
sensors

Article

Feature Selection Model Based on EEG Signals for
Assessing the Cognitive Workload in Drivers

Patricia Becerra-Sánchez 1,* , Angélica Reyes 1 and Antonio Guerrero-Ibañez 2

1 Department of Computer Architecture, Polytechnic University of Catalonia, 08034 Catalonia, Spain;
mreyes@ac.upc.edu

2 Telecommunications Department, University of Colima, 28040 Colima, Mexico; antonio_guerrero@ucol.mx
* Correspondence: ebecerra@ac.upc.edu; Tel.: +34-934-137-000

Received: 21 September 2020; Accepted: 13 October 2020; Published: 17 October 2020
����������
�������

Abstract: In recent years, research has focused on generating mechanisms to assess the levels of
subjects’ cognitive workload when performing various activities that demand high concentration
levels, such as driving a vehicle. These mechanisms have implemented several tools for analyzing
the cognitive workload, and electroencephalographic (EEG) signals have been most frequently used
due to their high precision. However, one of the main challenges in implementing the EEG signals
is finding appropriate information for identifying cognitive states. Here, we present a new feature
selection model for pattern recognition using information from EEG signals based on machine
learning techniques called GALoRIS. GALoRIS combines Genetic Algorithms and Logistic Regression
to create a new fitness function that identifies and selects the critical EEG features that contribute to
recognizing high and low cognitive workloads and structures a new dataset capable of optimizing the
model’s predictive process. We found that GALoRIS identifies data related to high and low cognitive
workloads of subjects while driving a vehicle using information extracted from multiple EEG signals,
reducing the original dataset by more than 50% and maximizing the model’s predictive capacity,
achieving a precision rate greater than 90%.
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1. Introduction

Driving a vehicle is a complex activity exposed to demands that continually change due to
different factors, such as the speed limit, obstacles on the road, and traffic, among others. When
performing this activity, drivers must have a high degree of concentration, increasing the demand
related to the cognitive workload, or cause vehicle accidents due to carelessness [1]. In recent years,
various tools have been used to assess the demand for the cognitive workload generated in drivers,
such as subjective measures [2,3], vehicle performance measures [4,5], and physiological measures [6,7],
with electroencephalographic (EEG) signals having been the most frequently used to identify cognitive
states due to their high precision [8].

EEG signals allow the behavior of a person’s brain activity to be analyzed in real-time. However,
this type of physiological signal generates a lot of information per second, which increases proportionally
according to the collection time and the number of sensor channels, consequently producing large
volumes of data and resulting in complex and robust treatment [9,10].

