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Abstract: Nowadays, sensor devices are developing fast. It is therefore critical, at a time when
the availability and recyclability of materials are, along with acceptability from the consumers,
among the most important criteria used by industrials before pushing a device to market, to review
the most recent advances related to functional electronic materials, substrates or packaging materials
with natural origins and/or presenting good recyclability. This review proposes, in the first section,
passive materials used as substrates, supporting matrixes or packaging, whether organic or inorganic,
then active materials such as conductors or semiconductors. The last section is dedicated to the
review of pertinent sensors and devices integrated in sensors, along with their fabrication methods.
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1. Introduction

Since the first small electronic appliances developed for the broad public in the late 1970s,
sales of electronic equipments have increased at a rate which was not expected even fifteen years
ago. After quartz watches in the 1970s and 1980s, portable personal computers in the 1990s and
the beginning of the 2000s, smartphones are certainly now the most widespread devices. This is
probably just the beginning of the invasion of our everyday life by smaller and smaller, smarter and
smarter devices linked by the Internet of Thing (IoT), to monitor our health, the contents of our fridges
and settings on our central heater at a distance, or to control our keyless doors. These appliances,
which sometimes look ineffective or useless in 2020, will probably be seen as essential in 2030. With this
exponential development comes an environmental problem, however, not only due to the possible
increase in energy demand in order to run all these devices, but also due to the accelerated obsolescence
of this equipment, causing a huge fast-growing demand for rare materials along with a no less huge
source of waste, which is becoming a serious pollution problem. See, for instance, Keedee et al. [1] for
an overview of these problems. In Europe, the 2018 objectives for small household devices, electronic
tools or even medical devices were 75% collection and 55% recycling (in terms of number of collected
objects, not in terms of weight content for each object) [2], which is dramatically poor but, considering
the way garbage is actually collected, cannot be much higher in practice. Several solutions are available
to better manage this waste: a more efficient collection of obsolete devices, a more efficient recycling,
which is different, a slower turn-over (which is highly improbable), less precious materials in each
device or the replacement of these actual precious materials (precious metals, rare earth, etc.) by
natural or at least renewable materials, possibly biodegradable.
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Bauer et al. [3] published, in 2014, a short perspective article about disposable electronics where
they gave their vision of the future of such devices, with a focus not only on organic or natural materials
but also on transient metals and their oxides, particularly pertinent for making dissolvable batteries,
supercapacitors, or simply conductive tracks. One of the strongest conclusions of these authors is
that the IoT will not really develop before technical solutions are found concerning disposability.
Mühl et al., in the same year [4], even developed the opinion that such degradable or biodegradable
devices possibly never emerge commercially and remain as objects of curiosity in labs (they focused on
bio-organic electronics and bio-inspired organic materials only, however, which is obviously more
challenging than developing only (bio)degradable materials).

When focusing on materials rather than on devices, the reader can refer to several reviews
which have been published during the last decade. For example, in 2010, Irimia-Vladu et al. were
among the first to publish a review dealing with biodegradable materials for organic electronics [5],
which were not only based on traditional silicon technology but also inspired from materials from
nature. They published a second review in 2012 [6], dealing with biodegradable organic electronic
materials, including substrates, dielectrics, semiconductors, conductors, and encapsulation materials,
actualized in 2014 [7].

For this review, we considered publications whatever their number of citations, date of publication
or the impact factor of the journal in which they were published. If a few publications started to
deal with the biodegradability of sensors in the very beginning of the 2000s, it is a fact that a very
large majority of the works in this field were published in the last five years. We tried to cite these
works chronologicaly, in each respective section, to make evident the progress made. We organized
the review as follows: after giving the expected outcomes of the domain and some definitions,
the first section is dedicated to materials used as substrates, supporting matrixes or packaging
(i.e., protective layers deposited directly on a component), classified as inorganic, organic or hybrid.
Then, active materials (semiconductors, conductors, dielectric, etc.) are discussed and classified
similarly. Then, without distinction between substrates, passive or active materials, some pertinent
sensors and devices constituting sensors are reviewed. Biofuel cells used as sensors or utilized in power
sensors are also discussed. Some fabrications methods generally utilized for making biodegradable
or bioresorbable sensors are also reviewed. Recycling methods and green synthesis are occasionaly
introduced but not developed here; to go further, the reader can, for example, refer to the review of
Ponnamma et al. [8], published in 2019, which dealt with eco-friendly synthesized polymer materials.

2. Discussion

In this first section, technical terms will be defined and the expected outcomes of the
domain exposed.

2.1. Expected Outcomes

2.1.1. Definitions

Let us consider the different kinds of sensor which will probably invade our everyday life within
the coming years, and which will need to have a limited ecological impact and be efficiently recycled.
They are all individual constituents of common electronics, i.e., conductive tracks, resistors, capacitors,
transistors, inductors and antennas, but also the batteries, the substrates used to place these elements
and the packaging materials used to isolate and protect these elements. Package, substrate and
electronic elements should be all degradable or, at least, designed to be easily separable during the
recycling process. For the (bio)chemical sensors, the active sensing layer is also expected to be made of
recyclable or degradable individual elements: nanomaterials, catalysts, membranes, etc. Materials will
be discussed in Section 2.2 and Section 2.3 of this review. Their application in active elements is
expected to be used in physical sensors (which already benefit from significant advances in the matter
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of degradability) such as pressure, strain, deformation, temperature, humidity, breath, heartbeat,
and chemical sensors, which are much less developed for this purpose, as discussed in Section 2.4.

Before going further, it is necessary to define some terms, such as “renewable” and “biodegradable”.
On the one hand, a renewable material is a material which will, by natural processes, be replaced in
nature after being consumed. This implies that the replacement process occurs at a reasonably fast
rate compared to that of its consumption. On the other hand, a degradable material is something
which will eventually break down to its basic components under defined physico-chemical conditions
such as temperature, pressure, pH and, if biodegradable, upon the presence of microorganisms.
Ideally, the basic degradation products are not toxic; however, this is not obvious and not general,
and some materials degrade into harmful sub-products. A (bio)degradable material is expected to
break down in a relatively short period of time, even if that particular (but important) parameter is
often not explicitly given. This is particularly true for some polymers, for which (bio)degradation
sometimes needs harsh conditions. For example, polylactic acid (PLA), which is a popular polymer
routinely used in 3D printers and currently described as biodegradable, only degrades over 60 ◦C
and in a humidity-saturated environment. In other words, if left behind in nature, it will not degrade.
True degradability is therefore a point of vigilance. Among truly biodegradable materials, one finds
paper and all wood derivatives (providing that they have not been blended with non-biodegradable
materials and pre-treated with toxic chemicals, which is the common case), easily oxidizable metals or
carbon derivatives, which are reviewed in detail in Section 2.2 and Section 2.3.

Besides the need for sustainable electronics, which implies recyclability and/or biodegradability,
there are also bioresorbable materials. The two should not be confused, in the sense that bioresorbable
materials are expected to be fully degraded (or dissolved) in vivo, without any toxic degradation
product and under mild conditions (neutral pH, 37 ◦C, ambient pressure). In this article, bioresorbable
materials and sensors will not be reviewed. To bioresorbable implanted electronics, more severe
specifications should be applied, because materials composing a bioresorbable component must
produce biocompatible degradation byproducts that can be rapidly metabolised. For more details on
bioresorbable devices, the reader may refer to the review by La Mattina et al., published in 2020 [9].

Table 1 summarizes the various acronyms used in this review.

Table 1. Glossary of acronyms used in this review, sorted by alphabetical order.

Acronyms Definitions Acronyms Definitions

AFM Atomic Force Microscopy RIE Reactive-Ion Etching
BFC Biofuel Cell PBS Phosphate Buffer Saline
CCR Carbon Composition Resistance PCB Printed Circuit Board

CMOS Complementary Metal Oxide Semiconductor PDMS Poly(DimethylSiloxane)
DNTT DiNaphtho[2,3-b:2′,3′-f]Thieno[3,2-b]Thiophene PEDOT Poly(3,4-ethylenedioxythiophene)

DPPDTT
Poly(3,6-di (2-thien-5-yl)-2,5-di
(2-octyldodecyl)-Pyrrolo [3,4-c]

Pyrrole-1,4-Dione)Thieno [3,2-b] Thiophene)
PECVD Plasma-Enhanced Chemical Vapor Deposition

EDLC Electrochemical Double Layer Capacitor P3HT Poly(3-hexylthiophene)
EGT Electrolyte-Gated Transistor PI Poly(imide)
FET Field-Effect Transistor PMMA Poly(MethylMethAcrylate)
HBT Heterojunction Bipolar Transistors PSS Poly(styrene sulfonate)
IoT Internet of Things PTCDI-C8 N,N′-Dioctyl-3,4,9,10-perylenedicarboximide

LED Light Emitting Diode PTFE PolyTetraFluoroEthylene
MOSFET Metal Oxide Silicon Field-Effect Transistor RRC Relative Resistance Changes

NTA NanoTube Array SEM Scanning Electron Microscopy
NTC Negative Temperature Coefficient TCR Temperature Coefficient Resistance
OFET Organic Field-Effect Transistor

2.1.2. Outcomes

Materials

Implanted bioresorbable electronics are expected to work in physiological conditions for a given
amount of time only, and then be eliminated without the need for surgery. Before the sensor era,
this property was expected to result from passive prosthesis only, typically bioresorbable endovascular
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stents [10] or bone reconstruction scaffolds [11]. Today, the landscape has completely changed, with the
development of a variety of invasive sensors for personalized healthcare (glycaemia, hypoxia, pH,
cancer biomarkers, inflammations, sepsis, etc.) [12,13] for which the need for bioresorbability is also
coupled with the need to avoid an accumulation of electronic waste in the environment. To bypass
difficulties associated with the bioresorbtion of invasive sensors, one strategy is to make sensors
less invasive. This is the case of sensors in the form of dissolvable tattoos, which are developing
rapidly today [14], or other kinds of external, wearable sensors, a few examples of which will be given
throughout this review. See, for example, Hwang et al. in Section 2.2.2 and Kang et al. in Section 2.3.1.

For both biodegradable and bioresorbable materials, (bio)degradation is really effective when
materials are engineered specially for that purpose. For the particular case of bioresorbable materials,
it could even be advantageous to trigger the decay through changes in the physicochemical environment
(pH, temperature, light, etc.) of the device, for a kind of on demand dissolution. It is therefore important
to improve our knowledge of this matter. The reader can refer to the works from J.A. Rogers and
coworkers [15,16], in Section 2.2.2 and Section 2.3.1, for further details on the mechanisms implied.

Several families of materials are adapted for (bio)degradability purposes. Surprizingly, silicon offers
such properties when used as thin films. For example, Kang et al. [17] focused on Si-based nanomaterials
(e.g., silicon nanomembranes) which can degrade by hydrolysis in biofluids, and are therefore a new
class of bioresorbable electronics, which are already very competitive because they benefit from the
actual Si technology, conversely to alternatives such as organic semiconductors, which not only present
intrinsic lower performances but need completely renewed industrial equipment to be implemented
in commercial devices. However, degradable organic materials are more developed, particularly
polymers. For example, Cao and Uhrich published, in 2018, a review on biodegradable polymers,
natural or synthetic, for electronic applications [18]. Feig et al. [19] also dealt with polymers, with a
focus on materials which combine biodegradability with long-range conjugation, a feature which
has been relatively unexplored. The authors particularly stressed the fact that, besides degradability,
these materials must present at least the same (good) performances as actual materials to be truly
attractive, which is a significant barrier to their spreading. Methods to make better-performing
polymers were reviewed by Liu et al. [20], showing that polymers can be advantageously blended
with nanocomposites to gain electric conductivity or isolating properties. For example, nanofillers
can be incorporated into polymers to add a function while simultaneously maintaining effective
biodegradability. X. Li et al. also published, in 2020, a review focused on molecular engineering of
biopolymers for next-generation flexible and wearable bioelectronics [21]. Other natural materials
are obviously pertinent. Baumgartner et al. published, in 2018, a book chapter dealing with green
materials for electronics [22], focusing on paper, silk, or even more original materials such as Aloe
Vera derivatives. In the same spirit, Le Borgne et al. [23] published a work where all materials were
everyday life ones, from carbon soot to egg white, deposited using a family inkjet printer on basic
polyethylene terephthalate slides and paper sheets. As a proof-of-concept, they fabricated an RC filter
which demonstrated sufficiently good performances to make it suitable for HF reception applications.
Even more excitingly, we will see at the end of Section 2.4.4 that active sensors can be entirely made
from edible materials, without any use of synthetic products.

Table 2 below summarizes the various (bio)degradable materials used today in green electronics,
with their chemical structure. The reader is invited to refer to this table each time these names and
acronyms are cited in the core of the review.
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Table 2. Different kind of (bio)degradable materials currently used in green electronics.

