , and we get 

 

2 2
2 2 2

2 2

2 2
2 2 2

2 2

m m

m m

k k

k k

X Y
f f

Z Z

X Y
f f

Z Z





    

    

 (19)

From the above equation, we can know that =m mf R Z   and m k k mZ R Z R   , where mZ  
and kZ  are the depths of the m -th ( m ) and the k -th ( k ) object planes in the VCS respectively. 

mR  and kR  are the partition radius of the two object planes. Let m ms Z  and k ks Z , and then 

extend the above distortion partitions to 3D DoF domain. As shown in Figure 3, if the range of the 

g -th partition in the object plane m  is ( 1) m mg R g R     
, the partition range in object planes 

k  and n  are ( 1) ( ) ( )k m m k m mg s R s g s R s       
 and 

( 1) ( ) ( )n m m n m mg s R s g s R s       
 respectively. In this way, although the distortion radius in 

each partition is different, distortion coefficients can be obtained with high accuracy when the image 

distortion is partitioned by equal distortion increments. 

 

Figure 3. The geometric relationship between the partition radii in different object planes. 

3.2. Equal-Increment Partition Based DoF Distortion Model 

After partitioning the DoF distortion, we incorporate the partitions into the DoF distortion 

model. Procedures to solve the partition radius and distortion coefficients on any object distance ns  

are as follows: 

(1) Partition the distortion in the object plane m  using the proposed method, and calculate 

the i -th order radial and decentering distortion coefficients in the g -th partition. Register the two 

coefficients as , ms sg
iK  and , ms sg

iP  respectively. 

(2) Based on the g -th partition in the object plane m  (the object distance is ms ), the 

corresponding partition radius in the object plane k  (the object distance is ks ) is calculated. In 

addition, the i -th order radial and decentering distortion coefficients can be computed. Register the 

two coefficients as , ks sg
iK  and , ks sg

iP  respectively. 

R g-1 
R g  

R g +1 
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(3) Based on the partitions in the object plane m , we calculate the partitions in the object 

distance plane n  (the object distance is ns ). Then, for the g -th partition of the object plane n , 

the radial distortion coefficient , ns sg
iK  and the decentering distortion coefficient , ns sg

iP  can be 

expressed as 

 

, , ,

, , ,

= ( , , )

= ( , , )

n m k

n m k

s s s s s sg g g
i i i n

s s s s s sg g g
i i i n

K f K K s

P f P P s




 (20)

From the equation, we can know 

 

, , ,
,

, ,2
, ,

, ,

( ) ( ) ( ) ( ) ( )

( ) ( )

(1 ) ( 1)
  

(1 ) ( 1)

1,2

1,2, ,

k m k

n

k m

n m

k m

s s s s s sg g g
s sg i m k m k n k i i
i

m k m
s s s sg g

s s s sg i m i m k n g
i is s s sg g

mi m n i n k

p

K s f s s s s s f K K
K

s f s s

P s P s s s
P P

sP s s P s s

i

g n

                       
       







 (21)

At this point, we have established an equal-increment partition based DoF distortion model for 

any object plane at ns  when the lens is focused at distance s . 

4. Calibration Method for Camera Parameters 

In close-range photography, the DoF images are seriously distorted, so the calibration accuracy 

of the distortion parameters is the decisive factor affecting the vision measurement accuracy. When 

the coupled-calibration method is used to solve the distortion parameters, the estimated errors of 

intrinsic and extrinsic parameters will be propagated to distortion parameters. Thus, a two-step 

method is proposed to calibrate the camera parameters, in which distortion parameters are estimated 

independently. 

4.1. Independent Distortion Calibration Method Based on Linear Conformation 

Figure 4 details the experimental system for DoF lens distortion, which consists of a monocular 

camera, a control field, a light source, an electric control platform, and a multi-axis motion controller. 

The X, Y, A, and C axes of the platform are in the object space, while the Z-axis is in the image space. 

A control field, with the features of circle, corner, and line, is used to calibrate the lens distortion, and 

the geometric relationship between the features is known accurately. On this basis, the pose of the 

control field relative to the image plane can be adjusted by the Perspective-n-Point (PnP) algorithm. 