One of the main challenges facing EEG signals is finding the right information for identifying
cognitive states. Considering this, feature selection methods have been developed for pattern
recognition using physiological signals. The feature selection algorithms (FS) aim to find a set
of features with relevant information or data that can identify or describe an event, allowing the
performance of the prediction models to be maximized [11].
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Many investigations have developed models implementing FS to identify the cognitive workload
using the physiological signal’s information. In [12], it is shown that soft computing-based EEG
classification by extracting and then selecting optimal features can produce better results. The system
displays an accuracy of 93.05% and 85.00%, obtaining a low performance in real-time environments.
In [13], an attention-based convolutional recurrent neural network (ACRNN) is presented to extract
features from EEG signals and improve the emotion recognition accuracy. The system achieves average
accuracies of 93.72% and 97.73% and improves the emotion recognition accuracy by approximately
2% and 1%. In [14], an effective multi-level feature guided capsule network is proposed to extract
characteristics from the EEG signals and determine the emotional states. The method achieves an
average accuracy of 97.97% and 94.59% and presents network complexity. In [15], a channel selection
method is presented to select an optimal subset of EEG channels using normalized mutual information
(NMI). The system achieves a 74.41% and 73.64% accuracy and the channel selection method slightly
improves the recognition rate. In [16], a system for selecting and classifying EEG signals based on
common spatial patterns (CSP) is proposed, obtaining an 84.8% accuracy. The system does not include
a parameter regularization method and does not consider a real-time environment. In [17], eight
different machine learning and feature selection algorithms are used to reduce the number of features
and improve the classification performance, achieving a 97.74% accuracy. Some algorithms slightly
reduce its performance after feature reduction. In [18], a system for selecting and classifying mental
stress that implements statistical techniques and SVM, Naive Bayes, and Multilayer Perceptron is
proposed, achieving a 92.85% accuracy. This system uses information from a small dataset. In [19],
an emotion recognition system for affective states is developed based on the EEG signal using a
support vector machine (SVM) classifier. The classifier obtains a 75% and 71.21% performance accuracy
and presents problems associated with identifying negative emotions. In [20], the authors present a
quaternion-based signal analysis technique based on EEG signals to extract the registered cognitive
activity features. The model achieves an 86.44% accuracy and requires a minimum limit of samples
to obtain better results, increasing the analysis and information processing time. In [21], an on-line
classification method based on common spatial patterns is presented for feature extraction, using
SVM as a classifier and achieving an 86.3%, 91.8%, and 92.0% accuracy. In [22], different classifiers
are developed using linear discriminant analysis, quadratic discriminant analysis, k-nearest neighbor,
SVM linear, the SVM radial basis function (RBF), and naive Bayesian based on EEG signals. SVM
obtains the best accuracy of 82.14%. In these systems, the strategy employed to extract the information
can cause a loss of vital data. In [23], the authors propose a system for detecting vigilance levels
using EEG signals and combine SVM algorithms with multi-particle optimization, obtaining an 84.1%
accuracy. The model displays a low prediction performance in some predictions due to the complexity
of the data. In [24], the authors develop a model for predicting the mental workload based on a linear
discrimination function, achieving an 85% accuracy. In this model, some physiological measures
cannot effectively reflect the mental workload, affecting the model’s prediction precision. In [25], the
common spatial pattern algorithm is used to extract information from EEG signals and a classifier is
developed using the extreme learning algorithm, obtaining an 87.5% accuracy. The model presents
a high sensitivity to the kernel configuration, affecting its performance. In [11], the evolutionary
computing algorithm is used to find an optimal dataset, obtaining a 96.97% accuracy. This model
presents premature convergence problems in the evolutionary algorithm. Finally, in [26], the Bayesian
low learning algorithm is implemented to select a dataset. SVM with RBF is employed, achieving an
89.7% accuracy. This model presents problems in the data collection phase.

In summary, several models have been proposed for pattern recognition in recent years using FS
algorithms based on physiological signals. The models described above have been based on traditional
techniques that reduce the minimum percentage of the original dataset features, obtaining robust
prediction models or analyzing the information from a specific signal to compare several features using
small datasets and discarding relevant information. Here, we propose a new feature selection model
for pattern recognition using information from EEG signals called Genetic Algorithms and Logistic
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Regression for the Structuring of Information (GALoRIS). GALoRIS combines genetic algorithms
(GAs) and logistic regression (LoR), to create a new fitness function and explore the fusion of EEG
information, identifying the critical features that contribute to recognizing cognitive states, optimizing
the classification process. The dataset obtained from applying the FS algorithm is used as the index for
recognizing cognitive states in the predictive model.

GAs are adaptive and robust computational procedures based on the mechanism of natural
genetic systems inspired by the natural evolution theory of Charles Darwin [27]. GA is used to solve a
complex model’s optimization problems, by looking for the best feature set, especially when the search
space is large and complex [18].

Traditional GAs are based on the evolutionary process, which consists of selecting and combining
different characteristics, evaluating each dataset to obtain a set that best adjusts the resolution of the
problem [28]. The evolutionary process is performed in parallel in multiple directions, creating large
populations, ruling out possible solutions, and generating computationally expensive models [29].

To address this problem, we propose a new fitness function based on the LoR classifier’s
performance, in order to guide the GA search direction towards the optimal solution. LoR is a
technique characterized by its effectiveness, simplicity, and use of a low computational resource. LoR
models the probability of each element selected by GA, obtaining the feature’s weight to evaluate its
level of competence with the rest of the possible solutions, eliminating multidirectional searches in
parallel and storing the best features to create new and better populations.

The results obtained from the GALoRIS model are implemented as indexes of EEG signals
for pattern recognition in four classifiers developed with SVM with a linear kernel and RBF, linear
regression (LiR), and k-nearest neighbors (k-NN) and predict two cognitive states: A low and high
cognitive workload.