Name Structure Full Name

Ag - Silver
AgNW - Silver NanoWire

Al - Aluminum

CHE
CKF
CNF
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Table 2. Cont.

Name Structure Full Name

PTMC
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Design and Fabrication Methods

Not only can materials be improved, so can the design. As the proverb says, “The electric
light bulb was not invented by improving the candle”. For example, Fu et al., in 2016 [24], focused
particularly on the design of electronic circuits, which may not be simply copied and pasted from
conventional Si technology, but are re-engineered, taking into consideration the particular properties
and performances of transient materials. Flexibility and thinness are features that are widely explored:
two properties which also fit with additive technologies such as printing, which are often better
adapted to the fabrication of electronic devices using solution-processable organic materials than the
traditional subtractive microtechnologies used today in the Si industry. See, for example, Tan et al. [25].

For a very recent landscape of bioresorbable and biodegradable materials and devices, the reader
can also refer to a review published in mid-2020 by W. Li et al. about green electronics [26], and two
recent book chapters from Kuzma et al. [27] and Cheng [28].

2.2. Materials for Substrates, Supporting Matrices and Packaging

Before citing active electronic materials, we will review the passive ones, i.e., the substrates
onto which circuits are lithographied or printed, matrices with which catalytic materials are blended,
or packages used to protect electronic devices from shocks, electrical contact or humidity.

2.2.1. Inorganic Materials

Among all possible materials, carbon is probably the first to be cited. Indeed, carbon materials
are renewable by essence, being obtained through green processes from biomass, e.g., pyrolysis or
hydrothermal carbonization [29,30], and can degrade or return to nature without further treatment,
except for finely divided nanomaterials. Macroporous carbonaceous materials [31], carbon fibers [32],
carbon dots [33,34], carbon nanotubes or nanohorns, etc., can be synthesized from green processes
then disposed of without the need for particular depollution treatments. Carbon materials are mainly
applied as a substrate or supporting matrix, in the form of simple carbon black, carbon felt or carbon
fiber, but also as supporting nanoparticles such as carbon nanotubes, graphene or reduced graphene
oxide sheets, etc. In the particular case of gas sensing, carbon materials can compete with more
well-established inorganic materials. For example, Kim and Lee (2016) [35] and Han et al. published two
reviews on the enhancement of gas sensors performances using carbon nanomaterials [36]. It appears
that such supporting materials are effective due to their high surface-to-volume ratio. For the same
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reason, carbon materials were also exemplified as substrates or matrixes in various other applications,
e.g., for capacitive or resistive humidity sensors [37], pressure and strain sensors [38], electrochemical
sensors and biosensors in general [39]. Due to the processability of carbon matrices, they can be easily
implemented in flexible sensors [40]. Examples will be detailed in Section 2.4.5.

As non-conventional substrates or matrices, magnetic materials are also often used. Indeed,
metal oxide magnetic materials present two interesting features: except for ceramics, they are
biodegradable or can be easily recollected then recycled after use with the help of an external magnetic
field. Many examples were reported in the recent literature of using magnetic particles in sensors [41–44],
all providing at least collection and reuse (reuse of the sensor several times) if not recyclability. It should
be noted that such magnetic particles, as for carbonaceous materials, can be prepared from renewable
or recycled materials.

Metals can also be used as substrates, providing that they are used as thin foils. For example,
Kang et al. [45] studied transient materials such as Mo, Fe, W, or Zn as biodegradable substrates able
to dissolve in water, which were demonstrated to be non-toxic and pertinent for transient electronics.

2.2.2. Organic and Hybrid Materials

The most often-encountered organic materials used as substrates are biosourced or biodegradable
polymers, textiles, silk, paper and cellulose-derived materials, the latter being the most frequently
biosourced and biodegradable substrate used for electronics, often conjugated with printing techniques
such as inkjet printing or screen printing. Obviously, the use of paper implies that the whole fabrication
needs only low-temperature processes, including the curing of conductive tracks, semiconductors,
or dielectrics, if any. For example, Martins et al. [46] described, in 2013, their results obtained by
ink-jetting CMOS (Complementary Metal Oxide Semiconductor) circuits on paper (Figure 1). Electron
and hole field-effect mobilities were shown greater than 20 and 1 cm2 V–1 s–1, respectively. The obtained
circuits performed well at low voltages, and were therefore suitable to run low-power devices such
as printed sensors and biosensors (these performances will be detailed in the last section of this
review). There are many different kinds of papers, which not well-adapted to all applications. Typically,
to obtain good performances, the authors demonstrated that the physico-chemical properties of the
paper, e.g., the size of the fibers and their compactness, have to be adapted to the size of the electronic
components which are printed or deposited onto it.

The same year, Valentini et al. [47] also published a preliminary work where they printed a MOSFET
device on a paper substrate, obtaining encouraging results (i.e., typical transfer curves, as expected).
The semiconductor was poly(3-hexylthiophene) (P3HT) and the gate’s dielectric material was graphene
oxide (GO). In 2013, Yang et al. [48] made a NO2 gas sensor on paper. Silver paste was used for the
conductive tracks and graphene as an active material. The authors insisted on the fact that the device
was poorly sensitive to strain applied on the substrate (which is very dependent on the paper’s quality,
however) but did not investigate the effect of deformation. Peng et al. [49] combined screen-printing
and thermal evaporation to fabricate arrays of organic field effect transistors onto standard printer
paper. The (hole) field-effect mobility was over 0.56 cm2 V–1 s–1 and the on/off ratio was very high, 109.
The cut-off frequency was 39 kHz, which made the array suitable for display applications. Jung et al.
demonstrated [50] the fabrication of a gallium arsenide flexible microwave device made on cellulose
nanofibril paper with a similar performance to its rigid silicon-based counterpart (Figure 2). They also
clearly demonstrated the fungal biodegradation of the cellulose-based substrates (Figure 3). This work
demonstrated the possibility to fabricate ecofriendly and efficient electronics which could be used in
wireless-communicating sensors.
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Figure 1. Device and paper substrate described by Martins et al. Source and drain of the two transistors
composing the CMOS (Complementary Metal Oxide Semiconductor) inverter are deposited on top
of a paper layer, while the indium-zinc oxide (IZO) bottom-gates are deposited on the other side.
Drain and source electrodes are made of a Ni/Au film. The bottom-left figure shows a cross-sectional
SEM image of a paper fiber from the p-type side, while the bottom-right figure shows an AFM
(Atomic Force Microscopy) image of the section from the n-type side. Reproduced from [46] with
permission. Copyright© 2012 Wiley and Sons.
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Figure 2. (a) Photograph of an array of heterojunction bipolar transistors (HBTs) on a transparent
cellulose nanofibril (CNF) substrate; (b) Zoom on the array. (c) Collector and base currents showing the
maximum gain of the device. (d) Collector current versus collector–emittor for various base current.
(e) Gains (H for current, G for power) as a function of frequency, with a collector voltage of 2 V and
a base current of 2 mA. Adapted from [50] under a Creative Commons Attribution 4.0 International
License. Copyright© 2015, Springer Nature.
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Figure 3. (a) Biodegradation tests of two types of CNF films upon addition of two kinds of fungi: left,
bare CNF, and right, epoxy-protected CNF. (b) Weight loss upon fungal biodegradation of four different
electronic devices printed on epoxy-coated CNF. (c) Degradation process photographed after 6 h,
10 days, 18 days and 60 days; (d) corresponding magnified pictures, and (e) magnified and tilted views
of the CNF-based device after 10 days and 60 days. Adapted from [50] under a Creative Commons
Attribution 4.0 International License. Copyright© 2015, Springer Nature.

Many other examples were reported in the literature, for example, that of Kanaparthi et al. [51],
which described the fabrication of temperature and infrared sensors on cellulose filter paper with a
carbon nanotube-based ink as a sensing surface and graphite for the conductive tracks. The temperature
sensor displayed a temperature coefficient of resistance (TCR) comparable to available commercial
temperature sensors (between−3100 and−4900 ppm K−1) while the IR sensor shows a high responsivity
of 58.5 V W−1. Guna et al. published, in 2016 [52], a completely biodegradable printed circuit board
(PCB) from cellulose extracted from banana stems and wheat gluten, normally considered as agricultural
waste. The dielectric constant of the material was varied, depending on the content, between 2 and
36, in the range of conventional dielectrics for PCB. The board was also able to dissipate heat, as its
epoxy counterparts were resistant up to 100 ◦C and were poorly (but not insensitive) to high humidity
levels. Liu et al. [53] have shown the fabrication of inorganic flexible indium oxide and silicon-based
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nanowire transistors on paper substrates, using low-temperature processes. The transistors operated
at a low voltage (1 V), with subthreshold swing, current on/off ratio, and field-effect mobility of
74 mV/decade, 1.7 × 106, and 218 cm2 V−1

·s−1, respectively, which make them applicable in portable
flexible sensors. For many other examples, in particular, those based on organic electronics deposited
on paper, the reader can refer to the review published by Zschieschang and Klauk in 2019 [54]. Zhu et al.
also published a review of cellulosic materials for green electronics [55], where they particularly
focused on structure–properties–application relationships, showing the importance of controlling
the micro- or nanostructure of the substrate material. This is true for conventional paper, but also
for more elaborate wood-derived materials. For example, in a particularly rich article, Fu et al. [56]
described a wood-based flexible and transparent substrate which they used to make a printed strain
sensor. To make this material, they removed lignin and hemicellulose to nanostructure the material
and collapse the cell walls, preserving the original alignment of the cellulose nanofibers and promoting
their binding (Figures 4 and 5). In the fiber direction, the Young’s modulus and tensile strength were
high, 49.9 GPa and 469.9 MPa, respectively and the strain sensor’s properties were very convincing
(Figure 6). Even the conductive carbon ink was made from carbonized wood.

Nanocellulose (nanopaper) is a material which quickly attracted the interest, due to its additional
properties compared to traditional paper, including transparency, gas impermeability and improved
mechanical properties. For example, Gaspar et al. [57] reported the use of a cotton-based nanocrystalline
cellulose as substrate and gate dielectric layer to print field-effect transistors, with the channel being
made of an oxide amorphous semiconductor and the gate electrode of a transparent conductive oxide.
This hybrid FET presented high field-effect mobility (7 cm2 V−1

·s−1), an on/off ratio above 105 and a
subthreshold swing over 2 V/decade. The authors proposed to use such a device and substrate for
point-of-care sensors. For more details, the reader can refer to the recent review from Zhao et al. [58],
who focused on the molecular structure and nanostructures (nanocrystals, nanofibers, nanosheets),
and the processing technologies for fabricating cellulose-based flexible electronics. Miyashiro et al.
also reviewed cellulose-based materials, more particularly mixed materials of cellulose and carbon
nanotubes [59], for electronic applications.

Apart from wood derivatives, other type of fibers can be used as well, in the form of various
textiles and fabrics, such as those reviewed by Kamarudin et al. [60], who discussed the most
recent textiles used in electronics, their structure, novel processing technologies and the remaining
challenges. Among the emerging and original substrates, silk is one of the most studied. As soon as
2009, Kim et al. [61] reported strategies for integrating thin-film silicon devices onto silk substrates.
They studied mechanical resistance, water dissolution and biocompatibility, and suggested that silk
offers promising opportunities, in particular for implanted biomedical sensors. As a remarkable
example of the use of silk for implantable and resorbable electronics, the reader can also refer to the
work of Hwang et al. in 2012 [62] (Figure 7). In their device, they used doped single-crystalline silicon
membranes (0.3 µm thick) obtained from silicon-on-insulator (SOI) wafers. The release of silicon from
the SOI was realized by wet etching with HF, then the membranes were transferred to a spin-cast film
of silk on a Si wafer. Silk was obtained directly from silkworm cocoons. After a dedicated preparation,
the silk solution in water was cast onto Si substrates to give 20-µm-thick films. Interlayer dielectrics
or metallic interconnects were deposited by electron-beam evaporation through a mask on this silk
film. The packaging (encapsulation) layers (under and upper layers) were also made with 100-µm silk
fibroin films.

Biodegradable natural or synthetic polymers are another family of transient substrates. The reader
is invited to refer to Yin et al. [63], who recently reviewed the classifications and the various applications
of modern biodegradable polymers, with a focus on the development of functions added to these
polymers. Hwang et al., after working on silk, also worked on such synthetic polymers. In particular,
they proposed the separation of the fabrication processes dedicated to the electronic components
from the transfer processes to the substrate, which allow the active components to be processed at
a high temperature or stringent conditions, separately, even if the final substrate is poorly resistant,



Sensors 2020, 20, 5898 11 of 53

which is generally the case in biodegradable ones [64]. More precisely, components and conductive
tracks were processed and deposited on a resistant but temporary substrate, then transferred to the
fragile definitive biodegradable one. They demonstrated this approach with poly(lactic-co-glycolic
acid) (PLGA), polylactic acid (PLA), polycaprolactone (PCL) and also a naturally sourced rice paper,
which also used a polyimide layer, but one obtained from the diluted polymer (D-PI). The authors
demonstrated the process by making a hydration sensor and also showed that the approach allowed
transfer even on nonplanar surfaces. The resulting electronic functions were of excellent quality
(Figure 8) and degradability was excellent as well (Figure 9).

