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Abstract: Current research on dynamic displacement measurement based on computer vision 

mostly requires professional high-speed cameras and an ideal shooting environment to ensure the 

performance and accuracy of the analysis. However, the high cost of the camera and strict 

requirements of sharp image contrast and stable environment during the shooting process limit the 

broad application of the technology. This paper proposes an improved vision method to implement 

multi-point dynamic displacement measurements with smartphones in an interference 

environment. A motion-enhanced spatio-temporal context (MSTC) algorithm is developed and 

applied together with the optical flow (OF) algorithm to realize a simultaneous tracking and 

dynamic displacement extraction of multiple points on a vibrating structure in the interference 

environment. Finally, a sine-sweep vibration experiment on a cantilever sphere model is presented 

to validate the feasibility of the proposed method in a wide-band frequency range. In the test, a 

smartphone was used to shoot the vibration process of the sine-sweep-excited sphere, and 

illumination change, fog interference, and camera jitter were artificially simulated to represent the 

interference environment. The results of the proposed method are compared to conventional 

displacement sensor data and current vision method results. It is demonstrated that, in an 

interference environment, (1) the OF method is prone to mismatch the feature points and leads to 

data deviated or lost; (2) the conventional STC method is sensitive to target selection and can 

effectively track those targets having a large proportion of pixels in the context with motion 

tendency similar to the target center; (3) the proposed MSTC method, however, can ease the 

sensitivity to target selection through in-depth processing of the information in the context and 

finally enhance the robustness of the target tracking. In addition, the MSTC method takes less than 

one second to track each target between adjacent frame images, implying a potential for online 

measurement. 

Keywords: computer vision; multi-point displacement measurement; motion enhanced spatio-

temporal context; optical flow 

 

1. Introduction 

Structural health monitoring, as a crucial technique ensuring long-term structural safety, plays 

an essential role in early warning, evaluation, and maintenance decisions during the structural life 

cycle. Accelerometers, one kind of data sensors widely used in structural health monitoring practices, 

can directly measure the acceleration response of structures while less effective in the low-frequency 
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range [1]. In contrast, displacement sensors can obtain sensitive low-frequency dynamic 

measurements but see relatively few applications due to the inconvenience of installation and 

monitoring. For instance, a linear variable differential transformer (LVDT) requires a fixed reference 

point to measure the displacement, and the laser Doppler vibrometer needs installing close to the 

object. 

In recent years, with the development of image data acquisition and computer vision techniques, 

vision-based displacement measurement technology has attracted extensive research attention due 

to its advantages of no contact, long distance, and low cost [2,3]. According to target markers required 

or not, the computer vision technologies for displacement measurement can be classified into two 

categories. The first category using customized target markers [4–11] can increase the differentiation 

between the tracking target and the background to improve measurement accuracy. In the actual 

measurement, however, the installation of markers is labor-intensive, especially when multi-point 

displacements are desired. 

In contrast, the non-target measurement category uses the texture features of the structure 

surface as pseudo markers. Various methods have been developed to track the features points and 

identify the corresponding displacements. For instance, with feature-point matching algorithms, 

Khuc [12] and Dong [13] adopted professional high-speed cameras to achieve displacement 

measurement without attaching any artificial target markers. This kind of algorithms mostly needs a 

clear texture of the object to reduce the false recognition of features. Moreover, the use of high-speed 

cameras also requires high-brightness lighting conditions to achieve a sharp contrast of imaging 

objects. Yoon [14] applied an optical flow algorithm and adopted a consumer-grade camera to extract 

the displacement response and dynamic characteristics. Feng [15] proposed a sub-pixel template 

matching technique based on image correlation, improving the accuracy of displacement extraction. 

It is worth noting that all the above studies are applied under ideal measurement conditions and 

require a stable lighting environment. The influence of unfavorable environmental factors such as 

illumination change, fog interference, camera motion, and complex background on the measurement 

results is not involved. Regarding this, Dong [16] applied a spatio-temporal context (STC) algorithm 

to implement the displacement measurement with a high-speed camera in the illumination change 

and fog environment. The research realized single-point dynamic displacement measurement but not 

multi-point synchronous monitoring that is more favorable in structural health monitoring practice. 

Furthermore, the applied STC algorithm treats the whole region of the context equally, which 

weakens the effectiveness of the context information. As for the camera motion problem, which is 

getting increasing attention in vision measurement practices, a general solution is to compensate for 

camera motion-induced errors by subtracting the movement of reference points on the background 

[17,18]. The methods applied therein to identify the reference-point movement are critical to the 

measurement accuracy, especially when camera jitter, one particular kind of camera motion 

undergoing dramatic change and hence increasing challenges, is taken into account. 

The present study proposed an improved displacement measurement method with computer 

vision technology, which allows the use of smartphone-recording video to achieve simultaneous 

monitoring of multi-point dynamic displacements under changing environmental conditions. It is 

noted that current smartphones with high-resolution cameras preserve many advantages, such as 

low cost, portability, and ease of use, making it a competitive device for optical sensing under various 

conditions [19]. In the proposed method, after calibration of the sequential distorted images shot from 

the smartphone, multiple areas centered at the targeting points are predefined with permissible 

overlapping. A motion-enhanced spatio-temporal context (MSTC) algorithm is then developed for 

robust tracking of the moving targets. Therein, a motion-enhanced function is constructed with an 

optical flow (OF) algorithm to strengthen the beneficial information and weaken the interference 

information in the whole context area. Finally, based on the tracked pixel-level results from the MSTC 

algorithm, the OF algorithm is re-applied to estimate the subpixel-level moving, benefiting 

eventually to the achievement of high-precision displacement results. To validate the feasibility of 

the proposed method for monitoring vibrating displacements in a wide frequency range, a sine-

sweep vibration experiment on a cantilever sphere model is carried out. In the test, an iPhone 7 was 
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used to shoot the vibration process of the sine-sweep-excited sphere, and illumination change, fog 

interference, and camera jitter were artificially simulated to represent the interference environment. 

By referring to the displacement sensor data, comparative studies between results from the proposed 

method and current vision methods were presented. 

