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Abstract: Real-time human movement inertial measurement unit (IMU) signals are central to many
emerging medical and technological applications, yet few techniques have been proposed to process
and represent this information modality in an efficient manner. In this paper, we explore methods
for the lossless compression of human movement IMU data and compute compression ratios as
compared with traditional representation formats on a public corpus of human movement IMU
signals for walking, running, sitting, standing, and biking human movement activities. Delta coding
was the highest performing compression method which compressed walking, running, and biking
data by a factor of 10 and compressed sitting and standing data by a factor of 18 relative to the original
CSV formats. Furthermore, delta encoding was shown to approach the a posteriori optimal linear
compression level. All methods were implemented and released as open source C code using fixed
point computation which can be integrated into a variety of computational platforms. These results
could serve to inform and enable human movement data compression in a variety of emerging
medical and technological applications.
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1. Introduction

Many emerging technological and medical applications rely on real-time human movement
inertial measurement unit (IMU) signals as crucial components, including virtual reality [1],
autonomous navigation [2], Internet of Things [3], activity monitoring [4,5], physical therapy [6,7],
and human performance science [8,9] among others. These applications have been enabled by the
recent explosion of inexpensive inertial-based sensors (IMUs) along with the increase in mobile
computational power to process these data in real time. The human movement IMU signal represents
a nascent field of multimedia processing which is starkly under-developed compared to the existing
maturity of text, audio, and visual-type signal processing methods. This is evidenced by the lack of
standards and tools for handling movement data. To enable these emerging applications, efficient and
standard methods for representing and processing movement signals are needed. Compression can be
a crucial component of this missing toolset, as it improves situations of limited transmission bandwidth
and limited storage space.

Some human movement measurement applications are likely to encounter technical limitations
related to bandwidth and storage space. A back of the envelope calculation for measuring full
body kinematics of a single subject at 500 Hz [10] × 15 segments × 9 axes × 32 bits = 2.16 Mbps.
This is approximately the same bandwidth as streaming high definition video on modern consumer
platforms [11]. It also exceeds the throughput of common wireless sensor network technologies,
such as Bluetooth and Zigbee. A physical therapist wanting to monitor the kinematics of their patients
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around the clock could find themselves producing terabytes of information every day, well beyond
what is economically feasible to store.

Compression seeks to represent information in a space efficient manner. This is generally done
by exploiting spatio-temporal redundancy, correlation, and smoothness [12]. A lossless compression
algorithm can be divided into two components: modeling and coding/decoding (Figure 1) [13].
The model incorporates prior understanding of the signal class to be compressed. It estimates a
probability mass function which represents the likelihood of occurrence for each possible input symbol.
A dynamic model is one which changes its probability estimates after new input symbols are received.
The model is sometimes described as a transformation, which refers to some reversible operation which
changes the signal into a lower entropy or easier to predict form. The coder uses the probability mass
function produced by the model to compute a unique variable length code for each possible symbol.
Short codes are assigned to likely symbols, and long codes are assigned to unlikely symbols such
that the average length of the compressed signal is minimized. The decompressor uses an identical
model to provide the same probability mass function to the decoder, which is used to revert each code
back into the original symbol. If the model is dynamic, this output is used to update the model for
future predictions.
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Figure 1. Generalized compression and decompression. Modeling and coding are independent.
The model is mathematically identical for compression and decompression. The coder and decoder
perform inverse operations parameterized by the probability distribution.

The coding component is well understood. The theoretical limit of coding performance on a
signal with a known probability distribution is given by Shannon’s noiseless coding theorem [14] as
first-order entropy:

H = −∑
i

Pilog2Pi

While Shannon developed several efficient coding techniques, the first optimal technique was
developed in 1952 by Huffman [15]. Huffman’s technique was proven optimal, but it made the
assumption that output code must be an integer number of bits, which prohibited it from reaching
Shannon’s limit under certain conditions. Arithmetic coding was developed to address this deficiency,
showing better performance, particularly in high compression situations [16]. Another technique,
Golomb coding and the Rice special case, has been widely adopted in industry because of the efficient
binary implementation, and the ability to encode online without needing a preliminary pass through
the data to compute the probability distribution [17,18]. Due to the many efficient and optimal
techniques available, some consider coding to be a solved problem [19].