Figure 4. Experimental system for calibrating depth of field (DoF) lens distortion. 
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In this paper, the distortion coefficients can be estimated by the plumb-line method [12] alone. 

It is defined by Brown (1971) as “a straight line in the object space will be mapped to the image plane 

in a straight way after a perfect lens, and any change of straightness can be reflected as the lens 

distortion described by the radial and decentering distortion coefficients.” 

As demonstrated in Figure 5, when N  edge points 
1 1 N Nu v u v（ ）（ ）on the same curve 

are known, the regression line equation determined by the point group is 

 0u v        (22)

Let =sin  , = cos  , = sin cosu vA A    , 
2

tan 2 = uv

uu vv

V

V V
 


. where   is the angle 

between the regression line and the u  axis (Figure 5). 
1

1
=

N

u ii
A u

N  ，  
1

1
=

N

v ii
A v

N  ， 

2
1

1
= ( )

N

uu i ui
V u A

N 
 ， 

1

1
= ( )( )

N

uv i u i vi
V u A v A

N 
  ， 2

1

1
= ( )

N

vv i vi
V v A

N 
 . 

Given there are L  lines and there are lN
 

points in the l -th line, the average sum of squared 

distances from the points  li liu v  to all the lines can be written as 

 2
1 1

1 1
( )lL N

l li l li ll i
l

D u v
L N

  
 

       
 

 (23)

Any distortion of a line’s straightness in the image plane can be corrected by a mapping 

involving radial and decentering distortion. Thus, substitute Equation (2) into Equation (23) and we 

can get 

 1 2 1 2( , ; , , , ) 0li liF u v K K P P   (24)

If there are L  lines in an image and lN
 

observation points are extracted from each line, we 

can have lL N  equations. In these equations, there are 4L   variables (L  line coefficients and 

4 distortion coefficients). If 4lL N L   , the optimal solution of distortion coefficients can be 

obtained. 

 

Figure 5. Schematic diagram of distortion calibration based on linear conformation configuration. 

After solving the image distortion coefficients, the inverse mapping ( , )= ( , )d dimR u v imD u v  

between the undistorted image imR  and distorted image imD  is established by cubic B-spline 

interpolation. In this way, the image distortion can be corrected. Besides, in this paper, the three 

straightness indicators of the maximum, average, and root mean square (RMS) 
1

/
L

ll
d D N


   

of the point-to-line distance, and the Peak Signal-to-Noise Ratio (PSNR) 
2

1010 log ((2 -1) /nPSNR MSE  , are used to evaluate the distortion correction effects. D  has 

v 

u o 

Points (ui vi) 
on the curved 

line 
Linked 

segment 
θ 

0 
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been defined in Equation (23), and MSE  is the mean square error of the image before and after 

distortion correction. 

4.2. Image Processing and Camera Calibration 

In this paper, the parameters in the equal-increment partition based DoF distortion model are 

calculated by using straight lines in a particular area of the control field. To this end, the corner control 

based method, for extracting line segments within a partition, is proposed. As shown in Figure 6, the 

image processing procedures include the following: 

(1) Image acquisition. Capture the image of the control field using the monocular camera (Figure 

6a). 

(2) Point detection. Corners of the checkerboard are extracted by the Harris detector (Figure 6b), 

and the edge points on the curve are detected by the Canny operator with subpixel accuracy. 

(3) Point connection. Use the edge points between two adjacent corners to form unit segments 

(Figure 5). In each segment, David Lowe’s method [37] is used to track and connect the edge points 

in the four-link area from one particular point to the others (Figure 6c). The minimum connection 

length is set to be greater than 10 pixels. 

(4) Point reselection. The distortion is not evenly distributed on the image, with the largest at 

the image edge, which makes it difficult to remove the noisy point. To solve this problem, the 

tolerance band of 4 pixels (Figure 5) set in each unit segment is used as the constraint to filter out the 

outliers. Consequently, the new edge points are determined (Figure 6d). 