2. Integrated Process for Multi-Point Displacement Measurement 

Implementation of the proposed measurement method focuses on three aspects: smartphone 

application, multi-point monitoring, and high-precision displacement extraction. 

The first aspect needs to solve the calibration of the wide-angle distortion from the consumer-

grade camera of the smartphone. Therein, Zhang’s method [20] is employed to implement the camera 

calibration, and we further propose an iterative calibration procedure based on a continually 

expanding image library to achieve calibrated parameters converged. 

The second aspect concerns the issue of multi-target selection and definition. Therein, through 

introducing multi-region compatibility and parallel design, we extend the range of the STC algorithm 

from conventional single-target tracking to multi-target tracking. 

The last aspect deals with the algorithms about multi-target tracking and high-precision 

displacement extraction under environmental interference, which is the most crucial part of the 

integrated process. Therein, we develop a new tracking algorithm, i.e., the MSTC algorithm, to 

implement robust tracking of multiple objects. A sub-pixel displacement estimation method [21] is 

then employed to refine the measurement. 

Figure 1 shows the flowchart of the monitoring process, in which three main parts are integrated 

with sequence and will be illustrated in detail in the following. 

 

Figure 1. Flowchart of multi-displacement measurement with smartphone. 

3. Smartphone-Shoot Image Calibration 

In most smartphones, the consumer-grade cameras are equipped with a wide-angle lens to 

increase the shooting range, while it will introduce large radial and tangential distortion to the image. 

Therefore, to reduce the position error caused by the image distortion, it is necessary to calibrate the 

camera and identify the internal/external parameters and distortion coefficients. 

According to the pinhole model used for camera imaging [20], the relationship between a real 

point A (X, Y, Z) and the corresponding point A’(u, v) in the camera image can be described as 

�[� � 1] = [� � � 1] �
�
�

� (1) 

Original video 

Calibrated video 

Multiple target areas 

Multi-target tracking 

Displacement extraction 

Camera calibration 

MSTC algorithm 

OF algorithm 

Multiple predefined points 
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[� � 1] = [� � 1]� (2) 

where (X, Y, Z), (x, y), and (u, v) represent the coordinates of point A in the real-world coordinate 

system, camera coordinate system, and pixel coordinate system, respectively; s is a scaling factor; the 

external parameter matrices R and t, respectively, represent the rotation matrix and the translation 

matrix, related to the physical position of the camera; the internal parameter matrix K is determined 

by the camera structure and material, represented as 

� =  �

�� 0 0
� �� 0

�� �� 1
� (3)

where ��  and ��  are scale factors of the x and y axes in the pixel coordinate system; �  is the 

inclination parameter of the axis; �� and �� are coordinates of the origin. 

Equations (1) and (2) represent an ideal imaging relationship. However, the camera lens 

produces radial and tangential distortions, causing the imaging point to shift. A nonlinear distortion 

model [22] can be used to describe the distortions as 

 �
��

��
� = (1 + ���� + ����) �

��

��
�  + �

2������ + ��(�� + 2��
�)

2������ + ��(�� + 2��
�)

� (4)

in which (��, ��) and (�� , ��) are the ideal exact coordinates and actual distorted coordinates of the 

target point in the camera coordinate system, respectively; ��  and ��  are radial distortion 

coefficients; �� and �� are tangential distortion coefficients; r is a radius defined by 

 �� = ��
� + ��

� (5)

Identification of internal/external parameters and distortion coefficients, namely, camera 

calibration, is based on the accurate coordinates (X, Y, Z) of several predefined points and the 

distorted pixel coordinates (��, ��) of the corresponding imaging points. Specific values of all the 

parameters and coefficients can be solved by minimizing the sum of square errors between the 

distorted pixel coordinates (��, ��) and the pixel coordinates projected from (X, Y, Z) with Equations 

(1)–(5). 

In the present study, we use the method proposed in Reference [20] to implement the camera 

calibration. Firstly, an image database is established by taking photos at a predefined chessboard 

with the smartphone, an iPhone 7, of different locations and postures. Then a series of calibration 

analyses adopting various numbers of images are carried out until a converged result is reached, as 

listed in Tables 1 and 2 for final results of all the parameters and coefficients of the iPhone 7 rear 

camera. Figure 2 shows the variation of identified coefficients ��  and ��  versus the number of 

images used. It can be observed that nearly 20 images are sufficient to meet a convergence 

requirement for the camera calibration. 

Table 1. Intrinsic parameters of iPhone 7 back camera. 

Parameter �� �� � �� �� 

value 3322.5 3322.3 1.6869 2010.3 1480.6 

Table 2. Distortion coefficients of iPhone 7 back camera. 

Coefficient �� �� �� �� 

value 0.2999 −1.6605 3.03 × 10−4 3.80 × 10−3 
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Figure 2. Identification trend of radial distortion coefficients. 

After the camera calibration, we apply Equation (4) for every interested image to adjust the 

distorted pixel coordinates (�� ,��) to a more rational one (��, ��), which is finally used in Equations 

(1) and (2) to get the real-world coordinates. Figure 3 shows a comparison of a partial image of the 

chessboard before and after calibration. It can be seen in the original image that, due to radial and 

tangential distortions, vertical edges of black and white squares are projected as curves and fail to 

form a straight line, especially for the most marginal black square in the bottom left corner. At the 

same time, apparent zigzag happens on horizontal edges. In the calibrated image, the distorted 

vertical edges have been recovered nearly straight, and the zigzagged horizontal edges have been 

partly smoothed. The calibration, although not 100% recovery, still favors in an error reduction of the 

final displacement. 

  

(a) Original image (b) Calibrated image 

Figure 3. Pre- and post-calibration images of B&W chessboard. 

4. Multi-Target Definition 

In the structural vibration practice, multi-point responses are substantially desired for a 

comprehensive understanding of vibration and consequent modal analysis. By use of video-based 

methods to achieve multi-point displacement measurement, one needs to make a clear definition of 

all the points and track their positions in each frame image of the video. 

The STC method used in the present study was initially developed to monitor a single-target 

movement [16,23]. Herein, we extend its application range to the multi-target case by introducing the 

regional compatibility of multiple target areas into the parallel design of the target-tracking 

algorithm. The definition of three target areas in the first frame image is shown in Figure 4. Each area 

is of a rectangle shape and centers at a predefined target point of cross mark. It is worth noting that 

the target areas allow partially overlapped, and the number of targets is indeed unlimited. 