Modeling, on the other hand, must be revisited for each signal class and application. Due to the
pigeon hole principal, no algorithm can compress every possible input [20]. Each model must make
an implicit decision about the class and scope of signals that will be compressed. A model which
accurately predicts signals from one class may not predict signals from a different class. To the authors’
knowledge, no previous work has directly addressed the modeling problem for human movement
IMU signals.

This study thus explores predictive models applied to the human movement signal as quantified
by 6-axis IMUs. Proposed models are restricted to those that are real-time, node independent,
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and lossless. A corpus of representative human movement IMU signals was selected to demonstrate
the compression performance of each model. To put the performance in context, several traditional
representation formats were selected. The compression performances of these traditional formats
provide a floor for the performance of a useful compression method. Finally, the optimal linear
predictive models were computed numerically while utilizing full knowledge of the signals in the
corpus. The compression performances of these optimal models provide an upper boundary for the
performance of our proposed methods. We hypothesized that compression ratios would be comparable
to those achieved in lossless audio compression. We also hypothesized that the best performing codec
would utilize some cross axis correlation and be informed by physics based models.

2. Methods

This section details the seven proposed compression methods, and then explains the three
traditional methods and two optimal methods which are used to provide context as lower and upper
bounds respectively. Next, the corpus of signals used for performance assessment is introduced,
followed by implementation details and data analysis methodology.

With the exception of the traditional data representation formats, all compression methods in
this work are presented as predictive autoregressive linear models. The predictive model estimates
the current sample given past input. The difference between the model prediction and observed
sample is referred to as the residual signal. All compression methods encode this residual signal using
Golomb–Rice coding to produce the final compressed data. Golomb–Rice coding is computationally
efficient on binary base computational platforms, and has been shown to approach optimal coding if
the input signal is geometrically distributed [17,18].

2.1. Proposed Compression Methods

Several restrictions are placed on the methods considered in this study. First, a viable algorithm
must be causal. This is a basic requirement for an algorithm to be implemented in a real-time
application. We also chose to only consider algorithms with zero filter delay. Since our sensors operate
at a relatively low sampling frequency of 60 Hz, a delay of one sample would be 16 ms, which is
significant for modern information networks.

All algorithms considered in this paper are node independent. The model for each signal considers
at most the information from the six co-located signals, including its own past input. While it is possible
that utilizing inter-node correlation could produce better compression ratios, especially if a human
biomechanics model were introduced, such an approach would limit the usefulness of said algorithm
to a specific placement of nodes on the body.

Only lossless compression methods are considered in this study. The reason for this is that
designing a lossy compression method requires a well-defined distortion criterion [12]. This criterion
is a value judgment about what type and magnitude of distortion is acceptable for the compressed
signal. Defining a distortion criterion for audio and visual signals, while not trivial, is certainly
tractable, as there is generally a single, well-defined application of the signals, namely, consumption
by the human ear and eye [21,22]. Other signal classes such as text and binary data have sensitive
applications that cannot tolerate any error in the signal, and thus lossy compression methods are not
considered. The human movement IMU signal on the other hand has an array of applications, each of
which may have different requirements for acceptable and unacceptable distortions of the movement
signal. This is problematic, as a single distortion criterion will likely not be ideal for all applications.
Without choosing a criteria, discarding of any portion of information is of course arbitrary.

In practice, the implementation of a strictly lossless algorithm turns out to be non-trivial. This is
because the standard for floating point computation IEEE 754 [23] is not sufficiently stringent to
guarantee identical results on various implementations [24,25]. For example, rounding is permitted
to differ slightly between two computation platforms, or the same computation platform at two
points in time. Additionally, a compiler or interpreter which processes the source code for an
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algorithm implementation will often utilize mathematical properties such as commutativity to optimize
computation. This may result in different machines performing floating point operations in a different
order, which could lead to differing results even if each rounding operation was well defined by IEEE
754. To avoid both of these scenarios and guarantee identical results across diverse computational
platforms, all algorithms in this study were implemented using integer operations and fixed-point
16.16 precision.