(5) Line extraction. Any line can be obtained according to the corner position and the predefined 

distortion radius. Figure 6e,f shows the extraction results of the 19th horizontal line and the lines in 

different areas of the control field, respectively.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Image processing procedures for linear conformation: (a) image of the control field; (b) 

corner detection; (c) edge point connection; (d) point reselection; (e) horizontal line extraction; (f) line 

detection results in different areas. 

By combining the image processing results with the DoF distortion partition model, distortion 

parameters at any position of the DoF can be determined. To avoid the coupling effect between the 

distortion parameters and other parameters in the camera model, the camera’s intrinsic and extrinsic 

parameters are preliminarily calibrated by Zhang’s method. Then, we fix the distortion parameters 

Unit 
segment 

Unit 
segment 

Unit 
segment 

Line 
segment 
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and place the high-precision target in multiple spatial positions to optimize the intrinsic and extrinsic 

parameters. The cost function to be optimized is 

 

1
_ 0 01

( ) ( ( , , , , , , , ))

1,2

1,2

gmq g g
depth dependent q x y i j q qg

E u v f f K P

i

j




  
 

R H R T

 (25) 

where 
_ ( )q

depth dependent qE R  describes the cost function when the control field is in the q -th pose. qR  

and qT  are the rotation and translation matrices in the q -th pose. g
iK  and g

jP  are the i -th 

order radial and j -th order decentering distortion coefficients in the g -th partition of the q -th 

pose. By using the Levenberg–Marquardt (LM) algorithm, the optimal solution of the camera's 

intrinsic and extrinsic parameters can be obtained. 

Through the above process, the monocular camera calibration can be realized. In practice, the 

partition where a spatial point is located 
2 2X Y f

Z

   
  

 can be determined after estimating its 

3D position ( )X Y Z . Then, the observed distortion can be corrected by choosing the proper 

distortion coefficients, thus realizing high-accuracy vision measurements. 

5. Accuracy Verification Experiments of Both the Distortion Modeling and Calibration Method 

5.1. Experimental Verification of the 2D Distortion Partitioning Method 

The experimental system is shown in Figure 7. The stroke of the electric control platform along 

the optical axis of the camera is 500 mm, and the size of the control field is 300 × 300 mm. The SIGMA 

zoom lens (18–35 mm) and HIK ROBOT camera (MV-CH120-10TM) are selected for imaging. The 

resolution and focal length are set as 2560 × 2560 pixels and 18 mm respectively. The procedures are 

as follows: 

(1) calibrate the intrinsic and extrinsic parameters of the monocular camera; 

(2) make adjustments to ensure that the circle features are distributed symmetrically around the 

image center; 

(3) the pose of the control field is determined and adjusted repeatedly to ensure the object and 

the image planes are parallel; 

(4) the control field is driven by the electronic control platform to move several object planes 

along the optical axis. The image of the control field in each plane is collected and analyzed by the 

algorithm on the graphic workstation.  

 
(a) (b) 

Figure 7. Experimental system for DoF distortion calibration: (a) system hardware; (b) control field. 
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First, the accuracy of the 2D distortion partitioning method is verified. The image of the control 

field at the focus distance is divided into five concentric rings by the equal-radius (Figure 8a–e) and 

equal-increment (Figure 9a–e) distortion partition models, respectively. In each partition, the 

corresponding lines (green ones) are selected to solve the distortion coefficients and correct the image 

distortion. For each of the two partitioning methods, five corrected images can be obtained (i.e., 

Figure 8f–j and Figure 9f–j). Here, we use Figure 8f and Figure 9f as an example to illustrate the results 

of distortion correction. The distortion on the image edge solved by the distortion coefficients of the 

first partition is far beyond the actual distortion here. After distortion correction, distortion is 

removed overly, thus resulting in the distortion in the opposite direction. 

To compare the distortion correction effect of each partition in the image, we subtract the 

simulated undistorted image with the corrected image, and we get Figure 8k–o and Figure 9k–o. 