Movements of the corresponding target areas then represent those of the target points. 
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Figure 4. Definition of three target areas in the first frame image. 

5. Target Tracking Based on MSTC Algorithm 

5.1. Conventional STC Tracking Algorithm 

The STC algorithm formulates the spatio-temporal statistical correlation between the image 

intensity from the object of interest and its local context and obtains the best target position by 

maximizing the following confidence function [23], 

 �(�) = �(�|�) = ��
��

|���∗|
� �

�

 
(6)

where � ∈ R� is the target position; � denotes the target present in the scene; �∗ is the center point 

of the target area; �  is a normalization constant; �  and �  are a scale parameter and a shape 

parameter, respectively. 

In a current frame image, the context feature set is defined as, 

 �� = {�(�) = (�(�), �)|� ∈ ��(�∗)} (7)

where �(�) denotes image intensity at location �; ��(�∗) is the context area around the target. As 

shown in Figure 5, the yellow box defines the tracking target, and the red box represents its local 

context. 

 

Figure 5. Graphical model of the spatial relationship between the target and its local context. 

According to the total probability formula, the confidence function in Equation (6) can be 

computed by 

z
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�(�) = �(�|�) = � �(�, �(�)|�)
�(�)∈��

 

= � �(�|�(�), �)
�(�)∈��

�(�(�)|o) 

(8) 

where, �(�, �(�)|�) is the joint probability; �(�|�(�), �) is the conditional probability, modeling the 

spatial relationship between the target and its context; �(�(�)|o) is the context prior probability, 

modeling the appearance characteristics of the context. The main task in STC is to learn �(�|�(�), �) 

as bridging the target position and its spatial context. 

With the intensity of the current frame image, the context prior probability �(�(�)|o) is simply 

modeled as 

 �(�(�)|o) = �(�)��(� − �∗) (9)

where 

 ��(� − �∗) =  ��
�

|���∗|�

��  (10)

 � = (�� + ��)/2 (11)

in which, � is a normalization constant; �  is a scale parameter; ��  and ��  are the length and 

width of the target area, respectively. 

The conditional probability �(�|�(�), �) is modeled to be a function of the relative distance and 

direction between the target and its context, 

 �(�|�(�), �) = ℎ(� − �) (12)

Substituting Equations (9) and (12) into Equation (8), we can get 

 �(�) = � ℎ(� − �)
�(�)∈��

�(�)��(� − �∗)    = ℎ(�) ⊗ ��(�)��(� − �∗)�     (13)

where ⊗ denotes the convolution operator. For the sake of efficient operation, Equation (13) is 

transformed into the frequency domain so that the Fast Fourier Transform (FFT) algorithm can be 

used for fast convolution, leading to 

   ℱ��(�)� = ℱ�ℎ(�)� ⊙ ℱ��(�)��(� − �∗)�  (14)

where ℱ denotes the FFT operation and ⊙ represents the pixel-wise product. Therefore, we have 

 ℎ(�) = ℱ�� �
ℱ��(�)�

ℱ��(�)��(� − �∗)�
� = ℱ��

⎝

⎜⎜
⎛

ℱ ���
��

|���∗|
� �

�

�

ℱ��(�)��(� − �∗)�

⎠

⎟⎟
⎞

  (15)

where ℱ�� denotes the inverse FFT operation. 

After ℎ(�) is obtained, the tracking problem with STC is simply formulated as a detection task. 

In the (t+1)-th frame image, the object position ����
∗  is determined by maximizing the new confidence 

function 

 
����

∗ = ������
�∈�����

∗�

����(�) (16)

where c���(�) is represented as 

 c���(�) = ℱ�� �ℱ�����(�)� ⊙ ℱ �����(�)���
(� − �∗)�� (17)

in which ����(�), a replacement of ℎ(�) in Equation (14) with additional temporal information, is 

updated by 
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 ����(�)  = (1 − �)��(�) + �ℎ�(�) (18)

where � is a learning rate factor. 

5.2. Motion-Enhanced STC (MSTC) Tracking Algorithm 

5.2.1. Basic Idea 

With the spatio-temporal context model in Equation (18), the conventional STC algorithm can 

filter out the image noise caused by appearance variations, thereby leading to stable tracking results. 

However, the STC algorithm treats the entire context equivalently by taking it for granted that all 

regions of the context have the same contribution in tracking the target movement, leading to 

ineffective outcomes in a severe noise environment. Regarding this shortcoming, Xu [24] proposed a 

weighted STC algorithm by applying Harris corner displacement identification and linear 

interpolation to construct a weight function. However, the Harris corner tracking may fail in an 

interference environment, as shown in Section 7, and the linear interpolation with a few feature points 

can only yield an approximate contribution of the context. 

We notice in practical videos that pixels on the same moving object tend to have a more similar 

motion than the other pixels, implying different pixels in the context may have different correlations 

with the target in terms of motion tendency. An example of the pixel-wise motion tendency obtained 

from the optical flow (OF) algorithm (details in Section 5.2.2) is shown in Figure 6. Regarding the 

similarity with the target center, all pixels in the context can be roughly grouped into three sets: (1) 

the auxiliary set, e.g., regions A, E, and G; (2) the irrelevant set, e.g., regions B and F; (3) the 

interference set, e.g., regions C, D, and H. Furthermore, in line with varying movements in the video 

process, these three sets will also vary frame to frame during the tracking process. Such new spatio-

temporal information, if integrated into the tracking algorithm, will benefit a lot to improve the 

measurement accuracy in a noisy environment. 

Therefore, the basic idea of the MSTC algorithm we develop here is to construct a dense pixel-

wise influence matrix by using the motion-tendency similarity between pixels in the context and the 

target. Pixels in the regions of the auxiliary set will have the most substantial influence on target 

tracking, as opposed to the interference set. The influence matrix is then integrated into the tracking 

framework of the STC algorithm to achieve more robust tracking performance. 

 

Figure 6. Context and division result. 