Sensors 2020, X, x FOR PEER REVIEW  12 of 58 

 

direction, the Young’s modulus and tensile strength were high, 49.9 GPa and 469.9 MPa, respectively 
and the strain sensor’s properties were very convincing (Figure 5). Even the conductive carbon ink 
was made from carbonized wood. 

 
Figure 3. Processing of wood to make films for flexible electronics. (a) Lignin and half the of 
hemicellulose are removed from the wood, then pressed and dried under ambient conditions. Under 
these conditions, the chemical structure consists of cellulose microfiber bundles, nanofibrils, and 
cellulose chains with both crystalline and amorphous regions. Ink is also derived from wood, more 
precisely carbonized lignin nanofibers (LCF). (b) Photograph of a wood film before the removal of 
lignin and hemicelluose, then after removal, then after pressing. Reproduced from [56] with 
permission. Copyright © 2020 American Chemical Society. 

 
Figure 4. Confocal microscopy images at ×200 magnification for (a) untreated and (b) treated wood. 
(c) SEM images of a thin wood film cross-section, showing a lamellar structure of collapsed cell walls. 
Yellow arrows point toward lamellar cross-sections. (d) SEM images showing a single fiber 
(contoured in yellow) and cellulose microfiber bundles and nanofibrils (blue arrow). Adapted from 
[56] with permission. Copyright © 2020 American Chemical Society. 

a 

b 

c 

d 

Figure 4. Processing of wood to make films for flexible electronics. (a) Lignin and half the of
hemicellulose are removed from the wood, then pressed and dried under ambient conditions.
Under these conditions, the chemical structure consists of cellulose microfiber bundles, nanofibrils,
and cellulose chains with both crystalline and amorphous regions. Ink is also derived from wood,
more precisely carbonized lignin nanofibers (LCF). (b) Photograph of a wood film before the removal of
lignin and hemicelluose, then after removal, then after pressing. Reproduced from [56] with permission.
Copyright© 2020 American Chemical Society.
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Figure 5. Confocal microscopy images at ×200 magnification for (a) untreated and (b) treated wood.
(c) SEM images of a thin wood film cross-section, showing a lamellar structure of collapsed cell walls.
Yellow arrows point toward lamellar cross-sections. (d) SEM images showing a single fiber (contoured
in yellow) and cellulose microfiber bundles and nanofibrils (blue arrow). Adapted from [56] with
permission. Copyright© 2020 American Chemical Society.
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Figure 6. Performances of the thin wood substrate in terms of conductivity and flexibility. (a) Printed
electronic circuit on the substrate. (b) and (c) Cross-sectional SEM view of the printed wood-derived
ink. (d) SEM image on the edge of a printed track. LED put on for a bent (e) and a folded (f) substrate.
(g) Sheet resistance of a printed track upon folding−unfolding cycles. (h) Resistance to repeated peel
off. (i) Normalized relative resistance variation upon strain applied parallel to the fiber direction.
(j) Normalized relative resistance variation upon repetitive 90◦ folding (resistance measured along the
fiber direction). Reproduced from [56] with permission. Copyright© 2020 American Chemical Society.
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Figure 7. Transient electronics featuring tracks, resistor, inductor, capacitor, diode and transistor,
printed on a silk substrate. (A) Optical image of a device. (B) Exploded view showing the different
layers (inset: top view). (C) Time sequence of dissolution of the whole device in water. (D) Details of
the chemical reactions with water for each of the constituents. Reprinted from [62] with permission
from AAAS.

Maccagnani et al. published, in 2019 [65], another approach to preparing flexible and transparent
metallic films by sputtering thin gold layers on a sodium alginate free-standing substrate. The resulting
sheets demonstrated excellent resistance to mechanical stress and were stable in ambient atmosphere
over several months. Disassembly of such bilayer films was easy by dissolving the alginate layer in
water and collecting the supernatant gold film. Recently, Harnois et al. [66] also investigated the transfer
of inorganic electronic materials (conductors, semiconductors, dielectrics) onto degradable substrates.
In particular, silicon-based elements were transferred from PI to PVA films. They demonstrated that
the transfer stage does not affect the electrical characteristics of the devices. After dissolution of PVA in
water, the active materials can be recollected and recycled, as in Maccagnani et al. Less conventional
materials were also investigated. For example, Rullyani et al. reported, in 2018, a flexible biodegradable
and biosourced polymer as a substrate for electronics [67], namely polypropylene carbonate (PPC),
obtained from the up-cycling of CO2. They utilized casted thin films of this material as a dielectric
and substrate for OFETs. Its dielectric constant was reported as low, however (around 3), leading to
a high operating voltage of 60 V. With pentacene as a semiconductor, electron and hole’s field-effect
mobility were estimated at 0.14 and 0.026 cm2 V−1

·s−1, respectively, and the on/off ratio above 105.
The fabricated PPC sheets had acceptable mechanical properties and, most importantly, biodegraded
rapidly in a medium containing a lipase enzyme from Rhizhopus oryzae.

The successful fabrication of sensors of a comparable performance to Si-based ones, on natural fiber
substrates such as paper, silk or other textiles, but also on degradable or dissolvable polymer thin films
substrates, demonstrates that it is possible to fabricate high-performance electronics using eco-friendly
materials, often at low cost, without or with minimal need for conventional clean-room technologies.
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Degradable organic materials can also be used as matrices, e.g., for the encapsulation of bioactive
components in biosensors. For that purpose, hydrogels are indicated. The reader can refer to the
review from Mondal et al. [68], which details the recent developments on polymer hydrogels for
various applications, including biosensing. Stimuli-responsive hydrogels were investigated, as well as
conducting polymer hydrogels, polymer hybrid gels containing carbon nanomaterials, peptide gels,
etc. As an example, one may cite the work of Hwang et al. [69], who described a dopamine sensor
made of a fully recyclable agarose hydrogel serving as a matrix for the active sensing part made of
polypyrrole, carbon nanotubes and DNA aptamers. For recycling, the hydrogel was dissolved in hot
water, the resulting suspension centrifuged, and the precipitate re-introduced in a new agarose hydrogel
for a new cycle. More elaborated is the work of Cunha et al. [70] who proposed a reusable eco-friendly
hydrogel electrolyte based on cellulose, applicable to flexible electrochemical devices. The gel was
made of microcrystalline cellulose in aqueous LiOH/urea. The process produced free-standing flexible
electrolyte films with high specific capacitances (4–5 µF·cm−2). As a demonstration, IGZO (Indium
Gallium Zinc oxide)-based, electrolyte-gated transistors (EGTs) were made with such cellulose-based
hydrogel electrolytes (Figure 13). Low working voltages (<2 V) were obtained, with an on/off ratio above
106 and a subthreshold swing of 0.2 V·dec−1. The electron field-effect mobility was ca. 26 cm2

·V−1
·s−1

and the cut-off frequency was ca. 100 Hz (Figure 14).
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Figure 8. (a) Steps (1–5) used for the fabrication of transient electronic components on a carrier substrate.
The layered structure allows dissolution of the sacrificial PMMA layer (on top of the Si substrate—1) in
acetone to release the device (2). Collection of the released device onto a PDMS stamp (3), followed
by transfer printing onto a PLGA substrate (4) then RIE (Reactive Ion Etching) of the top diluted
polyimide (D-PI) (5). (b) (left) An array of transient CMOS inverters on PLGA, deposited onto a printed
paper sheet (magnified view on the right), with a microscope image of one single inverter in the inset.
(c) Output characteristics of an inverter obtained by this technique (Vdd = 10 V). Reproduced from [64]
with permission. Copyright© 2014 Wiley and Sons.
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Another very good example of what could be done with dissolvable electronics was also given by
the same group [45] with silicate spin-on-glass (SOG) materials (Figures 10–12).
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Figure 10. Fabrication steps of a transcient n-MOSFETs array on a biodegradable Fe foil: lamination of
a Fe foil on a PDMS-coated glass substrate and exploded views of one MOSFET. Detachment from
the PDMS/glass substrate gives a free-standing film. The materials include silicon nanomembranes
(Si NMs; semiconductor), thin Mg films (conductor), spin-on glass (SOG) SiO2 (dielectric), and Fe foil
(substrate). Adapted from [45] with permission. Copyright© 2015 Wiley and Sons.
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Figure 11. Scanning electron microscope (SEM) and optical microscope image (inset) of diverse transient
devices on dissolvable metal foil substrates. (a) array of nMOSFETs on Fe foil. (b) Transient PN diode
on a Zn foil. (c) Capacitors with different sizes built using Mg electrodes (top/bottom) and PECVD SiO2

dielectrics on Mo foil. (d) Planar spiral coils on a Mo foil substrate. Adapted from [45] with permission.
Copyright© 2015 Wiley and Sons.
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Figure 12. Dissolution of a transistor array on a Mo foil (5 µm thick) partially immersed in phosphate
buffer solution (PBS, pH 7.4) at 90 ◦C. Device in its initial state (left) and partially dissolved after 25 days
(middle). Magnified (right) and microscope (inset) images show full dissolution of the immersed area
and partial dissolution at the edge. Addapted from [45] with permission. Copyright © 2015 Wiley
and Sons.

Wang et al. [71] very recently published a promising method to fabricate biodegradable and
recyclable conducting films from silver nanowires (AgNWs) embedded by a transfer method into a
blend of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA). Such a transparent composite
film presented high electronic conductivity, good heat resistance and good mechanical strength and
flexibility, and underwent facile hydrolytic degradation (Figure 15).
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Figure 13. (a) Solutions containing various weight ratios of carboxymethyl cellulose (CMC)
(0, 2 and 4 wt.%) before and after neutralization with acetic acid. (b) Resulting flexible and transparent
free-standing cellulose-based hydrogel electrolytes (CHEs) obtained from the respective solutions
(MHE, CCHE2, CCHE4). (c) Schematic illustration of a CHE-gated IGZO EGT. Reproduced from [70]
with permission. Copyright© 2017 Wiley and Sons.Sensors 2020, X, x FOR PEER REVIEW  19 of 58 
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Figure 14. (a) Picture of an IGZO-EGT array on paper, with CCHE4 as a solid electrolyte. (b) Details of
a single EGT. (c) Transfer characteristics at two different VGS scan rates. Dashed lines correspond to IGS.
(d) output curves (gate voltage step of 0.25 V, starting from −0.5 up to 2 V). Reproduced from [70] with
permission. Copyright© 2017 Wiley and Sons.

Cellulose hydrogels are also very much utilized for making biodegradable electronic devices and
sensors. The reader can refer to the reviews from Teeri et al. [72] or Kabir et al., 2018 [73], which detail
the physico-chemical aspects of these hydrogels based on cellulose, chitin, or chitosan. These polymers
are responsive to pH, temperature, or even chemical species, and are biocompatible, biodegradable and
abundant. These properties can serve in different kind of devices such as humidity sensors, strain or
pressure sensors, or even chemical sensors. As an example, Pinming et al., in 2016, proposed a resistive
humidity sensor using carboxymethylcellulose cross-linked with epichlorohydrin as the sensitive
membrane [74]. Its electrical resistance varied satisfactorily for high relative humidity (RH) levels
between 50 and 95%. Similarly, Wang et al. described a cellulose ionic film as a humidity sensor [75]
which showed fast and reversible response to RH in the range 11–97%. Its response and recovery
times were 6 and 11 s, respectively, with a small hysteresis of less than 1% (Figure 16). To produce the
cellulose ionic film, pristine cellulose was dispersed in benzyltrimethylammonium hydroxide, and the
result was cast onto a glass plate and left to dry, then washed with water and immersed in 4 wt. %
KOH to obtain the cellulose/KOH composite hydrogel film. The authors demonstrated non-contact
fingertip moisture detection and breathing rate detection.
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Figure 15. (a) Fabrication steps of aAgNWs/PLA film. SEM images of (b) the blended film + AgNWs.
(c) Detail of AgNWs film before and after annealing. (d) The AgNW/PLLA:PDLA film after
annealing. (e) Cross-sectional SEM view. AFM images of (f) the AgNW/Glass film and (g) the
AgNWs/PLLA:PDLA film. (h) WAXD profiles of the AgNW/PLLA and AgNW/PLLA:PDLA films.
Reproduced from [71] under a Creative Commons Creative Common CC BY License.
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Figure 16. (a) Response/recovery times of cellulose/KOH film (CKF) for humidity levels between 11.3
and 97.3% RH. (b) Real-time current response of CKF to RH ranging from 11.3 to 97.3%. Adapted with
permission from [75]. Copyright 2020 American Chemical Society.