Obviously, the smaller the gray value is, the closer the undistorted image is to the ground truth, and 

the better the distortion removal effect is. As can be seen from the figures, the distortion correction 

results of each partition by the equal-radius partitioning method (Figure 8k–m) were not as good as 

that by the equal-increment partitioning method. Notably, in the fourth partition and the fifth 

partition located at the edge of the image, the green concentric ring in Figure 8n–o had a larger gray 

value, while in Figure 9n–o the gray values of pixels in the green concentric ring were approximately 

0. This shows that the equal-increment partitioning method had a better performance on eliminating 

distortion. 

Meanwhile, all the lines were used to solve and correct the image distortion as well. Then, the 

distortion correction effects with and without partition were compared using the aforementioned 

indexes (Section 4.1). As shown in Table 1, the undistorted images obtained by the two distortion 

partition methods had a good PSNR of up to 37.61 dB. Compared with the results obtained when 

without partition, the two partition methods showed a smaller straightness error in each partition. 

However, compared with the two partitioning methods, the maximum and average errors in the 

fourth and fifth partitions by the equal-radius partitioning method were at least 4 times and 2 times 

those by the partitioning method proposed in this paper. That is to say, with the equal-increment 

partitioning method, each partition can get better distortion correction results. The enlarged image 

of the best distortion curve for each partition is shown in Figure 10, which validates the effectiveness 

and accuracy of the proposed partitioning method in 2D settings. 

 
(a) 

 
(b) 

 
(c) 

 
(d) (e) 

 
(f) 

 
(g) 

 
(h) (i) (j) 

 
(k) 
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Figure 8. Distortion calibration and correction results based on the equal-radius partition method (f = 

18 mm): (a) partition 1; (b) partition 2; (c) partition 3; (d) partition 4; (e) partition 5; (f) distortion 

correction (partition 1); (g) distortion correction (partition 2); (h) distortion correction (partition 3); (i) 

distortion correction (partition 4); (j) distortion correction (partition 5); (k) difference (partition 1); (l) 

difference (partition 2); (m) difference (partition 3); (n) difference (partition 4); (o) difference 

(partition 5). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
(m) 

 
(n) 

 
(o) 

Figure 9. Distortion calibration and correction results based on the proposed partition method (f = 18 

mm): (a) partition 1; (b) partition 2; (c) partition 3; (d) partition 4; (e) partition 5; (f) distortion 

correction (partition 1); (g) distortion correction (partition 2); (h) distortion correction (partition 3); (i) 

distortion correction (partition 4); (j) distortion correction (partition 5); (k) difference (partition 1); (l) 

difference (partition 2); (m) difference (partition 3); (n) difference (partition 4); (o) difference 

(partition 5). 

Table 1. Comparison of distortion correction of the two partition models. 

Indicator 

Equal-Radius Partition Model / The Proposed Model Non-
Partitioned 

Model 

Partition 

1 

Partition 

2 

Partition 

3 

Partition 

4 
Partition 5  

Maximum 

error/pixel 
0.32/0.22 0.62/0.41 0.77/0.53 2.1/0.56 2.7/0.55 7.46 

Average 

error/pixel 
0.05/0.03 0.07/0.06 0.10/0.08 0.17/0.08 0.26/0.10 0.52 

RMS/pixel 0.04/0.04 0.08/0.06 0.10/0.07 0.11/0.08 0.32/0.09 0.48 

PSNR/dB 37.61/37.61 37.26/37.26 37.10/37.30 37.28/37.29 37.34/37.33 37.53 
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Figure 10. Distortion curves solved by the lines in each partition using the proposed partition method. 

5.2. Accuracy Verification Experiments of DoF Distortion Partitioning Model and Camera Calibration 

In this section, the accuracy of the DoF distortion model and camera calibration is verified. The 

control field is driven to move four different object planes within the DoF, two of which are at the 

limit positions of the front and rear DoF, and the other two planes are within the DoF. The front object 

plane was divided into five areas with equal distortion increment of 20.2 pixels. Then, based on the 

distortion parameters in two object planes with known depths, the distortions in the other two object 

planes are calculated by the non-partition model, the proposed DoF distortion model with equal-

radius partition, and the proposed DoF distortion model with equal-increment distortion partition, 

respectively. Thereafter, we manually adjusted the ring to focus the lens on the two object planes 

located at the limit positions of the front and rear DoF. Then, based on the calculated radial and 

decentering distortion coefficients on the two focal planes, Brown’s model [12] with equal-radius 

partition is used to estimate distortion parameters on the two planes within the DoF. 