The main contributions of this paper can be summarized as follows: (Section 2.1) A new collection
criterion method based on statistical techniques is employed to construct an EEG dataset defined as
a search space that GALoRIS uses to explore the information; (Section 2.2) the new feature selection
model called GALoRIS is presented; (Section 2.3) a new chromosomal structure is defined to direct the
search for the features. (Section 2.4); a new fitness function is proposed based on the LoR classifier’s
performance to determine the search direction of GA; (Section 2.5) a new technique for chromosome
selection is proposed; (Section 2.9) an original method is employed to structure the information of
multiple EEG channels, supporting datasets of various sizes; (Section 2.11) a new methodology is
presented for labeling the data that calculates the interval ranges of the information to evaluate the
subject’s cognitive states.

The rest of the work is organized as follows: Section 2 describes the methodology; Section 3
presents the experimentation implemented; the results are presented in Section 4; and finally, the
conclusions and discussions are given in Section 5.

2. Methodology

In this investigation, EEG signal information was collected from subjects while they faced a real
driving scenario. Additionally, information on subjective measures (NASA-Task Load Index (TLX)
and Instantaneous Self-Assessment (ISA)) and vehicle performance measures (error rate (ER)) were
collected to evaluate the cognitive states of the subject during the experiment.

EEG signals were processed using the power spectral density (PSD) to extract the most
representative features in the context of the cognitive workload. These characteristics were defined as
frequency bands: Delta (0.5–4 Hz); Theta (4–8 Hz); Alpha (8–12 Hz); Beta (12–30 Hz); and Gamma
(30–100 Hz) [30].

To analyze the collected information, Student’s t-test was used to identify statistically significant
differences in the data collected during the experiment and establish a collection criterion to discard
information, in order to construct a new dataset defined as a search space that GALoRIS uses to explore
the data. Pearson’s correlation coefficient was also implemented to identify the association between
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ISA, NASA-TLX, and ER and the EEG signal, in order to assess whether the subject experienced an
internal cognitive workload during the different phases of the experiment [31].

GALoRIS was developed to recognize the most representative features that identify the subject’s
low and high cognitive workload states while driving. GALoRIS selects and evaluates the features,
identifying the key elements that contribute to recognizing cognitive states and restructuring a new
dataset that is implemented in four classifiers developed with the supervised algorithms: SVMRBF,
SVMLinear, k-NN, and RiL.

The general architecture of the cognitive workload prediction model is shown in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 24 

 

GALoRIS was developed to recognize the most representative features that identify the subject’s 
low and high cognitive workload states while driving. GALoRIS selects and evaluates the features, 
identifying the key elements that contribute to recognizing cognitive states and restructuring a new 
dataset that is implemented in four classifiers developed with the supervised algorithms: SVMRBF, 
SVMLinear, k-NN, and RiL.  

The general architecture of the cognitive workload prediction model is shown in Figure 1. 

 
Figure 1. The general architecture of the vehicle driver’s low and high cognitive workload state 
prediction model. 

2.1. Statistical Analysis 

Student’s t-test was conducted for ISA, NASA-TLX, ER, and the EEG frequency bands signaled 
the p-values where each measure was contrasted with two cognitive workload states. The established 
hypotheses were 

H0 < 𝑝, there is no significant difference between the information obtained during the two 
experiments, and 

H1 > 𝑝,  there is a significant difference between the information obtained during the two 
experiments, 
where, if the value of the error probability (𝑝) of the samples is greater than the significance level of 𝛼 = 0.05, the hypothesis established in 𝐻  is rejected.  

Student’s t-test results of the EEG signals were used to establish an EEG information collection 
criterion to construct the search space with relevant information that GALoRIS will use to explore the 
EEG signal’s information. The criterion can be defined as 𝑝 ≤ 𝛼 ∴ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒,  

where samples of EEG with a value of 𝑝 ≤ 𝛼 are set within the search space. 
Additionally, as in [32–35], Pearson’s correlation between the implemented measures was used 

to determine the association between measures and cognitive states as a validation method for the 
subject’s internal state. A hypothesis was defined, where, if the EEG signals were correlated with the 
subjective and vehicle performance measures, the subject experienced the same level of cognitive 
workload internally and externally.  

Pearson’s correlation coefficient identifies one variable’s relation by calculating an index that 
measures the degree of connection between the variables. It was applied between the ISA, NASA-
TLX, TE, delta, theta, alpha, beta, and gamma measurements. The analysis was performed by 
correlating the average of the value obtained from each session per measurement (8 measures * 2 
tasks) where, if the correlation range was 0, there was no correlation, and if it was −1 or +1, there was 
a perfect correlation [36]. 