Cellulose hydrogels were also often reported in pressure or strain sensors. Jing et al. [76] reported
a stretchable and self-healing polyvinyl alcohol/cellulose hydrogel in a pressure and strain sensor,
for motion detection. This hydrogel contained three kinds of bond which contributed to its mechanical
resistance (Young modulus of 11.2 kPa; elongation rate of 1900%) and self-healing ability (within 15 s):
borate bonds, metal–carboxylate coordination bonds, and hydrogen bonds. The authors showed that
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a thin film of this hydrogel was sensitive to the pressure exerted by a single drop of water and was
capable of monitoring motions such as finger or knee movements or breathing. This kind of material is
obviously very promising as smart, biodegradable, electronic skin (Figures 17 and 18).Sensors 2020, X, x FOR PEER REVIEW  21 of 58 
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motions. (b) Response of the hydrogel sensor upon a gentle touch with a finger. (c) Real-time 
capacitance change in the hydrogel sensor attached to the throat to detect deglutition. (d) Real-time 
capacitance signals from the hydrogel sensor when attached to the wrist to measure heartbeat. 
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For the same application, Tong et al. [77] proposed a conductive strain sensor prepared by 
copolymerization of allyl cellulose and acrylic acid. The obtained hydrogel was highly stretchable 

Figure 17. (a) Structure of the self-healing hydrogel: (i) PVA hydrogel, (ii) cellulose nanofiber (CNF)
network, and (iii) PVA/CNF hydrogel bend. (b) Morphologies of freeze-dried PVA hydrogel. (c) and
(d) Morphologies of the freeze-dried PVA/CNF hydrogel. Reproduced from [76] with permission.
Copyright 2019, Elsevier.
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motions. (b) Response of the hydrogel sensor upon a gentle touch with a finger. (c) Real-time 
capacitance change in the hydrogel sensor attached to the throat to detect deglutition. (d) Real-time 
capacitance signals from the hydrogel sensor when attached to the wrist to measure heartbeat. 
Reproduced from [76] with permission. Copyright 2019, Elsevier. 
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Figure 18. (a) Photographs of a hydrogel sensor attached on top of a forefinger and used to detect its
motions. (b) Response of the hydrogel sensor upon a gentle touch with a finger. (c) Real-time capacitance
change in the hydrogel sensor attached to the throat to detect deglutition. (d) Real-time capacitance
signals from the hydrogel sensor when attached to the wrist to measure heartbeat. Reproduced
from [76] with permission. Copyright 2019, Elsevier.
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For the same application, Tong et al. [77] proposed a conductive strain sensor prepared by
copolymerization of allyl cellulose and acrylic acid. The obtained hydrogel was highly stretchable
(strain at break of 142%), and able to transduce strain into an electrical resistance change in a wide
linear range up to 100% elongation, for over 1000 cycles. The authors applied this material to the
detection of body movements. Zhou et al. also proposed a cellulose hydrogel as pressure sensor [78].
With a high content of Ca2+ ions, it was rigid (compressive strength of 2.2 MPa), while a high content
of Zn2+ ions gave a fluid state instead. It was shown that the Ca2+-containing gel could monitor
slight bending and pressure changes, e.g., of fingers. Tong et al. [79] also described a stretchable
and compressible cellulosic hydrogel (strain at break of 126%, compression strain of 80%) obtained
by free radical polymerization of allyl cellulose. Its ionic conductivity change (ca. 0.16 mS cm−1

at rest) could serve to monitor strain. Pang et al. [80] proposed a skin-inspired cellulose conductive
hydrogel with a self-healing performance (healing efficiency of 96.3% within 60 min) with a broad
strain window (0–2000%), which could monitor both small and large motions. It also presented a
good thermal sensitivity with a 10-fold increase in its conductivity upon a temperature increase of
50 ◦C. Huang et al. [81] described a cellulose piezoresistive hydrogel for strain and pressure sensing.
It was obtained from a mixture of PVA, sodium alginate (SA), bacterial cellulose (BC), modified carbon
nanotube and carbon black (MCC). The authors demonstrated that their sensor was able to distinguish
between strain and pressure, and the measures were very repeatable. It was used for monitoring limb
movements, walking or grasping weights (Figures 19 and 20).
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Figure 19. Proof-of-concept of the PVA/SA/BC/MCC hydrogel as piezoresistive strain sensor. (a) 
Schematic of the hydrogel sample upon stretching. (b) Relative resistance changes (RRC) as a function 
of the applied strain. (c) Plots of RRC and strain. (d) RRC for various tensile strains from 10% to 80% 

Figure 19. Proof-of-concept of the PVA/SA/BC/MCC hydrogel as piezoresistive strain sensor.
(a) Schematic of the hydrogel sample upon stretching. (b) Relative resistance changes (RRC) as
a function of the applied strain. (c) Plots of RRC and strain. (d) RRC for various tensile strains from
10% to 80% of its maximum. (e) RRC upon cyclic applied strains (10%, 50%, 100%, 150%). (f) The same,
for a longer time. Reproduced from [81] with permission. Copyright© 2019 Wiley and Sons.
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(a) Schematic of the pressure sensor. (b) Relative capacitance change (RCC) as a function of the 
applied pressure. (c) RCC and pressure measured in parallel. (d) RCC under increasing applied 
pressures from 2.5 to 26 kPa. (e) RRC as a function of a cyclic applied pressure from 5 to 100 kPa. (f) 
RCC under compressing/releasing cycles. Reproduced from [81] with permission. Copyright © 2019 
Wiley and Sons. 
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described a cellulose/β-cyclodextrin nanofiber patch as a wearable skin glucose sensor where glucose 
oxidase enzymes were entrapped into a cellulose/β-cyclodextrin electrospun membrane. Detection 
was based on reverse iontophoresis of interstitial fluid through the skin, to monitor glucose levels 
between 1 μM and 1 mM, with a sensitivity of about 5 μA·mM−1. 

Conventional packaging (encapsulations) of electronic devices could also be advantageously 
replaced by biodegradable materials, such as cellulosic ones. Nie et al. [83] reviewed the use of 
cellulose nanofibrils-based thermally conductive composites for packaging electronic elements. They 
focused on the thermal conductivity of the polymer composites (i.e., its ability to dissipate heat), and 
the type and loading of the filler. As another example, Ma et al. recently proposed a nanofibril 
cellulose/MgO/reduced graphene oxide (rGO) composite presenting both thermal conductivity and 
electrical insulation [84]. Graphene and rGO are known to present high thermal conductivity, and 

Figure 20. Proof-of-concept of the PVA/SA/BC/MCC hydrogels as a capacitive pressure sensor.
(a) Schematic of the pressure sensor. (b) Relative capacitance change (RCC) as a function of the applied
pressure. (c) RCC and pressure measured in parallel. (d) RCC under increasing applied pressures
from 2.5 to 26 kPa. (e) RRC as a function of a cyclic applied pressure from 5 to 100 kPa. (f) RCC
under compressing/releasing cycles. Reproduced from [81] with permission. Copyright© 2019 Wiley
and Sons.

Cellulose hydrogels may also be designed for chemical sensing. For example, Kim et al. [82]
described a cellulose/β-cyclodextrin nanofiber patch as a wearable skin glucose sensor where glucose
oxidase enzymes were entrapped into a cellulose/β-cyclodextrin electrospun membrane. Detection
was based on reverse iontophoresis of interstitial fluid through the skin, to monitor glucose levels
between 1 µM and 1 mM, with a sensitivity of about 5 µA·mM−1.

Conventional packaging (encapsulations) of electronic devices could also be advantageously
replaced by biodegradable materials, such as cellulosic ones. Nie et al. [83] reviewed the use
of cellulose nanofibrils-based thermally conductive composites for packaging electronic elements.
They focused on the thermal conductivity of the polymer composites (i.e., its ability to dissipate heat),
and the type and loading of the filler. As another example, Ma et al. recently proposed a nanofibril
cellulose/MgO/reduced graphene oxide (rGO) composite presenting both thermal conductivity and
electrical insulation [84]. Graphene and rGO are known to present high thermal conductivity, and are
therefore widely used in the field of thermal management. However, they are also good electrical
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conductors, which is an obvious obstacle when applying them in electronic packaging where electrical
insulation is needed. Here, the authors proposed to use rGO along with MgO particles as a thermally
conducting filler, entrapped into nanofibril cellulose films via mechanical compression. MgO was used
for two purposes: (i) it participates in reducing the thermal resistance; (ii) it also breaks the conductive
pathways between rGO sheets so as to keep a low electrical conductivity. Due to the fabrication
protocol, the films exhibited high anisotropy. The in-plane and cross-plane thermal conductivities
were 7.45 and 0.32 W·m−1

·K−1, respectively, with a filler content of 20 wt.%, and an electrical resistivity
above 1 kΩ·m. Exemplified on a light-emitting-diode, the composite film was shown to efficiently
dissipate heat.

2.3. Active Materials (Conductors, Semiconductors, Dielectrics)

2.3.1. Inorganic Materials

The reader is invited to refer to existing reviews on transient active electronic materials, such as
that of Fu et al., where they partly focused on dissolvable metals [17], that of Cheng on dissolvable
inorganic electronics, including conductors and semiconductors [28,85], of Li et al. in 2018 [86], of Seo
et al. on hydrolysis of a nanoscale silicon surface [87] or that of Liu et al., which focuses on dissolvable
inorganic thin films [88]. The shape and surface-to-volume ratio of the materials obviously influence
their ability to be dissolved. This is why nanostructures, such as nanowires, are advantageous for
recyclability. For example, Yang et al. [89] proposed, in 2011, a method to prepare printable and
recyclable AgNWs which could be applied for interconnections in flexible electronics. They were able
to form conductive tracks with conductivities up to 5 × 106 S·m−1, which makes them competitive for
real application. If not nanostructured, the materials are expected to be thin. The case of dissolvable
metallic conductive tracks has been already discussed above, for example, with the work of Rogers and
co-workers [46,63,65]. In particular, Hwang et al. [63] made a very nice practical demonstration of a
transient device where the conducting tracks were made of Mg and the dielectric part of MgO; only the
transistor channels were made of silicon (Figure 1). On their platform, all components (inductors,
capacitors, resistors, diodes, transistors, conductive tracks, etc.) dissolved when immersed in water.
Yin et al. [90] published a detailed work dealing with the dissolution of thin films of materials, such as
Mg, AZ31B Mg alloy, Zn, Fe, W, and Mo, in water and also in simulated body fluids, to assess the
potential use of these metals in transient, possibly implantable, electronics. One of their conclusions is
that the dissolution rates of thin films are very dependent on their thickness, which helps to anticipate
the lifetimes of the circuits beforehand. Kang et al. reported, in 2015, a comprehensive study dedicated
to the dissolution mechanisms of polycrystalline silicon, amorphous silicon, silicon–germanium,
and germanium in aqueous solutions at various pHs, in view of making dissolvable electronic devices
(Figure 21), based on the dissolution reactions of Si and Ge in water: Si + 4 H2O→ Si(OH)4(aq) + 2 H2

and Ge + O2(aq) + H2O→H2GeO3(aq). Typically, in similar conditions, Si dissolves faster than SiGe,
which dissolves faster than Ge. They also studied the toxicity of the end products of dissolution [91].

Following a totally different approach and to end this section, one may cite the work of Hu et al. [92],
who described a material which is able to regenerate by itself, without the need for a mechanical
recycling step. They developed self-cleaning electrodes made of carbon-doped TiO2 nanotube arrays
(C-doped TiO2-NTAs) which, beyond their properties for the selective electrooxidation of (for example)
ascorbic acid, can be easily photocatalytically refreshed to be immediately reused. Because of the
high photocatalytic activity of the C-doped TiO2-NTAs electrode, the electrode surface can be readily
regenerated by ultraviolet or visible light irradiation. This photoassisted regenerating technique did not
damage the electrode microstructure. The authors published exactly the same work later in 2016 [93].
The idea is interesting for chemical sensors, but it is obviously not recyclable in its genuine sense.
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Figure 21. (a) Scheme of the experimental setup used to measure the Si, Ge and SiGe dissolution rate,
in the form of a patterned square opening (3 µm × 3 µm × 30 nm) within a Ti layer deposited on
single-crystalline I, SiGe and Ge (100) wafers. (b) Height profiles during hydrolysis of SiGe in a buffer
solution at pH 10 and 37 ◦C, after day 0, day 8 and day 16. Adapted from from [91]. Copyright 2015
American Chemical Society.