5.2.2. Derivation of the Context Influence Matrix 

The context influence matrix builds a mathematical model based on the motion-tendency 

similarity between pixels in different regions of the context and the tracking target. Here, we apply 

the OF approach to identify the motion tendency of all pixels in the context to generate the context 

influence matrix. The procedure is as follows: 

(1) Get the intensity ����(�, �) of the (t-1)-th frame image and ��(�, �) of the t-th frame image. 

 D  E  F  

A  B  C  

G  H  
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(2) Identify the pixel-wise velocity by use of the least-square OF method [25], 
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 (19)

where all the partial derivatives can be estimated by averaging the first-order finite differential 

values, i.e., 

 
 
���

��
≈

1

4
�����(� + 1, �) + ����(� + 1, � + 1) + ��(� + 1, �) + ��(� + 1, � + 1)�

−
1

4
�����(�, �) + ����(�, � + 1) + ��(�, �) + ��(�, � + 1)� 

(20)

 

���

��
≈

1

4
�����(�, � + 1) + ����(� + 1, � + 1) + ��(�, � + 1) + ��(� + 1, � + 1)�

−
1

4
�����(�, �) + ����(� + 1, �) + ��(�, �) + ��(� + 1, �)� 

(21)

 
 
���

��
≈

1

4
���(�, �) + ��(� + 1, �) + ��(�, � + 1) + ��(� + 1, � + 1)�

−
1

4
�����(�, �) + ����(� + 1, �) + ����(�, � + 1) + ����(� + 1, � + 1)� 

(22)

(3) Calculate the velocity difference between the target center and each pixel in the context, 

  ��
� = �((��

∗)� − (��
� )�)� + ����

∗�
�

− ���
� �

�
�

�

 (23)

(4) For each pixel in the context, convert the corresponding velocity difference with a negative 

exponential function to generate the influence coefficient, 

 
��

� = �
�

���
��

�

���  
(24)

where � is a scale parameter. As can be seen that more similar the two velocities are, i.e., less velocity 

difference, the more considerable value the influence coefficient will take. 

As shown in Figure 7 is an example of the influence matrix, which we obtained in the laboratory 

verification for tracking Target Point 2 under fog interference (Scenario III, see details in Section 7). 

The bright region in the context is almost consistent with the profile of the moving object, implying 

that a correct relationship is successfully built between the target center and the pixels in the context. 

Such new information helps to include more contributions from the context into the tracking of the 

target, especially when severe interference is involved. 

          

Figure 7. Local context and influence matrix. 

5.2.3. Updated Formulation 

By combining the influence of the context, we renew the conditional probability as 
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 �(�|�(�), �) = ℎ(� − �) ∗ �(�) (25)

where �(�) is the dense pixel-wise influence matrix. 

Correspondingly, all the related formulas are updated as 

 �(�) = � ℎ(� − �)
�(�)∈��

�(�)�(�)��(� − �∗)    = ℎ(�) ⊗ ��(�)�(�)��(� − �∗)�     (26)

   ℱ��(�)� = ℱ�ℎ(�)� ⊙ ℱ��(�)�(�)��(� − �∗)�  (27)

 ℎ(�) = ℱ�� �
ℱ��(�)�

ℱ��(�)�(�)��(� − �∗)�
� = ℱ��

⎝

⎜⎜
⎛

ℱ ���
��

|���∗|
� �

�

�

ℱ��(�)�(�)��(� − �∗)�

⎠

⎟⎟
⎞

  (28)

5.2.4. MSTC Tracking Process 

After �(�) is obtained, the confidence function to be maximized during the tracking process 

now becomes 

 c���(�) = ℱ�� �ℱ�����(�)� ⊙ ℱ �����(�)����(�)���
(� − �∗)�� (29)

in which ����(�), a temporal version of �(�) and similar to ����(�) in Equation (18), is updated 

by 

 ����(�)  = (1 − �)��(�) + ���(�) (30)

where � is a learning rate factor and the initial matrix �� is defined as a regularized matrix with all 

entries equal to 1. 

The integrated MSTC tracking process is illustrated in Figure 8. For the sake of a robust tracking, 

we recommend several crucial parameters taking values as, �=2.25, �=1, �=0.075, �=4, �=0.3. 

 

Figure 8. Flow chart of motion-enhanced spatio-temporal context (MSTC) algorithm. 

  



Sensors 2020, 20, 5929 11 of 26 

 

6. Sub-Pixel Displacement Estimation with OF Algorithm 

The target position obtained above is of integer pixel, resulting in a pixel-level displacement. To 

achieve more accurate movement, besides choosing a higher-resolution camera, one can also use the 

OF algorithm to estimate the sub-pixel displacement [21]. 

In general, the following relationship holds between the target intensities in two adjacent frame 

images, e.g., ����(�, �) and ��(�, �), 

 ����(�, �) = ��(� + ∆�, � + ∆�) (31)

where the target displacement (∆�, ∆�) can be expressed as the sum of the pixel-level part (∆�����, ∆�����) 

and the sub-pixel part (δ�, δ�) 

 �
∆� = ∆����� + δ�
∆� = ∆����� + δ�

 (32)

in which δ�≪1 and δ�≪1. 

After the pixel-level displacement (∆�����, ∆�����) has been identified by using the MSTC algorithm, 

we can construct a new template image relating to the pixel-level displacement, then apply the OF 

algorithm to expand the ����(�, �) in terms of δ� and δ�, 

 ����(�, �)  =  ��(� + ∆����� + δ�, � + ∆����� + δ�) ≈ ��̅(�, �) +
���̅(�, �)

��
δ� +

���̅(�, �)

��
δ� (33)

where ��̅(�, �) = ��(� + ∆�����, � + ∆�����) represents the intensity of the new template image. 

Then, by applying the same least-square OF method as in Section 5.2.2, we can get 
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where all the partial derivative can be estimated similarly as in Section 5.2.2. 

Related research [21] has shown that the accuracy of sub-pixel displacement estimated by the 

OF algorithm can reach as small as 0.0125 pixel. Therefore, the combination of the MSTC tracking 

algorithm to identify the pixel-level movement and the OF algorithm to estimate the sub-pixel 

displacement can effectively improve the measurement precision of the target displacement. It is also 

worth noting that the same OF algorithm is adopted in the present study to estimate both the pixel-

wise motion tendency and the sub-pixel displacement, facilitating the implementation of compact 

and unified programming. 