Furthermore, the results are compared with the distortion directly solved by the lines (the 

observed value) within the corresponding partition. To compare the accuracy of different DoF 

distortion models, we took the in-plane point located in the common area (the second column of 

Table 2) partitioned by the two models at the same object distance (e.g., 400 mm in the first column 

of Table 2) as an example. As shown in Table 2, for Brown’s model [12] with equal-radius partition, 

the maximum and average absolute differences between the calculated and the observed values were 

7.32 μm and 2.81 μm, respectively. Those errors are smaller than that of the traditional Zhang's model 

without considering the DoF and distortion partition, but much larger than those of the proposed 

DoF distortion model with equal-radius partition and the proposed DoF distortion model with equal-

increment distortion partition, respectively. The maximum and average absolute differences between 

the calculated and the observed values of the equal-increment distortion partition based DOF 

distortion model were 1.53 μm and 0.88 μm, respectively. By contrast, the errors of equal-radius 

partition based DOF distortion model were 4.64 μm and 1.94 μm, which was more than two times 

those of the proposed model in this paper. The results verified the accuracy of the DoF distortion 

partitioning model in 3D settings.
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Table 2. Accuracy verification for DoF distortion partition model. 

Position of 

Object Plane 

(mm) 

In-Plane Position 

(Distance from the 

Distorted Point to 

the Optical Axis) 

Distortion 

Observed 

Value 

(μm) 

Brown’s Distortion Model with 

equal-Radius Partition  

Equal-Radius Partition Based 

DOF Distortion Model 

Equal-Increment Distortion 

Partition Based DOF Distortion 

Model 

Zhang’s Model 

Calculated(μm) 

Difference  

C O (μm) Calculated(μm) 

Difference 

C O  

(μm) 

Calculated 

(μm) 

Difference

C O  

(μm) 

Calculated 

(μm) 

Difference

C O  

(μm) 

400 

Point in partition #1 
(56 mm) 

86.41 86.33 0.08 86.38 0.03 86.4 0.01 86.27 0.14 

Point in partition #2 
(112 mm) 1836.23 1834.12 2.11 1835.82 0.41 1836.09 0.14 1832.42 3.81 

Point in partition #3 
(168 mm) 

3586.06 3582.81 3.25 3583.7 2.36 3584.84 1.22 3581.81 4.25 

Point in partition #4 
(224 mm) 5335.88 5332.01 3.87 5333.06 2.82 5334.57 1.31 5329.22 6.66 

Point in partition #5 

(280 mm) −7085.71 −7093.03 7.32 −7090.35 4.64 −7087.05 1.34 −7095.03 9.32 

500 

Point in partition #1 

(70 mm) 51.3 51.28 0.02 51.28 0.02 51.29 0.01 51.28 0.02 

Point in partition #2 

(140 mm) 1468.98 1467.93 1.05 1468.5 0.48 1468.44 0.54 1466.8 2.18 

Point in partition #3 

(210 mm) 2886.67 2884.63 2.04 2884.27 2.40 2885.46 1.21 2883.11 3.56 

Point in partition #4 

(280 mm) 4304.35 4301.18 3.17 4301.64 2.71 4302.82 1.53 4299.8 4.55 

Point in partition #5 

(350 mm) −5722.03 −5727.29 5.26 −5725.59 4.56 −5723.55 1.52 −5729.84 7.81 
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Images of circular markers with known precise distance on the planar artifact are collected. The 

calibration accuracy of the monocular camera is verified by the re-projection errors and the angular 

reconstruction errors, respectively. Specifically, the planar artifact is driven by the high-accuracy 

pitch axis to rotate five positions, between two adjacent ones of which are 10 °. In each position, the 

pose matrix between the planar artifact Figure 11a and the calibrated camera is calculated by the 