2.3.2. Organic Materials

Recyclable biosourced organic semiconductors are the first to be cited. Among them, melanin is
one of the first reported natural and biodegradable semiconductors, with the charge transport
properties and mechanisms offered by this molecule having been described for many years; however,
these mechanisms have been revised recently. Bettinger et al. [94] proposed, in 2009, the use of natural
pigments such as melanin as organic conductors or semiconductors for application in electronics,
more particularly here for tissue engineering applications. Melanin thin films showed an electrical
conductivity of 7 × 10−5 S·cm−1 in the hydrated state, were biocompatible and resorbed after 8 weeks,
which makes them a promising biodegradable semiconducting biomaterial. However, Mostert et al.
published a critical work in 2012 [95] which questioned the conductivity model in melanin and related
materials. Wünsche et al. [96] did the same for eumelanin and showed that the conducting property of
hydrated eumelanin films is dominated by ionic conduction (10−4–10−3 S·cm−1), and attributable to
electrochemical processes rather than electronic conduction. Far from disqualifying eumelanin and
related molecules for electronic purposes, however, this strengthens their potential for implantable
and bioresorbable devices. As another example, Di Mauro et al. [97] studied the electrochemical
processes occurring at eumelanin/metal contact interfaces. They reported on the chemical and structural
changes occurring at interfaces between Pd, Cu, Fe, Ni and Au metal electrodes and hydrated films
of eumelanin, which helps to select the best adapted metal/semiconductor couple depending on the
application. There are, to date, very few examples of devices using the semiconducting properties of
(eu)melanin, however. Conversely, Indigo and its derivatives were reported as true semiconductors, as
detailed in the review from Głowacki et al., published in 2012 [98]. They showed that, due to hydrogen
bonding and π-stacking, these molecules form highly ordered crystalline materials, as other popular
synthetic semiconducting polymers do (i.e., all actual thiophene derivatives), allowing excellent
electrical performances. Charge mobilities were found in the range 0.4–100 cm2 V−1

·s−1, which make
them competitive for applications in electronic devices (Figure 22). These authors have clearly related
the highly ordered structure with their high (ambipolar) mobilities. In addition, dibromoindigo is
air-stable and paves the way for applications in environmental conditions.

This family of indigoid materials could also inspire the synthesis of larger synthetic molecules or
polymers with a similar structure, for making open air-operated biodegradable electronics. Conjugated
pigments are not the only natural molecules showing semiconducting properties. Tao et al. [99] have
shown that peptide supramolecular structures could provide semiconducting properties, which may
serve as an alternative source for the semiconductor industry. Such assemblies can also allow the
addition of electron donors and acceptors within the structure to finely tune the electronic properties
and make p-n junctions, for example (Figure 23).
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Figure 22. (a) The OFET device, using tetratretracontane (TTC) between the Al2O3 dielectric and the
indigo (or dibromoindigo) semiconductor. The substrate is a shellac (varnish) layer. (b) Pictures of a
five-transistor sample on a shellac substrate. The W and L parameters are 1 and 80 mm, respectively.
The capacitance of the TTC/Al2O3 layer is was ca. 90 nF cm−2. (c) Quasi steady-state output
characteristics of the indigo-based inverter. (d) Output characteristics. Adapted from [98]. Copyright
© 2012 Wiley and Sons.
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Figure 23. (top) Examples of peptide self-assembling architectures: peptide building blocks oligomerize
to form quantum dots, themselves serving as building blocks which self-assemble into supramolecular
structures with semiconducting properties. Reproduced from [99]. Copyright 2017, the American
Association for the Advancement of Science. (bottom) Molecular mechanisms underlying short peptide
self-assembling semiconductors. (A) Model showing diphenylalanine (FF) nanotubular crystals acting
as quantum confined structures comprising a tubular backbone (red circle) surrounded by six FF units
(cyan circle). Adapted from [100]. Copyright 2014 American Chemical Society. (B) Cross-sectionnal
view of two adjacent peptide β-sheets. The grayed area points out a quantum confined region.
Adapted from [101]. Copyright 2016 American Chemical Society. (C) Quantum confined crystals of FF
and phenylalanine-tryptophan (FW), and their respective conduction and valence band. FW shows a
smaller band gap (the conduction band is lowered). Adapted from [102]. Copyright 2015 AIP Publishing.
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Another indication that such supramolecular assemblies behave as semiconductors is that FF
(diphenylalanine) crystallized nanowires exhibit increased electric conductivity upon temperature
increase. The superstructure geometry can affect the electrical properties. For example, long and
straight tubes self-assembled by the AAKLVFF heptapeptide give the most conductive material,
while shorter or curved assemblies give lower conductivities [103]. On the other side, if aromatic
moieties are added as side-chain groups, the conductivity is improved [104]. It was also shown that
these materials present an ionic (protons) conductivity, which could be used for humidity sensors,
for example. Such peptide-based supramolecular semiconductors are still in their infancy, however,
and our understanding of the mechanisms implied has to be significantly strengthened before these
materials more widely utilized.

Supramolecular structures are not only obtained from engineered peptides assemblies, but also
from natural proteins. In this case, however, it is their isolating properties which are exploited.
For example, Wang et al. published, in 2011 [105], a work on silk fibroin, which was shown to
be an excellent gate dielectric material for OFETs. Their pentacene OFET exhibited a mobility of
23.2 cm2

·V−1
·s−1 and a low operating voltage of −3 V. Using a natural material, Zhang et al. published,

in 2016, an example of a rice-derived gate dielectric [106] integrated into a top gate OFET, with promising
results (Figure 24).Sensors 2020, X, x FOR PEER REVIEW  28 of 58 
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Figure 24. (a) Photographs of the rice coloidal solution (RC). (b) Transmittance of the free-standing
rice film (RF) before and after a sequence of 100 foldings at 180◦. (c) Structures and mechanism for the
formation of the cross-linked structure within the rice film, which provides self-standing properties.
Reproduced from [106]. Copyright 2016 American Chemical Society.
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Still using natural materials, Gaspar et al. published, in 2014, a cotton-based cellulose dielectric [58]
used as both a substrate and gate dielectric in an oxide amorphous semiconductor FET. With an
electron mobility above 7 cm2 V−1

·s−1 and an on/off ratio above 105, the device presented an excellent
operational stability after two weeks in air, without any type of encapsulation. Valentini et al.
also reported cellulose nanocrystals thin films as gate dielectrics [107], as well as Dai. et al. in
2018 [108], who not only focused on the chemical stability of the electrical properties of such a material
when used in ambient conditions, but also demonstrate an interest in increasing the mechanical
resistance of devices such as FET upon repetitive bending. More original was the work of Seck et al.,
who published an almond gum dielectric to be used in an OFET [109]. Almond gum is a natural and
biodegradable material, which is water-soluble, which they show to present good dielectric properties.
A bottom gate/bottom contact p-channel OFETs was proposed using this almond gum along with a
conventional poly(3,6-di (2-thien-5-yl)-2,5-di (2-octyldodecyl)-pyrrolo [3,4-c] pyrrole-1,4-dione)thieno
[3,2-b] thiophene) (DPPTTT)/PMMA blend as a semiconductor. The resulting transistors operated at
a low voltage (<3 V), and field-effect mobilities were found above 0.75 cm2

·V−1
·s−1, with an on/off

ratio of about 103. Still using natural materials, Shin et al. demonstrated the possibility to make
good dielectrics with semi-synthetic polymers based on natural tannic acid [110], which keep the
biodegradability properties. As an example, they developed a naturally degradable poly(methacrylate
tannic acid) presenting good dielectric properties. Placed in a pentacene OFET, a field-effect mobility
of 0.2 cm2 V−1

·s−1 was found at a (quite high) gate voltage of −20 V. Most importantly, with PVA as
substrate, the device was fully decomposed within 8 days in phosphate-buffered saline (PBS). Last,
but not least, dielectric materials were also obtained from DNA derivatives. For example, Singh and
Sariciftci reported in 2006 the use of waste products such as salmon milt and egg mixtures to make
OFET gate dielectrics [111]. Their OFET exhibited current-voltage characteristics comparable with
OFETs using conventional organic-based dielectrics: an operating potential of 10 V and an on/off ratio
of about 103. Stadler et al. published on the same topic in 2007 [112], describing DNA biopolymers
as a gate dielectric in n-type and p-type OFETs working at a low voltage; they evidenced a high
level of hysteresis, however, which was suppressed only by adding a conventional oxide dielectric.
Yumasak et al. also reported the same drawback with DNA-based biopolymers as dielectric; they show
that this hysteresis is reduced by crosslinking DNA [113].

In a totally different perspective, synthetic polymers and supramolecular assemblies can be
engineered so as to provide biodegradation or, simply, chemical degradation properties, e.g., by adding
reversible cross-linking bonds within the structure. Following this strategy, recyclable dielectrics
were also reported, for example by Luo et al., who published, in 2019, such a dielectric [114] in the
form of a reversibly cross-linked composite from a maleimide-functionalized polyhedral oligomeric
silsesquioxane (POSS) and an aromatic polyamide functionalized with furan groups. The reversible
Diels–Alder reaction between maleimide and furan groups allowed for the cross-linking of the two
polymers to reach the best dielectric properties while in function, and subsequent efficient recycling
after use (Figure 25).
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2.4. Devices

The previous sections focused on materials. This section will focus on the sensing devices obtained
using these materials. Before focusing on sensors as a whole, we will have a look at elemental electronic
components such as resistors, capacitors, diodes and transistors. The reader is invited to refer to
recently published reviews which focus more particularly on these components, for example that of
Li et al. [90], published in 2018, or that of Kang et al. [115], published in 2020. We will also review
biofuel cells, expected to power implanted or external sensors, which also require (bio)degradability.

2.4.1. Resistors and Capacitors

The simplest device are resistors; they can easily be made of carbon (e.g., the conventional carbon
composition resistors (CCR) from the electronic industry) so that most of the existing ones could be
readily degradable and recyclable if their packaging is itself degradable. However, original fabrication
methods of recyclable resistors can be found in the recent literature. For example, Kumar et al. [116]
proposed the printing of resistors on paper from a graphene-based ink, deposited using the bar-coating
technique, with precise adjustment of the resistance value using a laser which precisely adjusts the
width of the printed pattern. This kind of resistor was able to handle about 7 W at room temperature
for up to 200 V.

Conversely to resistors, there are a few examples of degradable or biodegradable capacitors,
with most of the effort placed on targeting electrolytic supercapacitors (EDLCs), and, more particularly,
the electrolyte material. The reader can refer to the book chapter from Okonkwo et al., who reviewed
biopolymers and composites for energy storage, with a focus on capacitors [117]. Lim et al. reported,
in 2014, the fabrication of an electric double-layer capacitor made of activated carbon (for the electrodes)
and a biodegradable water-based polymer for the electrolyte [118] which was prepared from PVA,
lithium perchlorate (LiClO4) and antimony trioxide (Sb2O3). Cyclic voltammetry showed a conventional
rectangular shape, without any redox behavior, typical of a true EDLC. The cyclability was weak,
however, with 90% retention after only 200 cycles. Lee et al. went further and reported a fully
biodegradable supercapacitor using water-soluble metal electrodes (tungsten, iron or molybdenum)
and agarose gel as a polymer electrolyte, deposited onto a biodegradable PLGA substrate [119].
The authors investigated the dissolution kinetics and mechanisms for each individual component



Sensors 2020, 20, 5898 28 of 53

of the capacitor and concluded that a fine control of the composition (more particularly, molecular
weights and thicknesses) could finely tune the lifetime of the device (Figure 26).
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The dissolution kinetics of their thin metal films were studied, to better understand the process.
This metals dissolution follows conventional hydrolysis: W + 4H2O→WO4

2− + 8H+, Mo + 4H2O
→MoO4

2− + 8H+ + 6e− and 4Fe + 3O2 + 10 H2O→ 4Fe(OH)4
− + 4H+, leading to resorption of the

electrodes after a few hours in water, which progressively disappear within several weeks (Figure 27).
Yang et al. proposed a fully degradable gel supercapacitor based on Zn nanosheets–Ti3C2

MXene [120]. The capacitor retains more than 80% of its capacitance after 1000 cycles and is stable at
room temperature, while it is totally degraded within 7 days under heating at 85 ◦C (Figure 28).
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Focusing on the electrolyte rather than on electrodes, Hamsan et al. proposed a potato
starch-methyl cellulose blend-based polymer electrolyte to be applied in a double-layer capacitor [121].
The electrolyte was ammonium nitrate, and glycerol was used as plasticizer. The performances were
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good, with a potential window of 1.9 V, a capacitance of 31 F g−1 and a cyclability reaching 1000
cycles. Still from starch, Kasturi et al. described, in 2019, the preparation of starch-based carbon
electrodes and biopolymer electrolyte for a solid-state EDLC [122]. They obtained the porous carbon
from carbonized starch, while the biodegradable biopolymer electrolyte was prepared from starch
as well. Their supercapacitor showed a high specific capacitance of 240 F g−1 for more than 2000
cycles, along with a specific energy of 17 Wh kg−1 and a specific power of 3823 W kg−1. The device
totally degraded within weeks when buried in soil. More conventional was the work of Nowacki et al.,
who described the synthesis and characterization of membranes of chitosan [123] crosslinked with
glutaraldehyde and used in EDLCs with lithium acetate as an electrolyte. Capacitances reached 106 F g−1

after 10,000 charge/discharge cycles. Avila-Niño et al. published, in 2020, a work where they studied
the capacitive properties of gel-type natural abundant polymers such as gelatin and agar in deionized
water, mounted between ITO electrodes. They obtained capacitances in the mF.g−1 range and good
cyclability, with the device retaining 100% of its initial capacity after 1000 cycles [124]. Menzel et al. [125]
also described a capacitor based on an agar gel and carbon electrodes. As for Avila- Niño et al.,
recyclability was not detailed, even if all constituents of the device were intrinsically degradable.