7. Laboratory Verification 

In the following, we will carry out forced vibration experiments of a cantilever sphere model to 

verify whether the proposed method can accurately obtain the multi-point displacement time history 

of the model subject to light change, fog interference, and camera jitter. Based on smartphone-shoot 

videos recording the model vibration process, measurement results with the proposed MSTC method 

are compared to the displacement sensor data, as well as those obtained with two current vision 

methods, e.g., the conventional STC method [16] and the characteristic OF method [14]. 

7.1. Experiment Setup 

Figure 9 shows the experiment layout. A steel sphere is installed on top of a vertical steel rod 

that is bottom-fixed on a rigid support and connected on the middle to a vibration exciter, which will 

input external excitation to the structural model and force the sphere to vibrate horizontally. A linear 

variable differential transformer (LVDT), in which one end connected to the sphere and the other end 

fixed to the left steel column, is used to measure the displacement of the sphere, with data 

automatically collected by a computer. An iPhone7 smartphone mounted on a tripod in front of the 
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model is used to shoot the sphere vibration video. The resolution of the iPhone7 rear camera is set to 

1920 × 1080 pixels and the theoretical frame rate set to 60 frames per second (FPS). The actual frame 

rate of the video, however, is 59.96 FPS. This subtle FPS difference may cause significant errors to the 

displacement result, as will be illustrated in detail later. It should also be noted that we deliberately 

keep the complex background, without cover like usual doing, to approach the real application 

environment. 

 

Figure 9. Experiment layout. 

In the experiment, for verification in a wide-band frequency range, the exciter is set to produce 

repetitive sine-sweep excitation with frequency linearly varying from 1 Hz to 10 Hz. We design four 

scenarios to examine the application effect of the vision methods in different environments, 

(1) Scenario I: no interference in the environment during the vibration. 

(2) Scenario II: illumination variation in the environment during the vibration. We place a lamp 

near the sphere and switch it on/off several times during the vibration. As shown in Figure 10, 

the left image represents the case when the lamp is switched off, and the right image when 

switched on. A significant difference in image brightness can be observed between the two cases. 

       

Figure 10. Comparison of variable illumination. 

(3) Scenario III: fog interference in the environment during the vibration. We place a humidifier 

between the sphere and the smartphone and turn it on during the vibration to simulate the foggy 

environment. As shown in Figure 11, the left image represents the case when the humidifier is 

turned off and the right image when turned on. A significant difference in image contrast can be 

observed between the two cases. 
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Figure 11. Comparison of fog simulation. 

(4) Scenario IV: camera jitter during the vibration. We use a pencil to tap the tripod three times 

during the vibration to make the camera jitter happen after each tapping. As shown in Figure 12 

are typical frame images taken from the video at the time right after each tapping. A comparison 

between Figure 12 and Figure 13 (see later for non-vibrating state) shows that the images are 

severely blurred due to the camera jitter, in which one can hardly find clear features points. 

 

(a) First tapping 

 

(b) Second tapping 

 

(c) Third tapping 

Figure 12. Blurred images after each tapping. 
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7.2. Measurement Results 

We define three points as the target points that locates at a similar height as the measured point 

of the LVDT. As shown in Figure 13 are the definition, in the first frame image, of the three target 

points denoted with blue cross marks and the corresponding target areas indicated with green, red, 

and yellow boxes. It can be seen that the first target point is sitting on the tip end of the LVDT, the 

second one is nearly the center of the sphere, and the third one is on the fixed end of the LVDT. 

During the vibration, the third target point is indeed non-moving. Therefore, in Scenarios I-III, we 

only track the first and second target points. Moreover, in Scenario IV, we further track the third 

target point for the sake of excluding the camera-jitter influence from the measurements of the first 

and second target points. 

 

Figure 13. Initial definition of three tracking targets. 

We firstly adjust the original vibration video shot by the smartphone to a new one by using all 

the calibrated parameters and coefficients obtained in Section 3, then apply three vision-based 

measurement methods, i.e., MSTC, STC, and characteristic OF, to the new video to get the 

corresponding time–history displacements. The characteristic OF method [14] applied herein uses a 

tracking algorithm that combines Lucas-Kanade optical flow and Harris corners, in which the points 

for tracking cannot be artificially defined but automatically determined with critical features in the 

first frame image. So, the tracked points with this OF method cannot be exactly the ones defined 

above for the MSTC and STC, and we choose one of those feature points that is nearest to the second 

target point for comparative study. 

In the comparative study, we use two types of evaluation indicators [26], e.g., the normalized 

mean square error indicator (NMSE) and the correlation coefficient indicator (�), by referring to the 

LVDT data to evaluate the overall performances of the vision-based measurement methods, 

 ���� = 1 −
∑ ���(�) − ��(�)�

��
�

∑ ���(�) − ��
����

��
�

 (35)
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(36)

where, ��(�) and ��(�) are the i-th time-instant displacements obtained with the vision method and 

the LVDT, respectively; ��
��� and ��

��� represent the corresponding mean values of the time–history 
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displacements. For both indicators, a value closer to 1 indicates a better agreement between the 

vision-measured result and the LVDT data. It is noted that, besides these two overall indicators, some 

local indices such as deviations from maximum or minimum values are also investigated in the 

present study for comprehensive understanding. 

With the first 15-s time history, the final measurement results in all four scenarios are shown 

and compared in Figures 14–22 and Tables 3–6. Therein, MSTC-1 and MSTC-2 denote the results of 

the first target point and the second target point identified by the MSTC method, respectively; STC-

1 and STC-2 denote the ones by the STC method; LK denotes the ones by the characteristic OF 

method; sensor denotes the LVDT data. It is noted that the sampling rate for the LVDT is 100 Hz and 

it is down-sampled to be comparable to the vision measurements with the theoretical or actual frame 

rate [27]. 

In Scenario IV, MSTC-1_0, MSTC-2_0, and MSTC-3_0 denote the overall results of the three 

target points identified by the MSTC method, which include the camera-jitter influence. 