The following lossless compression methods are proposed in this study:

• Delta encoding encodes the difference between each successive sample. The current sample
is predicted to be equivalent to the previous sample x̂[n] = x[n − 1] so that the residual
e[n] = x[n]− x[n− 1] is encoded. Despite the name, delta encoding is discussed in this context
as a modeling technique which predicts that a signal is constant. If a signal varies slowly with
time, the residual will be close to zero and readily compressed with coding techniques such as
Golomb–Rice coding. This method can be considered 0-order polynomial regression.

• Linear extrapolation: The current sample is estimated as a linear extrapolation from previous
samples—also known as first-order polynomial regression. Linear extrapolation from a regression
of the past two samples results in the estimator: x̂[n] = 2x[n− 1]− 1x[n− 2].

• 2nd to 5th order polynomial regression: These methods assume that the signal is a polynomial
which is estimated from a least squares regression of past samples. If the sampling period is fixed,
the polynomial coefficients b may be found via the problem:

minimize
b

p

∑
i=1

(
x[n− i]−

d

∑
j=0

bj(i− p− 1)d−j

)2

where d is the polynomial order and p > d is the number of past samples included in the regression
or the order of the resulting predictive model. This polynomial is then extended to get a prediction
of the current sample.

x̂[n] =
d

∑
i=0

bd−ini

Without loss of generality, we can take n = 0 and rewrite our optimization problem as

minimize
b

‖x− Cb‖2
2

where C ∈ Rp×d+1 is composed of cij = (i − p − 1)d−j. This has the well known solution
b = (CTC)−1CTx. Our prediction for the current sample can now be written as

x̂[0] = bd = ed(C
TC)−1CTx

where ed is the standard basis vector. Since C is independent of our signal, the vector of filter
coefficients ed(CTC)−1CT can be precomputed for a given polynomial order d and filter length p.
Surprisingly, this allows us to compute high order polynomial extrapolations as a simple linear
combination of past samples or an autoregressive model of order p.

• Spline extrapolation: A spline is the minimum curvature piecewise polynomial which connects
a set of points. It is commonly used for interpolation, namely, computer graphics smoothing.
This method was selected as splines are known to avoid Runge’s phenomenon, which is witnessed
when extrapolating higher order polynomials. Results from the cubic spline with natural boundary
conditions are presented in this paper. The cubic spline is a piecewise cubic function:

fi(n) = ain3 + bin2 + cin + di n ∈ (ni, ni+1)
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which is restricted as smooth

d
dn

fi(ni+1) =
d

dn
fi+1(ni+1)

and passes through the set of p past samples.

f (n) = x[n]

By choosing natural boundary conditions,

d2

dn2 f1(n1) =
d2

dn2 fp−1(np) = 0

we can extrapolate the spline to predict the next sample.

x̂[np+1] = fp−1[np+1]

Like polynomial regression, spline extrapolation is also an autoregressive linear model.

2.2. Traditional Representation Formats

To provide a lower bound for the useful performance of compression methods, several traditional
data representation formats were chosen for reference. In this study, the baseline data format (exhibiting
a compression ratio of one) is comma separated values (CSV), a simple text based format which is the
de facto standard for storing sensor information. The performance of each compression method was
assessed by computing the compression ratio (CR) relative to the CSV via the following formula:

CR =
size of CSV file

size of compressed file

In total, the following three traditional data representation formats were chosen to provide context
for our results:

• CSVL Text-based format considered the de facto standard. CSV files are ANSI encoded and
formatted to have a constant length sample format to eliminate a source of randomness in
our CR computation. Due to this decision, binary format will have the same CR regardless of
data properties.

• Binary: The optimal fixed size format. In our corpus, every sample is two bytes. This would be
the optimal compression if each sample were an IID random variable uniformly distributed across
the sample space.

• ZIP compression of CSV: ZIP is a general purpose file compression format integrated into all
major computer systems. ZIP was executed using the DEFLATE method [26] and a compression
level of 6.