Beyond degradability is bioresorption, which is more challenging to achieve without the production
of toxic side-products. Li et al. proposed a bioresorbable capacitor for implantable biosensors [126].
On a PLA-supporting substrate, the device was made by the layer-by-layer assembly of a PLA
nanopillar array, a self-assembled nanoporous ZnO layer, and a PVA/phosphate buffer solution
hydrogel. The capacitor was able to work in air or in liquid environment, e.g., in an animal body.
The functional time was tunable from days to weeks depending on the encapsulation layer and could
be fully degraded in vivo.

When developing a portable sensing device, the performance of the power source is crucial. It is
now a real challenge to develop, for the purpose of application in degradable or even bioresorbable
sensors, power sources with good performances and degradability/bioresorption abilities at the same
time; it is a promising theme of research in the coming years.

2.4.2. Transistors, Oscillators, Logic Gates

(Bio)degradable transistors or related circuits have been developing in recent years, and there
are several good examples reported in the literature. For example, Guo et al. described, in 2015,
a biodegradable transistor [127] from a free-standing sodium alginate membrane acting as both a
substrate and dielectric, and Al:ZnO thin films as source and drain electrodes. These transistors
operated at low voltage (ca. 1 V) and were completely dissolved within 1h if placed in deionized
water. Rullyani et al. [128] described organic thin-film transistors by using chitosan as substrate and
polyvinylpyrrolidone and natural rubber as dielectrics. With PTCDI-C8 as semiconductor, the charge
mobility was about 0.03 cm2

·V−1
·s−1, with a threshold voltage of 0.8 V and an on/off ratio of 100.

This transistor was used as a DNA sensor. The drawback of this approach was that the semiconducting
material, PTCDI-C8, was not degradable. This was also the case for the work of Jo et al. who reported
a biodegradable organic transistor using a solid-state biodegradable electrolyte [129], more precisely
based on a levan polysaccharide and a choline-based ionic liquid. The electrolyte presented a specific
capacitance of 40 µF·cm−2 and the transistor showed low operating voltage. The transistor was applied
to measure the heartbeat of a rat. Yang et al. developed a double-gate InZnO synaptic transistor with
wheat flour solution as an electrolyte [130]. This ion/electron-coupled transistor exhibited excellent
electrical performance at operating voltages below 2 V and worked as a synaptic transistor. However,
the authors did not investigate the toxicity of the dissolution products from InZnO. Martins et al. [46]
went further and described low-temperature-processed p- and n- transistors based on oxide thin-films
and forming CMOS inverters, deposited onto recyclable paper (Figure 29). The p-type semiconductor
is SnO2 and the n-type is GaInZnO. In this work, recyclability was only obtained by separation
and collection of the semiconductors and gold contacts after decomposition of the paper substrate,
which was the only biodegradable material in the device.
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Other kinds of electronic elements have been proposed, for example by Pettersson et al. [131],
who described a ring oscillator based on ion-modulated transistors made from a P3HT/PLLA blend
and deposited on paper. The semiconductor and insulator were mixed together in a solution and
spin-casted onto a paper substrate. Due to the different surface energies, P3HT formed a thin layer on
top of the PLLA one, itself in direct contact with paper. This paper-based ring-oscillator operated at
5 Hz. The authors did not directly study recyclability, but the three-layered architecture was very well
adapted to that, due to its easy separation and collection of every material after disposal.

As shown here, electronics’ active components such as transistors are most often developed
on the basis of partial degradability only. If substrates or even dielectrics are easily derived from
natural materials and maintain their biodegradability properties, a huge effort has to be made,
for semiconductors in particular, who remain poorly degradable.

2.4.3. Antennas

For data transmission, recyclable antennas were reported. For example, Kim et al. described
an antenna with single-ring resonators inkjet-printed on photo paper using a conductive Ag ink.
The structure could separate each constituent of the antenna for easy recycling [132]. Better still,
Akbari et al. proposed truly degradable graphene antenna deposited on cardboard [133] as a promising
low-cost, recyclable, and flexible substrate for wireless electronics. The sheet resistance of their
graphene antenna was 1.9 Ω/sq. A dipole antenna with a length of 143 mm achieved an efficiency of
40% at 889 MHz and a read range of more than 5 m at 950 MHz. In the same spirit, Kanaparthi et al. [134]
described a flexible 2.4 GHz antenna on paper, with conductive tracks in aluminum and cellulose filter
paper being used as a dielectric substrate. The antenna showed a stable performance after hundreds
of bending cycles. The substrate can biodegrade while aluminum is recycled. In a totally original
and different approach, Teng et al. demonstrated liquid metal-based transient circuits applicable
for recyclable electronics [135]. They combine room-temperature liquid metals for connections with
water-soluble PVA for packaging. Such circuits do not shown degradability at all but, instead, a high
recycling efficiency of up to 96% of the metal used due to their liquid state. The authors made an
effective transient antenna using this technique.

2.4.4. Biofuel Cells

Sensors, either external or implanted in the human body, have to be powered. Some dedicated
degradable batteries and supercapacitors have been cited above, but the difficulties have been
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underlined. Instead, and more particularly for implanted sensors, the most promising power supply is
probably the biofuel cell; their biodegradability, or even bioresorption, which are very challenging,
are reviewed below. The microbial fuel cells or other biofuel cells which are not intended to be coupled
with wearable non-invasive sensors or to be impanted in the human body are excluded.

It should also be considered that the frontier between some amperometric biosensors and biofuel
cells is blurred. Indeed, both use catalysts (most often, enzymes) to specifically oxidize a combustible
(typically glucose or sucrose) and reduce the oxidizer (typically molecular oxygen). In a biosensor,
the catalysts are put together on a single electrode; the presence of the analyte in an excess of oxidizer
produces a current that is ideally propotional to the analyte concentration. In a biofuel cell, the catalysts
are put on two separated electrodes; the presence of both combustible and oxidizer produces a voltage
difference between the two electrodes, and eventually a current when the circuit is closed. To obtain
nominal power from a biofuel cell, both a combustible and an oxidizer must be present in optimal
concentrations. However, for a given voltage, if the concentration of one of the two reactants decreases,
the measured current decreases as well. In that sense, a biofuel cell is able to play the role of sensor
for the combustible concentration, providing that the oxidizer is in excess. The first example of such
devices was given by E. Katz et al. in 2001 [136]; since then, a number of examples of biofuel cells
serving as sensors, and even more examples of self-powered sensors, have been described.

Even if not used as self-powered biosensors, because a combustible such as glucose is always
available in body fluids, biofuel cells are extremely convenient power sources for wearable or even
implanted sensors. Hao et al. recently reviewed biofuel cell-powered biosensors [137]. The reader
who is particularly interested in general BFCs’ functioning may refer to the very complete review by
Mano and de Poulpiquet, published in 2018 [138].

The idea of making biofuel cells biodegradable is not recent. However, most of the historical
works described only partly biodegradable devices, and 100% biodegradable fuel cells only appeared in
the last eight years. As an example of a biodegradable biofuel cell, R. Bilewicz and coworkers reported,
in 2013 and 2014, two works [139,140] where they substituted classical soluble mediators, often poorly
biodegradable or even toxic, by single-walled carbon nanotubes (SWCNTs) functionalized with aryl
residues, which facilitate the electron transfer between the enzyme and the electrode. The device is a
very simple cell (Figure 30). The biocathode comprises enzyme (laccase, bilirubin oxidase, etc.) and
SWCNTs, while the anode is made of Zn covered by a protective layer of hydrated zinc phosphate
which allows ion transport and plays the role of membrane. Such a simple biofuel cell was intended to
be implanted, but the practical aspects were not studied in these works.

The group of S. Minteer also envisaged the development of a biodegradable fuel cell in 2006 [141].
They built a biodegradable enzymatic device using soybean oil as the combustible. However, the fuel
cell comprised a Nafion membrane and other components which were not biodegradable. In a later
publication, Minteer and coworkers [142] suggested that other membrane materials could replace
Nafion, such as chitosan or even nanoporous silica. At the time, no examples of such amaterials
were reported in biofuel cells. Since then, however, the development of biodegradable biofuel cells
has accelerated. For example, in 2014, Filip et al. proposed replacing conventional fluorinated
polymers such as Nafion by PLA. Their BFC was made of a BOD biocathode combined with a fructose
dehydrogenase bioanode [143] and offered performances comparable to conventional BFCs.
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Figure 30. Oxygen reduction on an enzymatic biocathode, and scheme of the complete biobattery,
comprising a Zn anode onto which a hydrated zinc phosphate layer was grown, and a glassy carbon
cathode modified by biphenylated SWCNTs and an enzyme. Reproduced from [139] with permission.
Copyright 2013 from Elsevier.

In view of wearable self-powered (e.g., on skin) sensors, paper-based BFCs are adapted well.
Paper can even replace non-degradable materials as a membrane; therefore, such devices were
developed rapidly. For example, Jenkins et al. proposed, in 2012 [144], a partly printed BFC on paper,
using aldose dehydrogenase at the anode and laccase as the cathode, with the current collectors being
carbon plates. However, the mediators were osmium-based complexes or other conventional inorganic
mediators, which are potentially harmful. Shitanda et al. [145] reported mediator-less porous carbon
inks screen-printed on paper to make a BFC with a very high-power output of 0.12 mW·cm−2 at
0.4 V (Figure 31), better adapted to wearable power devices. Most components of the device were
degradable, and the design was well-adapted to wearable power sensors. Wu et al. [146] also published
screen-printed electrodes on paper, with the substrate also acting as a membrane. With fructose
dehydrogenase and bilirubin oxidase, a maximum power output of 7.9 µW was produced. No mediator
was used, which makes the device fully degradable. In situations where biological fluids are not easily
accessible, or carry little oxygen, air-breathing BFCs may be more pertinent. From this perspective,
Ciniciato et al. [147] described air-breathing, printed paper-based biocathodes based on bilirubin
oxidase, which were mediator-less. They demonstrated a stable current output (under 0.3V) over
several hours. The reader particularly interested by these aspects may refer to the work of Desmet et al.,
published in 2015, where paper-based biofuel cells and self-powered biosensors [148] were reviewed.
The reader can also refer to the work of Bandodkar and Wang, who published a very complete review
dealing with wearable fuel cells, in particular, non-invasive ones intended to be placed on skin [149].
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Figure 31. Sceen-printed, paper-based carbon electrodes as bioanodes and biocathodes for a
glucose oxidase/bilirubin oxidase BFC. SBR: styrene butadiene rubber. PTFE: polytetrafluoroethylene.
Ketjenblack: superconducting carbon black. Reproduced from [145] with permission. Copyright The
Royal Society of Chemistry, 2013.
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Wang and coworkers particularly developed BFCs by relying on lactate oxidation, which is the
most available combustible on the skin, i.e., in sweat. In this case, the oxidizer is O2. For example,
Jia et al. proposed a lactate/O2 BFC embedded in a wristband, which is able to power a watch (Figure 32)
but is also intended to power a skin sensor [150].
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Figure 32. (a) The wristband biofuel cell, its DC/DC converter and illustration of the reaction taking place
at the two electrodes. (b) wristwatch powered by human sweat. Adapted with permissionfrom [150].
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To achieve good performances while being biocompatible, electrode materials are determined.
In this domain, the work of Holzinger and coworkers is significant [151]. In particular, they developed
efficient buckypaper-based BFCs for powering implantable devices. Buckypaper is a self-supported
film of carbon nanotubes which looks like black paper, with excellent electronic conducting properties.
A large amount of work has been published reporting the use of this material, which is probably the
most successful material used in implantable BFCs. However, actual biodegradability was, as far as
we know, never studied.