Corresponding displacements of the first and second target points, denoted by MSTC-1 and MSTC-

2, respectively, are then obtained by excluding the camera-jitter influence, e.g., subtracting MSTC-

3_0 from MSTC-1_0 and MSTC-2_0. With the STC method, similar definitions hold for STC-1_0, STC-

2_0, STC-3_0, STC-1, and STC-2. 

Observations on the results will be illustrated in the following. 

7.2.1. Scenario I 

From Figures 14–15 and Table 3, it can be seen that, 

(1) In the absence of interference factors, all three vision methods can accurately capture the 

sphere’s movement under the complex background, among which the two STC-type methods 

perform better than the OF method, and the MSTC method provides the most consistent results 

with the LVDT data. 

(2) Both overall indicators, i.e., NMSE and � , can reach the same conclusion in terms of 

distinguishing the advantages and disadvantages of different methods, and NMSE shows higher 

sensitivity. See the 59.95 FPS case, for example, � keeps larger than 0.99 with all methods while 

NMSE takes 0.992, 0.988, and 0.987 for MSTC-1, STC-1, and LK, respectively. 

(3) The measurement results obtained with the actual frame rate (59.96 FPS) are more accurate than 

the ones with the theoretical frame rate (60 FPS). The inconsistency of the frame rate of 

smartphones between theory and practice has been noticed by Yoon [14], and our study further 

shows that corresponding errors in displacement measurement even deteriorate in a frequency-

varying vibration practice. In the theoretical FPS case, significant shifting happens during the 

whole time history and exaggerates in later-stage vibration due to error accumulation. 

Variations of overall indicators also demonstrate the influence. See the MSTC-1 measurement, 

for example, due to inadequate choice of 60 FPS instead of 59.96 FPS, NMSE drops from 0.992 to 

0.953 and � from 0.996 to 0.977. 

(4) The maximum and minimum values from the sensor vary with different frame rates due to the 

down-sampled operation. The corresponding deviations, although not wholly accurate, can still 

provide an estimation of the local accuracy. For the MSTC method, deviation results are 

relatively small, e.g., less than 10%, implying a good accuracy of the proposed method. 
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Table 3. Evaluation of displacement results without interference factors. 

 

59.96 FPS 

NMSE � 

Maximum Displacement Minimum Displacement 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

MSTC-1 0.992 0.996 5.768 

5.464 

5.55% —5.405 

—5.495 

—1.65% 

MSTC-2 0.992 0.996 5.381 —1.52% —5.961 8.48% 

STC-1 0.988 0.995 5.379 —1.56% —6.071 10.48% 

STC-2 0.991 0.996 5.649 3.37% —5.994 9.09% 

LK 0.987 0.994 5.460 —0.09% —6.266 14.03% 

 60FPS 

MSTC-1 0.953 0.977 5.768 

5.900 

—2.24% —5.405 

—5.938 

—8.98% 

MSTC-2 0.966 0.984 5.381 —8.79% —5.961 0.39% 

STC-1 0.948 0.975 5.379 —8.82% —6.071 2.24% 

STC-2 0.960 0.983 5.649 —4.26% —5.994 0.95% 

LK 0.935 0.969 5.460 —7.46% —6.266 5.53% 

 

Figure 14. Displacement time history and local amplification in Scenario I (59.96 FPS). 

 

Figure 15. Displacement time history and local amplification in Scenario I (60 FPS). 
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7.2.2. Scenario II 

From Figures 16–17 and Table 4, it can be seen that, 

(1) When the illumination undergoes a sudden change during the vibration, the displacement time 

history obtained with the OF method varies abruptly, indicating failure of the target tracking. 

However, results with the STC-type methods still keep stable and consistent with the LVDT data 

in shape and trend. Besides, again, the MSTC method gives the best performance. 

(2) Both overall indicators can lead to the same conclusion in comparing different methods’ 

performance under illumination variation, and, again, NMSE is more sensitive. See the 59.95 FPS 

case, for example, � keeps larger than 0.96 with all methods, while NMSE takes 0.977, 0.957, 

and 0.778 for MSTC-1, STC-1, and LK, respectively. Besides, when compared with Scenario I, 

NMSE drops from 0.987 to 0.778 for LK, from 0.988 to 0.957 for STC-1, and from 0.992 to 0.977 

for MSTC-1. The minimum loss of NMSE indicates the best performance of the MSTC method 

in resisting the interference of illumination variation. 

(3) A significant influence on the measurement results similar to Scenario I still holds for the frame 

rate of the smartphone. See the MSTC-1 measurement, for example, due to an inadequate choice 

of 60 FPS instead of 59.96 FPS, NMSE drops from 0.977 to 0.885 and � from 0.989 to 0.945. 

(4) The MSTC method and the STC method perform almost the same in measuring target 2, while 

the former one shows better performance in measuring target 1. See also in Table 4, NMSE takes 

0.988 and 0.987 for MSTC-2 and STC-2, respectively, while 0.977 and 0.957 for MSTC-1 and STC-

1, respectively. As shown in Figure 13, the proportion of pixels in the target-1 context with 

similar motion tendency to the target center is much smaller than that in the target-2 one, 

implying fewer auxiliary information and more interference one for target 1. It results in a more 

difficult tracking of target 1 under an interference environment. At the same time, the MSTC 

method can achieve better indices than the STC method by extracting the favorable and 

unfavorable information from the context and correspondingly strengthening or weakening its 

influence during the target tracking. 

(5) The most significant deviations happen to the OF method. Moreover, deviations of the MSTC 

method are smaller than those of the STC method, in which the target 2 shows better 

performance than the target 1. 

Table 4. Evaluation of displacement results with illumination variation. 