OPNP algorithm [38] with the equal-radius and the equal-increment partitioning based DoF 

distortion models, respectively. Thereafter, 20 markers are projected back to the image via the 

estimated pose matrix, and the re-projection errors, the image distances between the projected and 

observed points, are calculated. As shown in Figure 11b, for equal-radius DoF distortion partition 

model, the maximum and average re-projection errors of the five positions were 0.29 pixels and 0.17 

pixels, respectively, while the maximum and average projection errors of the proposed model were 

0.11 pixels and 0.05 pixels, respectively. The angle between two adjacent positions of the artifact is 

reconstructed with the two models as well. As illustrated in Figure 11c, the 3D measurement accuracy 

of the system is assessed by comparing it with the nominal angle. The results show that the maximum 

and average angular errors of equal-radius based DoF distortion partition model were 0.48 ° and 0.30 

°, respectively, while those of the proposed model were 0.013 ° and 0.011 °, which means that the 

angular reconstruction errors are effectively reduced. The above results comprehensively verify the 

accuracy of the DoF distortion partitioning model and the camera calibration method proposed in 

this paper. 

 

 
(a) 

(b) 
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(c) 

Figure 11. Camera calibration accuracy verification: (a) artifact; (b) re-projection error; (c) angular 

reconstruction error. 

6. Conclusions 

This paper has investigated the methods of modeling and calibration of lens distortions for close-

range photogrammetry (e.g., short object distance and small focal length). Our work finds that the 

following:  

(1) A focusing-state-independent DoF distortion model is constructed, and the distortion 

parameters at any object plane can be solved through the distortion on two defocus planes, which 

removes the human errors introduced by manual adjustment of the focus and zoom rings. 

(2) A 2D-to-3D equal-increment partitioning method for lens distortion is proposed. After fusing 

with the DoF distortion model to form a DoF distortion partition model, the accuracy of lens 

distortion characterization is further improved. 

(3) A two-step method is proposed to calibrate camera parameters, in which the DoF distortion 

is calculated independently by the plumb-line method, which eliminated the coupling effect among 

the parameters in the camera model. 

(4) Experiments were performed to verify the accuracy of the 2D distortion partition model, 

DoF-dependent distortion partition model, and camera calibration. The results show that the 

maximum and average angular reconstruction errors by the proposed model were 0.013 ° and 0.011 

° respectively, which validates the accuracy and feasibility of the equal-increment partitioning based 

DoF distortion method. 

The main limitation of the present study is that the number of partitions is not optimized to 

achieve higher calibration accuracy. Our future work will focus on this and extend our model to other 

optical systems with fisheye or catadioptric lenses. 
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Abbreviations. (List of abbreviations and symbols present in this article) 