Very recently, Tominaga et al. published a truly biodegradable enzymatic BFC [152] made with
cellulose nanofibers as a substrate, mixed with carbon MWCNTs to make electrodes. Compared to
BFCs based on buckypaper, the performances were lower, with a maximum voltage and a maximum
current density of 434 mV and 176 µA·cm−2, respectively, and a maximum power output of 27 µW·cm−2

(Figure 33).Sensors 2020, X, x FOR PEER REVIEW  37 of 58 
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proportional to the ethanol concentration. At saturation of ethanol, the VOC is 0.24 V (Figure 34). 

This example seems to be more of a proof of concept than a real demonstration of applicability; 
however, for micromachines and sensors that have to be ingested, typically for analysis of the 
digestive tract, it could certainly make the treatment of the medical act more accepted by the patient 
when natural materials are to be ingested rather than lithium batteries. This, and more generally 
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Figure 33. Illustration of the cellulose nanofiber (CNF)-based electrode in an enzymatic BFC. Reproduced
from [152] under Creative Commons Attribution Non-Commercial 3.0 Unported Licence.

Even better than the wearable and biodegradable cells, is the edible biofuel cell, described for
the first time by J. Wang and coworkers [153]. The authors fabricated an alcohol sensor with only
food materials, without any kind of external chemicals. Enzymes were brought by mushroom extracts
for the anodic compartment (ethanol oxidase, AOx, and its natural mediator) and apple extracts for
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the cathodic one (polyphenol oxidase, PPO, and its natural mediator), while charcoal was used for
the conductive electrode, along with vegetable oil as a binder. The device provides a voltage (VOC)
proportional to the ethanol concentration. At saturation of ethanol, the VOC is 0.24 V (Figure 34).Sensors 2020, X, x FOR PEER REVIEW  38 of 58 
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developped by this device is ca. 280 μW cm−2 at open circuit. Reproduced from [153] with permission. 
Copyright 2018 Royal Society of Chemistry. 
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described a more accomplished wireless pressure sensor made entirely of biodegradable materials. 
A Zn/Fe bilayer was used as the conducting material, and PLA and PCL as the dielectric and 
structural materials. Zn degrades only very slowly under normal conditions, which is why Fe was 
used: by galvanic coupling, it activates Zinc and increases its degradation rate. Immersed in a saline 
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the performances of their sensor for continuous cardiovascular monitoring, by the acquisition of the 
blood pulse wave signal on carotid and femoral arteries.  

 

Figure 34. (A) Schematic of the edible ethanol biofuel cell serving as ethanol sensor, into which
all components come from edible products. (B) Reactions occuring at the anodic and cathodic
compartments. AOx is for alcohol oxidase, while PPO is for polyphenol oxidase. The maximum power
developped by this device is ca. 280 µW cm−2 at open circuit. Reproduced from [153] with permission.
Copyright 2018 Royal Society of Chemistry.

This example seems to be more of a proof of concept than a real demonstration of applicability;
however, for micromachines and sensors that have to be ingested, typically for analysis of the digestive
tract, it could certainly make the treatment of the medical act more accepted by the patient when
natural materials are to be ingested rather than lithium batteries. This, and more generally bioresorbale
biofuel cells, are probably promising for future developments.

2.4.5. Sensors as a Whole

Let us consider now not only basic electronic elements, but sensors as a whole. Annese et al. [154]
proposed, in 2014, a biodegradable pressure sensor made of gold-printed patterns on a polycaprolactone
substrate. However, only the substrate was degradable. Luo et al. [155] described a more accomplished
wireless pressure sensor made entirely of biodegradable materials. A Zn/Fe bilayer was used as the
conducting material, and PLA and PCL as the dielectric and structural materials. Zn degrades only
very slowly under normal conditions, which is why Fe was used: by galvanic coupling, it activates
Zinc and increases its degradation rate. Immersed in a saline solution, the sensor remained stable and
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functional for more than 80h before starting to degrade. Boutry et al. [156] also published a pressure
sensor made of biodegradable materials, capable of detecting a weight of 5 mg. A view of the device is
shown in Figure 35. It was mainly a flexible capacitor with a biodegradable elastomer of poly(glycerol
sebacate) (PGS) between the top and bottom Fe-Mg electrodes. The electrodes were fabricated by
casting a thin PVA adhesive layer on top of a PHB/PHV film, followed by the evaporation of Fe and
Mg electrodes. It was shown that this device degrades slowly, depending on the conditions. PGS alone
lost ca. 15−20% of its initial weight after a few weeks, while PHB/PHV degrades completely after 10
weeks. The authors demonstrated the performances of their sensor for continuous cardiovascular
monitoring, by the acquisition of the blood pulse wave signal on carotid and femoral arteries.Sensors 2020, X, x FOR PEER REVIEW  39 of 58 
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light weights such as a bee (22.5 mg), and a grain of rice (21.8 mg). (Right) capacitance changes as a 
function of the weight of the object. Adapted from [156] with permission. Copyright © 2015 Wiley 
and Sons. 

After improvements, the same authors published, in 2019, a biodegradable and flexible  
arterial-pulse sensor for the wireless monitoring of blood flow [157], on the same basis and with the 
same components as described in their 2015 publication. The device was fabricated by the lamination 
of soft Mg tracks, a PGS dielectric layer, a poly(octamethylene maleate anhydride citrate) (POMaC), 
PHB/PHV as packaging layers, and PLLA as a spacer between layers when needed. The packaging 
was an elastomeric POMaC layer placed in direct contact with the artery, whereas the stiffer 
PHB/PHV layer was in contact with the surrounding muscles, thus producing a device that is more 
sensitive to artery expansion than respiratory motion (all constituents’ formulas are given in  
Table 2). The sensor could be wrapped around arteries with a diameter smaller than 1 mm. 

Hosseini et al. also reported a flexible pressure sensor [158] based on films of macrometer-sized 
spherules of β-glycine embedded in a chitosan polymer, with glycine forming a ferroelectric phase. 
Prepared by drop-casting, these biodegradable films presented a good sensitivity of about  
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Figure 35. (a) Fabrication procedure of the fully biodegradable and flexible pressure sensor array from
microstructured poly(glycerol sebacate) (PGS), polyhydroxybutyrate/polyhydroxyvalerate (PHB/PHV)
and Fe/Mg as conductors. (b) SEM images of the microstructured PGS films (PGS was formed into a
PDMS mold). (c) Flexible PGS film. (d) (left) Picture of the sensor array of 4 × 5 pressure-sensitive
elements and capacitance change distribution on the sensor array upon placing light weights such as a
bee (22.5 mg), and a grain of rice (21.8 mg). (right) capacitance changes as a function of the weight of
the object. Adapted from [156] with permission. Copyright© 2015 Wiley and Sons.

After improvements, the same authors published, in 2019, a biodegradable and flexible
arterial-pulse sensor for the wireless monitoring of blood flow [157], on the same basis and with the
same components as described in their 2015 publication. The device was fabricated by the lamination
of soft Mg tracks, a PGS dielectric layer, a poly(octamethylene maleate anhydride citrate) (POMaC),
PHB/PHV as packaging layers, and PLLA as a spacer between layers when needed. The packaging
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was an elastomeric POMaC layer placed in direct contact with the artery, whereas the stiffer PHB/PHV
layer was in contact with the surrounding muscles, thus producing a device that is more sensitive to
artery expansion than respiratory motion (all constituents’ formulas are given in Table 2). The sensor
could be wrapped around arteries with a diameter smaller than 1 mm.

Hosseini et al. also reported a flexible pressure sensor [158] based on films of macrometer-sized
spherules of β-glycine embedded in a chitosan polymer, with glycine forming a ferroelectric
phase. Prepared by drop-casting, these biodegradable films presented a good sensitivity of about
2.8 ± 0.2 mV kPa−1, comparable to conventional piezoelectric materials. Using a remarkably simple
approach, Kanaparthi et al. [159] reported the fabrication of a biodegradable interdigitated capacitive
touch sensor just by drawing an interdigitated pattern on filter paper using a graphite pencil (Figure 36).
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Figure 36. (a) Picture of the interdigitated capacitive sensor, with tracks made remarkably simply with
a graphite pencil on paper. (b) Electrical details of the sensor and its capacitances. (c) Photograph
of the functioning touchpad. (d) Variation in capacitance of a single sensor upon finger contact.
Adapted from [159] with permission. Copyright 2017 from Elsevier.

Zhong et al. [160] described a kind of paper-based power source which could work as a mechanical
sensor. It was based on the measurement of the electrostatic charges generated by the internal
movement of the device, composed of two sheets: one of PTFE/Ag/paper and the other of Ag/paper.
A Kapton tape was put around the device so as to form an arch-shape with a space in-between the two
sheets. The size was 2.5 × 2 cm2 (Figure 37). The output power of the device reached ca. 90 µW· cm−2.
Beyond the possibility of producing power, one of the applications of such a device is as a paper-based,
disposable and degradable deformation sensor. For example, the authors measured that simply turning
a book page generates a current of 4.6 mA under a voltage of 2.4 V.

Wang et al. [161] reported, in 2020, a very nice work where they described a biodegradable
sensor obtained from polysaccharides, which was able to monitor human breathing and ambient
humidity. Au/Cr electrodes were evaporated on a degradable biocomposite of chitosan. Functionalized
polysaccharides (chitin derivatives) were also spin-coated onto the device, which made the sensor
easier to apply to the skin. The authors showed that it could completely decompose when placed in
water (Figures 38 and 39).
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Figure 37. (a) Scheme illustrating the fabrication process of the paper generator. (b—d) SEM images of
the paper coated with an Ag layer (left), the cross-section of the Ag-paper covered by PTFE (middle)
and the top view of the Ag–paper after spin-coating with PTFE. Reproduced from [160]. Copyright
2013, The Royal Society of Chemistry.
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Figure 38. (a) Scheme of the life cycle for the degradable and natural sensor made of chitin, chitosan
and lignin. (b) Details of the humidity sensor on skin, with the chemical structures of its constituents.
(c) Micrograph of the electronic structure of the device. (d) SEM image of functionalized polysaccharide
film. Reproduced from [161] with permission. Copyright© 2020 L. Wang et al. Exclusive Licensee
Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution
License (CC BY 4.0).
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Figure 39. (a) Mechanism for the preparation of the biodegradable substrate. (b) Illustration of the
flexible device. (c) Changes in current as a function of humidity. (d) Pictures of the progressive
degradation upon insertion into water (pH 5.5) at room temperature. (e) Humidity-sensing properties:
current under different RH (voltage bias of 1 V); Relative current changes under increasing %RH;
Dynamic current change under 85%RH for 20s; Relative current changes upon repetitive exposure to
95%RH. Adapted from [161] with permission. Copyright© 2020 L. Wang et al. Exclusive Licensee
Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution
License (CC BY 4.0).
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Biodegradable temperature sensors have been also described. One of the best examples is
from Salvatore et al. [162], who reported a temperature sensor made of Mg tracks and connectors,
a biodegradable elastomer (Ecoflex), silicon nitride and silicon dioxide. They studied its dissolution
kinetics in water and applied it for food quality tracking (Figure 40).Sensors 2020, X, x FOR PEER REVIEW  44 of 58 
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element (scale bar 50 μm). (c) Picture of the whole biodegradable sensors (scale bar 1 mm). Image of 
the sensor (d) before immersion in water–NaCl solution (150 mmol) at 25 °C, then (e) after 36 days 
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a conventional negative temperature coefficient (NTC) thermistor. (h) Example of use: the sensor is 
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complexity of biosensors is higher than that of their physical counterparts, comprising more 
components. Some examples are available, however, e.g., that of Li et al. [163], who reported, in 2020, 
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Figure 40. (a) The sensor consists of Mg serpentine, interconnections and contact pads. Si3N4, SiO2

and Ecoflex are used as encapsulation layers. (b) Optical micrograph or a part of the serpentine sensing
element (scale bar 50 µm). (c) Picture of the whole biodegradable sensors (scale bar 1 mm). Image of
the sensor (d) before immersion in water–NaCl solution (150 mmol) at 25 ◦C, then (e) after 36 days
and (f) after 67 days. (g) Temperature measurement using the biodegradable sensor, compared with a
conventional negative temperature coefficient (NTC) thermistor. (h) Example of use: the sensor is stick
on a fish to track shipping and storage temperatures. Adapted from [162] with permission. © 2017
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

It appears that relatively few (bio)degradable (bio)chemical sensors have been reported to date,
while most of the sensors described are physical sensors. This can be explained by the fact that
the complexity of biosensors is higher than that of their physical counterparts, comprising more
components. Some examples are available, however, e.g., that of Li et al. [163], who reported, in 2020,
an electrochemical flexible and biodegradable NO sensor with a low detection limit (4 nM) and a wide
sensing range (0.01–100 µM), able to continuously monitor NO levels in living mammals for several
days before degradation (Figure 41).
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Beyond the design, the techniques used to fabricate those devices are also important. 
Conventional methods utilizing clean room technologies are, of course, still valid, but with the 
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deposition of thin films and use of fragile active or substrate materials (paper or other temperature-
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Figure 41. (a) Illustration of the bioresorbable NO sensor. The sensor is made of Au electrodes,
poly(eugenol) and poly(L-lactic acid)–poly(trimethylene carbonate) (PLLA–PTMC) as substrate.
NO concentration is measured by amperometry. The sensor is implanted in the joint cavity of
rabbit. (b) Optical and SEM images of the surface morphology of Au electrodes bearing a poly(eugenol)
film. (c,d) Pictures of the NO sensor upon bending and stretching. (e) Pictures of the sensor acquired
during accelerated degradation in PBS at 65 ◦C. Adapted from [163], licensed under a Creative
Commons Attribution 4.0 International License.