2.3. Optimal Linear Compression

To complete the context for our proposed compression methods and provide an upper limit on
compression performance, we numerically computed the optimal linear predictive model for our data.
To do so, we formulated our model as an autoregressive process of order p and define the prediction
error or residual signal as:

e[n] = x[n]−
p

∑
k=1

akx[n− k] (1)
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where ak is the linear contribution of sample k in the past to our current prediction. Equation (1) can
expressed be in concise matrix notation as:

e = x− Xa

For our application, we are interested in the residual signal e which can be encoded into the
minimum number of bits. To compute this, we considered the effect of Golomb–Rice coding on
our residual signal. A Golomb–Rice encoding first splits each residual e[n] into a quotient and
remainder portion:

q[n] = b e[n]
2m c and r[n] = e[n]− q[n] ∗ 2m

b·c denotes the floor operation and m ∈ N0 is the Golomb–Rice order which is selected based
on signal statistics [27,28]. The remainder r[n] is truncated binary encoded at a fixed size of m bytes,
while the quotient q[n] is unary encoded, requiring q[n] + 1 bits. The size in bits of each Golomb–Rice
encoded element of the residual signal is thus:

m + b e[n]
2m c+ 1

If we relax our rounding operation, the size of each element can be approximated as a affine
function of e[n]. The total compressed size for a signal of length l has an approximate size:

l + lm + 2−m
l

∑
n=0

e[n]

Minimizing this value with l-1 normalization is equivalent to the optimization problem:

minimize
a

‖x− Xa‖1 + λ ‖a‖1 (2)

The key takeaway is that compression is proportional to the total absolute prediction error of the
model, and not the squared error. l-1 normalization is used since it encourages sparsity in the model.
Sparsity is desirable in this application, as it reduces the quantization error of the model coefficients
and reduces the fixed-point arithmetic error during execution. Since this problem is convex, it can
readily be solved with a variety of numerical solvers. For this study, Python bindings for the splitting
conic solver were used [29–31].

If problem (2) is solved considering past history of each stream, then the model for each axis of
accelerometer and gyroscope can be computed independently. This model will be referred to as the
optimal autoregressive model (AR). However, if we also take into account the past history of other
axes and sensors, then the model can account for any cross-correlation which may result from the
interrelated nature of rotation and orientation information. The residual signal (1) can be rewritten
using this expanded model for stream i as:

ei[n] = xi[n]−
s

∑
j=1

p

∑
k=1

ai,j,kxj[n− k]

where ai,j,k is now the linear contribution of the sample k in the past of stream j to our current
prediction of stream i. Solving problem (2) with this expanded system will be referred to as the
optimal multivariate autoregressive model (MVAR). Note that both AR and optimal MVAR models
are non-causal and expensive to compute, and are thus disqualified as a proposed method. Instead,
they serve as upper-limit reference points for the evaluation of proposed methods.
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2.4. Movement Data

The Human Gait Database (HuGaDB) [32] was selected as a corpus to meaningfully and repeatably
demonstrate the performances of various compression methods. HuGaDb is a public dataset of six-axis
IMU signals collected from six different body segments (right and left foot, right and left shank,
right and left thigh) of 18 healthy subjects performing various movement activities (including walking,
running, sitting, standing, and biking) sampled at 60 Hz (Figure 2). This database was selected because
it allows the comparison of compression methods for a variety of movement activities. Signals were
sampled as 16-bit signed integers. The authors of HuGaDB indicate in their online repository that
some of their collected data contain corrupted gyroscope signals. Such data have been excluded from
this study. The remaining data were separated by subject, movement activity, trial, and body segment,
to produce a total of 1626 separate test cases to compare the performances of proposed compression
methods. Each test case contained six time series signals.

0 50 100 150 200 250 300 350
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Bicy
cli

ng

Running
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Other

Data Corpus

Figure 2. Composition of data in the Human Gait Database. All dimensions of all sensors are counted,
i.e., one minute of subject testing generates 36 min of sensor data. “Other” activities consist of walking
up and downs stairs, standing up, sitting down, standing on an elevator, and sitting in a car.

2.5. Implementation

All compression methods in this study were implemented in the C programming language using
fixed-point 16.16 computation. The source code has been released at https://github.com/dchiasson/
kinetic_codec. The choice of programming language as well as the restriction to use integer arithmetic
allow this code to be incorporated into programs on a diverse array of computational platforms,
even those without any floating-point unit.