 

59.96 FPS 

NMSE � 

Maximum Displacement Minimum Displacement 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

MSTC-1 0.977 0.989 5.277 

5.758 

—8.35% —6.000 

—5.780 

3.81% 

MSTC-2 0.988 0.994 5.555 —3.53% —5.620 —2.76% 

STC-1 0.957 0.988 4.821 —16.27% —6.600 14.19% 

STC-2 0.987 0.994 5.524 —4.06% —6.000 3.81% 

LK 0.778 0.968 6.948 20.67% —4.569 —20.95% 

 60 FPS 

MSTC-1 0.885 0.945 5.277 

5.679 

—7.09% —6.000 

—5.550 

8.12% 

MSTC-2 0.903 0.953 5.555 —2.20% —5.620 1.27% 

STC-1 0.865 0.941 4.821 —15.12% —6.600 18.93% 

STC-2 0.901 0.952 5.524 —2.73% —6.000 8.12% 

LK 0.652 0.908 6.948 22.33% —4.569 —17.67% 
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Figure 16. Displacement time history and local amplification in Scenario II (59.96 FPS). 

 

Figure 17. Displacement time history and local amplification in Scenario II (60 FPS). 

7.2.3. Scenario III 

From Figures 18–19 and Table 5, it can be seen that, 

(1) When the fog continuously interferes with the shooting environment during the vibration, the 

displacement time history obtained with the OF method significantly shifts from the accurate 

one, indicating apparent failure of the target tracking. However, the same excellent performance 

of the MSTC method and the STC method, as in Scenario II, still holds. 

(2) Both overall indicators can lead to the same conclusion in comparing different methods’ 

performance under fog interference, and, again, NMSE is more sensitive. See the 59.95 FPS case, 

for example, � keeps larger than 0.91 with all methods while NMSE takes 0.969, 0.948, and 0.501 

for MSTC-1, STC-1, and LK, respectively. Besides, when compared with Scenario I, NMSE drops 

from 0.987 to 0.501 for LK, from 0.988 to 0.948 for STC-1, and from 0.992 to 0.969 for MSTC-1. 

The minimum loss of NMSE indicates the best performance of the MSTC method in resisting the 

fog interference. 

(3) A significant influence on the measurement results similar to Scenarios I and II still holds for the 

frame rate of the smartphone. See the MSTC-1 measurement, for example, due to an inadequate 

choice of 60 FPS instead of 59.96 FPS, NMSE drops from 0.969 to 0.872 and � from 0.986 to 0.939. 

(4) The MSTC method, again, shows similar performance as the STC method in measuring target 2 

and better performance in measuring target 1, indicating a better anti-interference ability of the 
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proposed method. See also in Table 5, NMSE takes 0.972 and 0.971 for MSTC-2 and STC-2, 

respectively, while 0.969 and 0.948 for MSTC-1 and STC-1, respectively. 

(5) The most significant deviations happen to the OF method. Moreover, deviations of the MSTC 

method are smaller than those of the STC method. 

Table 5. Evaluation of displacement monitoring results with fog interference. 

 

59.96 FPS 

NMSE � 

Maximum Displacement Minimum Displacement 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

MSTC-1 0.969 0.986 5.602 

5.453 

2.75% —6.050 

—5.528 

9.45% 

MSTC-2 0.972 0.990 5.745 5.36% —6.000 8.54% 

STC-1 0.948 0.984 5.667 3.93% —6.800 23.01% 

STC-2 0.971 0.988 5.787 6.13% —6.150 11.26% 

LK 0.501 0.917 10.129 85.76% —4.562 —17.48% 

 60 FPS 

MSTC-1 0.872 0.939 5.602 

5.515 

1.58% —6.150 

—5.557 

10.66% 

MSTC-2 0.888 0.945 5.745 4.17% —6.000 7.96% 

STC-1 0.850 0.937 5.667 2.75% —6.800 22.36% 

STC-2 0.882 0.944 5.787 4.93% —6.150 10.66% 

LK 0.413 0.875 10.129 83.65% —4.562 —17.92% 

 

Figure 18. Displacement time history and local amplification in Scenario III (59.96 FPS). 
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Figure 19. Displacement time history and local amplification in Scenario III (60 FPS). 

7.2.4. Scenario IV 

From Figures 20–22 and Table 6, it can be seen that, 

(1) When camera jitter happens during the vibration, the OF method fails to find and match the 

critical feature points in the blurred images. The STC method may significantly mistrack the 

target point when subjected to substantial camera jitter, as shown in STC-1_0 after the second 

tapping. The MSTC method, however, can deliver excellent performance in tracking all three 

target points under all camera-jitter circumstances. 

(2) Both overall indicators can lead to the same conclusion in comparing different methods’ 

performance under camera jitter, and, again, NMSE is more sensitive. Due to the failure of 

tracking feature points after camera jitter, the OF method produces no values for both indicators. 

Moreover, for the STC method, the target mistracking caused by substantial camera jitter even 

leads to a negative value of NMSE, much smaller than the positive �. Besides, when compared 

with Scenario I, NMSE varies from 0.987 to no value for LK, from 0.988 to negative value for 

STC-1, and from 0.992 to 0.925 for MSTC-1. The minimum loss of NMSE indicates the best 

performance of the MSTC method in resisting the interference of camera jitter. 

(3) A significant influence on the measurement results similar to Scenarios I-III still holds for the 

frame rate of the smartphone. See the MSTC-1 measurement, for example, due to inadequate 

choice of 60 FPS instead of 59.96 FPS, NMSE drops from 0.925 to 0.894 and � from 0.964 to 0.948. 

(4) The MSTC method, as compared to the STC method, shows slightly better performance in 

measuring target 2 and much better performance in measuring target 1, proving once again a 

better anti-interference ability of the proposed method. See also in Table 6, NMSE takes 0.933 

and 0.926 for MSTC-2 and STC-2, respectively, while 0.925 and negative value for MSTC-1 and 

STC-1, respectively. 

(5) Deviations of the MSTC method are smaller than those of the STC method, in which the target 

2 shows better performance than the target 1. 
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Table 6. Evaluation of displacement monitoring results with camera jitter. 