2.5. Fabrication Methods

Through the above sections, renewable and/or (bio)degradable materials have been reviewed,
then the devices made of these materials. It was shown that not only materials, but also the design of
the circuits themselves, can make devices more or less efficiently degradable. For example, the thinness
of the conductive tracks, of the substrate or of the dielectrics makes them more easily and rapidly
degraded. Following another approach, the layering of the components allows a more efficient
separation when the objects are intended to be recycled rather than to self-degrade.

Beyond the design, the techniques used to fabricate those devices are also important. Conventional
methods utilizing clean room technologies are, of course, still valid, but with the emerging technologies
with a low footprint, and allowing for layer-by-layer fabrication, the deposition of thin films and use
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of fragile active or substrate materials (paper or other temperature-sensitive materials) may be more
pertinent. For these reasons, printing technologies are gaining in importance. The reader can refer to
a number of reviews focused on printing techniques in general [164–167]. There are fewer reviews
which detail printing techniques for (bio)degradable devices. Kanaparthi published, in 2016 [168],
a report on eco-friendly ways to fabricate flexible and degradable electronics by means of printing
methods, in particular, by using degradable substrates such as paper, for all applications where size
is not a constraint. Kamarudin et al. published a more recent (2020) [60] review focusing on green
fabrication strategies for sensors, with the utilization of eco-friendly materials and various printing
methods. Reusability is also discussed.

For the sake of biodegradability, but also for historic reasons (printing technologies were initially
developed for reproducing texts on paperbooks), most printing strategies rely on paper as a substrate.
For example, Peng et al. [169] described, in 2014, the screen-printing of source, drain and gate electrodes
of a dinaphthothienothiophene (DNTT)/parylene C transistor matrix (Figure 42). Here, degradability
concerned only the substrate and not the active materials.

Sensors 2020, X, x FOR PEER REVIEW  46 of 58 

 

importance. The reader can refer to a number of reviews focused on printing techniques in  
general [164–167]. There are fewer reviews which detail printing techniques for (bio)degradable 
devices. Kanaparthi published, in 2016 [168], a report on eco-friendly ways to fabricate flexible and 
degradable electronics by means of printing methods, in particular, by using degradable substrates 
such as paper, for all applications where size is not a constraint. Kamarudin et al. published a more 
recent (2020) [60] review focusing on green fabrication strategies for sensors, with the utilization of 
eco-friendly materials and various printing methods. Reusability is also discussed. 

For the sake of biodegradability, but also for historic reasons (printing technologies were initially 
developed for reproducing texts on paperbooks), most printing strategies rely on paper as a substrate. 
For example, Peng et al. [169] described, in 2014, the screen-printing of source, drain and gate 
electrodes of a dinaphthothienothiophene (DNTT)/parylene C transistor matrix (Figure 42). Here, 
degradability concerned only the substrate and not the active materials. 

 
Figure 42. (a) SEM image of the semiconducting DNTT (dinaphthothienothiophene) surface. (b) 
Chemical structure of DNTT and of the parylene-C dielectric. (c) SEM image of parylene-C surface. 
(d) Picture of 5 × 5 transistor matrix on Xerox paper. (e) Scheme of the whole transistor on paper. 
Source, drain and gate are scree-printed. (f) Picture of a single transistor on paper. (g) SEM cross-view 
of the parylene-C layer on top of the gate. (h) SEM picture of the paper surface. (i) SEM image of the 
gate surface. Adapted from [169], copyright 2014, with permission from Elsevier. 

More complete was the work of Bihar et al. [170], who described a fully inkjet-printed disposable 
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biorecognition elements, but also degradable or easily recylcable. Bedük et al. [171] also published an 
all-inkjet-printed paper sensor made of PEDOT:PSS (not degradable), functionalized with ZnO 
(degradable) for the amperometric determination of hydrazine. Serpelloni et al. very recently 
published [172] an article where they described other methods than screen-printing or inkjet-printing, 
such as aerosol jet printing, to be deposited on various cellulose-based materials (chromatographic 
paper, photopaper, cardboard) without the intrinsic limitations of inkjet in terms of the viscosity and 
surface tension of the ink. They exemplified their work with multilayer capacitive sensors. 

Other techniques were also described to make recyclable or degradable sensors while 
maintaining the precision and lateral resolution of today’s microelectronics, but, from the 
constatation that most often leads to degraded performances and degraded resolution, another way 
is to try to improve the existing photolithographic process, which also allows industrials to continue 

Figure 42. (a) SEM image of the semiconducting DNTT (dinaphthothienothiophene) surface.
(b) Chemical structure of DNTT and of the parylene-C dielectric. (c) SEM image of parylene-C
surface. (d) Picture of 5 × 5 transistor matrix on Xerox paper. (e) Scheme of the whole transistor on
paper. Source, drain and gate are scree-printed. (f) Picture of a single transistor on paper. (g) SEM
cross-view of the parylene-C layer on top of the gate. (h) SEM picture of the paper surface. (i) SEM
image of the gate surface. Adapted from [169], copyright 2014, with permission from Elsevier.

More complete was the work of Bihar et al. [170], who described a fully inkjet-printed disposable
glucose sensor on paper, with all components not only printed on paper, from the electronics to the
biorecognition elements, but also degradable or easily recylcable. Bedük et al. [171] also published
an all-inkjet-printed paper sensor made of PEDOT:PSS (not degradable), functionalized with ZnO
(degradable) for the amperometric determination of hydrazine. Serpelloni et al. very recently
published [172] an article where they described other methods than screen-printing or inkjet-printing,
such as aerosol jet printing, to be deposited on various cellulose-based materials (chromatographic
paper, photopaper, cardboard) without the intrinsic limitations of inkjet in terms of the viscosity and
surface tension of the ink. They exemplified their work with multilayer capacitive sensors.
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Other techniques were also described to make recyclable or degradable sensors while maintaining
the precision and lateral resolution of today’s microelectronics, but, from the constatation that most
often leads to degraded performances and degraded resolution, another way is to try to improve
the existing photolithographic process, which also allows industrials to continue to use the existing
costly equipments. Following this approach, it is not (bio)degradability which is expected, but an
easier recyclability of the products. For example, Wie et al. [173] described a wafer-recyclable,
environment-friendly transfer printing process which enables multiple reuses of the wafer. Controlled
delamination of the active layer is enabled through a cracking phenomenon in a water environment.
The layer can then be pasted onto any kind of substrate, and eventually removed after use for recycling
(Figure 43).
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The recycling of goods has shown limitations for electronics or for plastics. Most of them are 
incinerated or buried instead of being recycled, with no negligeable part being left uncollected, 
polluting the environment. This failure shows that collection and recycling are not sufficient and 
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Figure 43. (A) Key steps of the fabrication and debonding of thin-film nanoelectronics from conventional
Si wafers; Inset: cross-sectional view of the successive layers. (B) Optical images of the thin films: (left),
on the wafer (scale bar: 2.5 cm); (middle), peeled with a thermally releasable tape; (right) trimmed.
(C) Optical image of arrays of a Si -based temperature sensor pasted on the surface of a cactus pot (scale
bar: 2 cm). Inset: magnified view of the sensor sticker. (D) Corresponding electrical characteristics
for a temperature ranging from 23 to 50 ◦C. Inset: micrograph of the sensor (scale bar: 150 µm).
(E) Environmental temperature measured by the above sensor, compared with a local weather report
over a period of 24 h. Adapted from [173] with permission.

3. Conclusions and Perspectives

The recycling of goods has shown limitations for electronics or for plastics. Most of them are
incinerated or buried instead of being recycled, with no negligeable part being left uncollected,
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polluting the environment. This failure shows that collection and recycling are not sufficient and must
be completed, if not replaced, by self-degradability.

Figure 44 shows the evolution of the number of publications in which the concepts of (a) green
electronics, (b) degradable electronics, (c) biodegradable electronics, (d) bioresorbable electronics,
(e) paper electronics, (f) hydrogel electronics, (g) biodegradable metals, (h) biodegradable sensors and (i)
biodegradable pressure sensors are claimed. If the concept of green electronics was developed far before
2010, we have shown here that recyclability or degradability only relied on the use of biodegradable
substrate such as paper and printing techniques, which both emerged in the beginning of the 2000s,
even if the active materials deposited on these substrates were not degradable. Partly supported by
the early development of biodegradable metals (for other applications), biodegradable electronics
emerged after 2012, along with bioresorbable electronics, driven by the hudge demand in wearable
and implantable sensors and biosensors. Biodegradable sensors (pressure sensors excluded) represent
a progressively larger fraction of these biodegradable electronic devices over time, as well as
biodegradable pressure sensors, which only became significant after 2016. It is a fact that the
simple degradability feature, not for biomedical applications, for which the device must mandatorily
disappear after a given time, but for the simple purpose of decreasing the ecological impact of modern
electronics, was not a driving force until recently, even for marketing. For this reason, the corresponding
sensors took more time to emerge: it is only in 2020 that the number of publications became significant.
Hydrogel-based electronics were the last to emerge, mostly due to the development of degradable,
biodegradable or bioresorbable biofuel cells, batteries and supercapacitors.
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Figure 44. Histograms showing the progress, in terms of publication numbers which use (a) green 
electronics, (b) degradable electronics, (c) biodegradable electronics, (d) bioresorbable electronics, (e) 
paper electronics, (f) hydrogel electronics, (g) biodegradable metals, (h) biodegradable sensors and 
(i) biodegradable pressure sensors. The blue arrow indicates when the publication rate starts to 
increase significantly. 

This review shows various aspects related to transient electronic sensors, from materials, 
fabrication methods, individual electronic components and architecture engineering, to whole 
sensors and their applications. As shown in our review, most truly transient sensors reported to date 
are physical sensors (temperature, humidity, pressure) and extremely few (bio)chemical sensors 
claim full (bio)degradability. This could be explained by the simplicity of physical sensors relative to 
their chemical counterparts, which generally include more functional materials. However, 

Figure 44. Histograms showing the progress, in terms of publication numbers which use (a) green
electronics, (b) degradable electronics, (c) biodegradable electronics, (d) bioresorbable electronics,
(e) paper electronics, (f) hydrogel electronics, (g) biodegradable metals, (h) biodegradable sensors
and (i) biodegradable pressure sensors. The blue arrow indicates when the publication rate starts to
increase significantly.

This review shows various aspects related to transient electronic sensors, from materials, fabrication
methods, individual electronic components and architecture engineering, to whole sensors and their
applications. As shown in our review, most truly transient sensors reported to date are physical sensors
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(temperature, humidity, pressure) and extremely few (bio)chemical sensors claim full (bio)degradability.
This could be explained by the simplicity of physical sensors relative to their chemical counterparts,
which generally include more functional materials. However, (bio)degradable (bio)sensors are also
expected to follow the biodegradability revolution, because products on the market are increasingly
regulated. Most of the technical difficulties come from the fact that several (reactive) chemical
functionalities must be implemented on a chemical sensor and remain active for the lifetime of the
device, while these kind of sensors, conversely to physical sensors, which can be isolated for air or
water, work directly in aqueous media. It is also a fact that the best catalytic materials, which are
mandatory in chemical sensors, are generally non-environmentally friendly materials, because of
their intrinsic reactivity. However, significant efforts must be made quickly in that direction; one way
could be to engineer new materials starting from the already known biodegradable ones (see Table 2)
to which functional groups will be added, a strategy which has not yet been deeply investigated.
The programmed disappearing of non-degradable plastics will probably help.

As shown, active materials such as semiconductors are still in the stone age in terms of
degradability. The reason for this is probably that, to date, their electrical performances remained
significantly lower than those of their conventional inorganic or organic non-degradable counterparts,
so the replacement cannot be viable. However, for most sensing applications, the highest electronic
performances are not needed, so these criteria should not impede the development of (bio)degradable
or bioresorbable sensors.

To conclude, as underlined in this review, apart from materials, the design of the devices itself
plays a role in their degradability. In that sense, sensors under the form of thin films, stickers or even
tattoos, which are extremely thrifty in materials and which have been developing fast in recent years,
are another part of the answer.
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