Acronym 

or 

Symbols 

Definition 

Acronym 

or 

Symbols 

Definition 

DoF depth of field 
, ns s

iK  

i -th radial distortion coefficient of the 

object plane at distance ns  when the 

lens is focused at the distance of s  

FoV field-of-view 
, ms s

iK  

i -th radial distortion coefficient of the 

object plane at distance ms  when the 

lens is focused at the distance of s  

 li lip u v
 

undistorted coordinates 
, ks s

iK  

i -th radial distortion coefficient of the 

object plane at distance 
ks  when the lens 

is focused at the distance of s  

w w w wO X Y Z world coordinate system , ms sP   

decentering distortion function in the 

defocused plane at the object distances of 

ms  when the lens is focused at distance 

s  

ouv   image coordinate system , ks sP  

decentering distortion function in the 

defocused plane at the object distances of 

ks  when the lens is focused at distance 

s  

CO   optical center , ns sP  

decentering distortion function in the 

defocused plane at the object distances of 

ns  when the lens is focused at distance 

s  

z   scaling factor , ns sP   

i -th decentering distortion coefficient of 

the object plane at distance 
ns  when the 

lens is focused at the distance of s  

K  intrinsic parameter matrix 
, ms s

iP  
 

i -th decentering distortion coefficient of 

the object plane at distance 
ms  when 

the lens is focused at the distance of s  

CCD Charge Coupled Device 
, ks s

iP  

i -th decentering distortion coefficient of 

the object plane at distance 
ks  when the 

lens is focused at the distance of s  

CMOS 
Complementary Metal-Oxide 

Semiconductor max  maximum value of image distortion 

M  transformation matrix maxr  maximum distortion radius of the image 

VCS vision coordinate system lI  length of the image 

R  rotation matrix hI  height of the image 

T  translation matrix limited  minimum distortion value 

（ ）li liu v   distorted coordinates limitedr  
minimum value of the image distortion 

radius 

liu
  distortion function of an image point in 

the u  direction 
pn  number of partitions 

liv
  the distortion function of an image point 

in the v  direction 
equ  distortion increment 

0 0( , )u v   distortion center   partition radius 

r   distortion radius mP  point in VCS 

1K  first-order coefficient of radial distortion kP  point in VCS 
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2K  
second-order coefficient of radial 

distortion m  m -th object plane in the VCS 

1P  
first-order coefficient of decentering 

distortion k  k -th object plane in the VCS 

2P  
second-order coefficient of decentering 

distortion n  n -th object plane in the VCS 

r   
radial distortion for a lens that is focused 

on plus infinity 

, ms sg
iK  

i -th order radial distortion coefficient in 

the g -th partition of object plane 
m  

r   
radial distortion for a lens that is focused 

on minus infinity 

, ms sg
iP  

i -th order decentering distortion 

coefficient in the g -th partition of object 

plane 
m  

sm  
vertical magnification in the focal plane at 

object distance s  

, ks sg
iK  

i -th order radial distortion coefficient in 

the g -th partition of object plane 
k  

sr  lens radial distortion in the focal plane 
, ks sg

iP  

i -th order decentering distortion 

coefficient in the g -th partition of object 

plane 
k  

ms
r  

radial distortion in the focal plane when 

the lens is focused on the distance of 
ms  

, ns sg
iK  

i -th order radial distortion coefficient in 

the g -th partition of object plane 
n  

ks
r  

radial distortion in the focal plane when 

the lens is focused on the distance of
 ks  

, ns sg
iP  

i -th order decentering distortion 

coefficient in the g -th partition of object 

plane 
n  

f  focal length PnP Perspective-n-Point 

s
iK   

i -th radial distortion coefficient for 

focused object plane at distance s  
   

angle between the regression line and the 

u  axis 

ms
iK  

i -th radial distortion coefficient when the 

lens is focused on the distance of ms  
D   

average sum of squared distances from 

the points  li liu v  to all the lines 

ks
iK  

i -th radial distortion coefficient when the 

lens is focused on the distance of 
ks  

imR   undistorted image 

ur  
component of the decentering distortion 

in u  direction 
imD   distorted image 

vr  
component of the decentering distortion 

in v  direction 
RMS root mean square 

, ps s
K  

radial distortion coefficient in the 

defocused plane with the depth of ps  

when the lens is focused at distance s  

PSNR Peak Signal-to-Noise Ratio 

g  empirical coefficient MSE   
mean square error of the image before 

and after distortion correction 

psK  

radial distortion coefficient in the focal 

plane at distance ps  qR  rotation matrix in the q -th pose 

sK  
radial distortion coefficient in the focal 

plane at distanced s  
qT  translation matrix in the q -th pose 

, ns sr  

radial distortion function of the object 

plane at distance 
ns  when the lens is 

focused at the distance of s  

g
iK  

i -th order radial distortion coefficient in 

the g -th partition of the q -th pose 

, ms sr  

radial distortion function of the object 

plane at distance ms  when the lens is 

focused at the distance of s  

g
jP  

j -th order decentering distortion 

coefficient in the g -th partition of the q

-th pose 

, ks sr  

radial distortion function of the object 

plane at distance 
ks  when the lens is 

focused at the distance of s  

LM Levenberg-Marquardt 
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