 

59.96 FPS 

NMSE � 

Maximum Displacement Minimum Displacement 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

Vision 

(mm) 

Sensor 

(mm) 
Deviation 

MSTC-1 0.925 0.964 5.286 

5.868 

—9.92% —5.643 

—5.860 

—3.71% 

MSTC-2 0.933 0.967 5.514 —6.03% —5.808 —0.89% 

STC-1 
—

29.227 
0.156 29.796 407.79% 

—

19.659 
235.47% 

STC-2 0.926 0.965 5.400 —7.97% —6.081 3.77% 

LK / / / / / / 

 60 FPS 

MSTC-1 0.894 0.948 5.186 

5.840 

—11.20% —5.643 

—5.742 

—1.73% 

MSTC-2 0.900 0.950 5.514 —5.58% —5.808 1.15% 

STC-1 
—

36.539 
0.142 29.796 410.22% 

—

19.659 
242.36% 

STC-2 0.887 0.945 5.400 —7.53% —6.081 5.90% 

LK / / / / / / 
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Figure 20. Overall measurement time history and local amplification in Scenario IV. 

 

Figure 21. Displacement time history and local amplification in Scenario IV (59.96 FPS). 
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Figure 22. Displacement time history and local amplification in Scenario IV (60 FPS). 

7.3. Computation Efficiency 

After the iPhone 7 recorded the videos of sphere vibration in four scenarios, we implemented 

all the above displacement identification with Matlab codes on a laptop computer, which is of 

moderate hardware configuration, e.g., Intel Core i5-4200H 2.8GHz and 4G memory. 

During the identification, each 15-s vibration video with 60 FPS contains 900 frame images to be 

analyzed, among which the first one is shown in Figure 13. The time consumed for the identification 

with different vision methods in four scenarios is listed in Table 7. 

It can be seen from Table 7 that the MSTC method takes 0.14s~0.18s to identify the displacement 

of one target between two adjacent frame images. Comparatively, the STC method and the OF 

method take 0.12~0.16 s and 0.08~0.10 s, respectively. Despite a slight increment, i.e., 0.02 s introduced 

by additional calculation of the context influence matrix, the MSTC method is still applicable for the 

design of online measurement via its high efficiency, similarly to the STC method that has seen online 

tracking practice. 

Table 7. Time consumption for displacement identification. 

  Total Number 

of Targets 

Total Number of 

Frame Images 

Total 

Time Cost 

(s) 

Average Time Cost 

(s/Target/Frame) 

 MSTC 2 900 258 0.143 

Scenario 

I 

STC 2 900 230 0.128 

 LK 1 900 79 0.088 

 MSTC 2 900 262 0.146 

Scenario 

II 

STC 2 900 232 0.129 

 LK 1 900 84 0.093 

 MSTC 2 900 268 0.149 

Scenario 

III 

STC 2 900 235 0.131 

 LK 1 900 85 0.094 

 MSTC 3 900 472 0.175 

Scenario 

IV 

STC 3 900 416 0.154 

 LK 1 / / / 
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7.4. Summary 

To sum up, several conclusions can be drawn from all the above observations, 

(1) In the vision-based measurement of engineering vibration, the actual frame rate, instead of the 

theoretical one of the camera, is crucial to achieving a high-accuracy result of displacement time 

history. 

(2) To evaluate the performance of vision methods, the indicator, NMSE, is more critical than � 

when interference is involved. 

(3) In an interference environment, the OF method is prone to mismatch the feature points and lead 

to data deviated or lost. The conventional STC method is sensitive to target selection and can 

effectively track those targets having a large proportion of pixels in the context with motion 

tendency similar to the target center. The proposed MSTC method, however, can ease the 

sensitivity to target selection through in-depth processing of the information in the context and 

finally enhance the robustness of the target tracking. 

(4) The OF method has the highest computation efficiency in measuring target displacement, 

followed by the STC method and the MSTC method. Although the MSTC method requires 

nearly 10% more time than the STC method to measure displacement, the average time cost 

consumed for tracking one target between adjacent frame images is far less than 1 s, favoring its 

potential application in online measurement. 

8. Further Discussion 

In the present study, we develop an improved vision method for structural displacement 

measurement. This method uses a smartphone to perform multi-point displacement measurements 

in environments with illumination variation, fog interference, and camera jitter. Despite the high-

accuracy results, there still exist two issues to be addressed: 

(1) Temporal aliasing: Compared with professional high-speed cameras, smartphone cameras have 

a lower sampling frequency, i.e., frame rate, for video shooting, mostly 30/60 FPS, which is 

vulnerable to time aliasing. According to the Nyquist sampling theorem, the sampling frequency 

of measurement should be at least two times the highest frequency of response to avoid high-

frequency aliasing information. In wired or wireless sensor systems, anti-aliasing filters are 

usually used to eliminate aliasing effects. In vision systems, however, temporal aliasing cannot 

be removed because the image has already been aliased when it is taken. Therefore, when the 

Nyquist sampling theorem cannot be satisfied with the smartphone, a professional camera with 

a higher frame rate has to be applied for accurate measurement. 

(2) Generalized camera motion: In the experiment, the present method is verified effective under 

camera jitter, and target displacements can be obtained through directly subtracting the 

measurement of a non-moving reference point from the overall measurements. In engineering 

practice, however, the camera motion can be more generalized and complex, such as that of a 

UAV-carried camera, and reference points cannot fully provide 6-DOF (degrees-of-freedom) 

camera motions. In this case, to measure the dynamic displacements, it is necessary to introduce 

new technologies such as dual-camera based motion compensation [28] to exclude the influence 

of camera motion. 

9. Conclusions 

In this paper, we studied the application of computer vision technology in the field of structural 

vibration. A multi-target monitoring method based on a motion-enhanced spatio-temporal context 

(MSTC) algorithm developed herein was proposed, which realizes the synchronous measurement of 

multi-point dynamic displacement in an interference environment by using smartphone-recording 

video. A series of sine-sweep vibration experiments considering different interference factors were 

carried out to investigate the performance of the proposed method. Test results show good 

consistency in different scenarios, indicating that the proposed method preserves good adaptability 
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to complex backgrounds and strong resistance to illumination variation, fog interference, and camera 

jitter. Besides, the proposed method acts insensitive in selecting the target region and efficient in 

tracking targets, which are beneficial to potential engineering applications. 

Although the designed experiments have involved several interference factors, it is no doubt 

that, for comprehensive performance validation, more investigations on other objects of various 

profiles and textures are still required, as well as field tests on real vibrating structures. These ongoing 

validations and further studies on more complex environment changes, such as occlusion, strong 

wind, and rain, are crucial to extending the vision-related applications. 
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