2.6. Data Analysis

Performance was quantified and compared via standardized methods for comparing classifiers
with multiple datasets [33]. To compare the CRs of our proposed compression methods, we used
the Friedman Test [34] which is a non-parametric test for significant differences between algorithm
performance and considers the ranks of each algorithm’s performance per test case. A non-parametric
test is necessary since our corpus does not meet the normal distribution assumption of many parametric
tests. This is demonstrated in Figure 3 by the significant separation of active and stationary movement
activities. If the null-hypothesis was rejected, we proceeded with the Nemenyi post-hoc test [35] to
determine which pairs of methods differ significantly. Instead of directly using compression ratios,
the Friedman and Nemenyi tests consider the ranks of compression performance, with one being
the best performing and seven being the worst performing for each test case. Statistical analysis of
performance is presented for proposed method results over the entire corpus.

Additionally, to determine if a proposed method had significantly different performances on
different classes of data the parametric ANOVA test was used [36]. A parametric test may be used
in this case since compression performance on each individual movement activity showed a near

https://github.com/dchiasson/kinetic_codec
https://github.com/dchiasson/kinetic_codec
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normal distribution. If the null-hypothesis was rejected, the Tukey HSD post-hoc test [37] was used to
determine which pairs of data classes experienced significantly different compression. This statistical
analysis is presented for the highest performing proposed method. The statistical level of significance
was set to p = 0.05.
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Figure 3. Distribution of compression ratio (original size/compressed size) of each movement activity
using delta encoding. Stationary movement activities experience greater compression than active
movement activities.

3. Results

All proposed compression methods outperformed all traditional methods in size efficiency for
every data class and nearly every test case (Figure 4). Delta encoding achieved the highest compression
of the proposed methods (CR = 12.75), and each higher degree polynomial performed progressively
worse; 5th degree polynomial was the worst performing (CR = 11.25). The spline method was not
found to be significantly different from linear extrapolation or 2nd degree polynomial regression
(p > 0.52). Significant differences were also not found between 3rd and 4th degree polynomials
(p = 0.25) or between 2nd and 3rd degree polynomials (p = 0.19). The CR of delta encoding
approached optimal AR and MVAR model compression for all data classes.

Stationary movement activities, such as sitting (CR = 17.87) and standing (CR = 18.69),
were compressed more than active movement activities, such as running (CR = 9.52), walking
(CR = 9.95), and biking (CR = 10.96). Significant differences were not found within the stationary
movement activity group (p = 0.90) or the active movement activity group (p > 0.13) (Figure 3).
Body segments did not show significant variation in CR (p > 0.05) (Figure 5).
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Activity Body Segment
Foot Shank Thigh

All Run Walk Bike Sit Stand R L R L R L
Traditional Formats

CSV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ZIP 3.97 3.26 3.06 3.09 6.07 6.18 3.99 4.10 3.95 3.98 3.98 3.93

Binary 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32 8.32

Proposed Methods
11.25 8.59 8.92 9.87 15.28 15.78 11.24 11.16 11.10 11.20 11.49 11.34

11.57 8.73 9.09 10.15 15.93 16.39 11.54 11.47 11.42 11.54 11.81 11.65

11.80 8.84 9.22 10.30 16.44 16.80 11.74 11.67 11.66 11.78 12.05 11.88

12.00 8.97 9.35 10.44 16.77 17.29 11.95 11.87 11.85 12.00 12.25 12.07

Spline 12.20 9.23 9.63 10.74 16.61 17.24 12.04 11.99 11.98 12.12 12.60 12.48

Linear 12.22 9.11 9.52 10.52 17.19 17.81 12.21 12.11 12.07 12.20 12.45 12.26

Delta 12.75 9.52 9.95 10.96 17.87 18.69 12.68 12.61 12.54 12.71 13.07 12.87

Optimal Methods
Optimal AR 12.73 9.54 9.93 11.12 17.87 18.76 12.61 12.55 12.48 12.68 13.12 12.92

Optimal MVAR 12.70 9.56 9.93 11.12 17.83 18.67 12.50 12.26 12.34 12.60 12.90 12.70

5th deg. poly.
4th deg. poly.
3rd deg. poly.
2nd deg. poly.

Figure 4. Compression ratios for all methods across movement activity and body segment. Groups of
data classes and methods without significantly different compression (p ≥ 0.05) are indicated by bars
below and to the right of the table respectively. Specifically, horizontal bars represent statistical analysis
of the delta compression method applied to each data class, while vertical bars represent statistical
analysis of each proposed method applied to all data.
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Figure 5. Distribution of compression ratio (original size/compressed size) of each body segment using
delta encoding. All body segments achieved similar compression.

4. Discussion

Results show that the proposed compression methods result in a significant compression as
compared with the traditional representation formats of CSV, ZIP, and binary. Delta encoding was the
best performing of the proposed compression methods. It achieved the highest average compression
(CR = 12.75) and achieved superior compression for nearly all test cases (Figure 6). This aligns
with other research often recommending delta encoding as a lossless compression model in other
domains [38,39]. Each increasing order of polynomial regression produced slightly worse compression
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(CR = 12.22, 12.00, 11.80, 11.57, 11.25). This is likely because higher degree polynomial predictors suffer
from poor white noise attenuation [40] causing an effect known as Runge’s phenomenon.

1234567

Delta
Linear
Spline

5th deg. poly.
4th deg. poly.
3rd deg. poly.
2nd deg. poly.

Figure 6. Mean performance ranking of proposed methods compared using the Nemenyi test. Groups
of methods that are not significantly different (at p = 0.05) are connected. Delta encoding being close
to one is due to outperforming all other techniques in nearly every test case. Spline on the other hand
was ranked third on average, but ranked higher or lower for some test cases.

In several test cases, delta encoding slightly exceeded the compression of the optimal reference
models. In theory, the optimal linear models should perform as well as or better than delta
encoding, since the delta encoding model exists within the domain of optimization problem (2).
The occasional inferior performances of the optimal linear models might have been due to quantization
error of the model coefficients and increased fixed point error from computational complexity.
This explanation is supported by the observation that the MVAR model, which has many more
coefficients, often underperforms relative to the AR model, while the opposite would be true in the
absence of numeric error. Investigation of the optimal models’ coefficients showed that they were
similar to those of delta encoding.

The compression level achieved on each movement activity varied significantly and separated
into two distinct groups. The first group–consisting of running, walking, and biking (active movement,
CR ≈ 10) achieved much less compression than the second group–sitting and standing (stationary
movement, CR ≈ 18) (Figure 3). This aligns with our expectations, as higher intensity of movement
will likely have more information content.

The MVAR optimal model and the AR optimal model achieved similar performances. This fails to
suggest a linear relationship between the various axes of accelerometer and gyroscope information and
fails to support our hypothesis. While we would expect a relationship between rotation, as measured
by the gyroscope, and orientation of the gravity vector, as measured by the accelerometer, this is not a
linear relationship and thus was not captured by the proposed models. This study does not preclude
the possibility of a non-linear model to successfully exploit such a relationship.

Limitations and Future Work

This study is limited by the sensing hardware used for data collection, the placement of sensors
on lower body segments, and the exploration of only linear models. The compression ratios presented
in this paper are intended to demonstrate the relative difference between compression methods and
may not be representative of the absolute CR experienced in other applications. There are many other
factors which can affect the compression ratio which were not explored in this paper. Namely, sensor
differences of precision, noise, bias, and sampling rate are expected to have a large impact on the CR
achieved. That being said, our corpus consisted of low-cost consumer grade IMUs at a low sampling
rate, and the authors would expect many applications to experience significantly higher compression
than presented here if higher sampling rates or higher quality sensors are used.

The corpus chosen for demonstrating performance in this work allowed us to explore the effect of
movement activity and body segment on compression. However, it could be improved for this purpose
by including diverse hardware and higher sampling rates which would be more representative of
applications. Signals from more body segments and magnetometer signals should also be included in
an ideal corpus.
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In future work, the proposed methods described in this paper could be improved to dynamically
detect the optimal Golomb coding order and to recover from dropped packets. Dynamic linear models
have shown promising results in similar applications [38], and non-linear models can also be explored.
The community would also benefit from a standardized format for representing IMU data, as well as
distortion criteria for the various applications of the human movement IMU signal. This would pave
the way for the development of lossy compression methods.

5. Conclusions

This work explored methods for the compression of human movement IMU signals. For the corpus
selected, delta encoding was found to achieve near-optimal linear compression, and outperformed
traditional methods for all movement activities and body segments. This suggests that delta encoding
can be used to reliably compress the IMU human movement signal in many situations. This result
could be used to significantly decrease the required transmission bandwidth and storage space required
for the implementation of medical and technological human movement applications without any loss
of quality.
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