2.2. GALoRIS 

In this section, the architecture of the GALoRIS model is presented. As shown in Figure 2, 
GALoRIS proposes a new design for the chromosome’s structure and the fitness function based on 
LoR to model the feature’s weight and determine the direction of the search. Moreover, GALoRIS 
implements a new selection technique for efficiently identifying the best dataset of features. The 
model consists of six phases, and they are presented below. 

Figure 1. The general architecture of the vehicle driver’s low and high cognitive workload state
prediction model.

2.1. Statistical Analysis

Student’s t-test was conducted for ISA, NASA-TLX, ER, and the EEG frequency bands signaled
the p-values where each measure was contrasted with two cognitive workload states. The established
hypotheses were
H0 < p, there is no significant difference between the information obtained during the two
experiments, and

H1 > p, there is a significant difference between the information obtained during the
two experiments,

where, if the value of the error probability (p) of the samples is greater than the significance level
of α = 0.05, the hypothesis established in H1 is rejected.

Student’s t-test results of the EEG signals were used to establish an EEG information collection
criterion to construct the search space with relevant information that GALoRIS will use to explore the
EEG signal’s information. The criterion can be defined as

pEEG ≤ α ∴ search space,

where samples of EEG with a value of p ≤ α are set within the search space.
Additionally, as in [32–35], Pearson’s correlation between the implemented measures was used

to determine the association between measures and cognitive states as a validation method for the
subject’s internal state. A hypothesis was defined, where, if the EEG signals were correlated with
the subjective and vehicle performance measures, the subject experienced the same level of cognitive
workload internally and externally.

Pearson’s correlation coefficient identifies one variable’s relation by calculating an index that
measures the degree of connection between the variables. It was applied between the ISA, NASA-TLX,
TE, delta, theta, alpha, beta, and gamma measurements. The analysis was performed by correlating
the average of the value obtained from each session per measurement (8 measures * 2 tasks) where,
if the correlation range was 0, there was no correlation, and if it was −1 or +1, there was a perfect
correlation [36].

2.2. GALoRIS

In this section, the architecture of the GALoRIS model is presented. As shown in Figure 2,
GALoRIS proposes a new design for the chromosome’s structure and the fitness function based on
LoR to model the feature’s weight and determine the direction of the search. Moreover, GALoRIS



Sensors 2020, 20, 5881 5 of 25

implements a new selection technique for efficiently identifying the best dataset of features. The model
consists of six phases, and they are presented below.Sensors 2020, 20, x FOR PEER REVIEW 5 of 24 
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2.3. Population

The population is a set defined as an individual or chromosome that represents a possible solution
to the problem. The chromosome comprises elements known as genes that are first instantly selected
at random. Then, they are modeled through the fitness function.

A matrix defined as a feature space is built to create the chromosomes, where each element of the
matrix presents a gene that the algorithm selects to build a chromosome. The search space is defined
as presented in Equation (1):

SearchSpace =
[
Deltach1...n , Thetach1...n , Betach1...n , Gammach1...n

]
, (1)

where the channels of the delta band are organized first, followed by the channels of the theta, alpha,
beta, and gamma bands, following the frequency range order. chn represents the channels of each band,
defined as presented in Equation (2):

chn = [AF3, AF4, F3, F7, F8, FC5, O2, P8, T8], (2)

where chn must meet the collection criterion PEEG ≤ a ∴ ∈ Search Space. These channels are the key
areas of the brain for detecting driving fatigue [37]. The dataset format for the search space is frequency
bands × channel × sample number (5 × 9 × 8210). All the information is standardized in a range of
{0, 1}.

Furthermore, a new chromosome’s structure is defined. The structure contains the features and
parameters evaluated for the chromosome to direct the search of elements. The general form of the
structure is presented in Figure 3.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 24 

 

2.3. Population 

The population is a set defined as an individual or chromosome that represents a possible 
solution to the problem. The chromosome comprises elements known as genes that are first instantly 
selected at random. Then, they are modeled through the fitness function.  

A matrix defined as a feature space is built to create the chromosomes, where each element of 
the matrix presents a gene that the algorithm selects to build a chromosome. The search space is 
defined as presented in Equation (1): 𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑝𝑎𝑐𝑒 = [𝐷𝑒𝑙𝑡𝑎 … , 𝑇ℎ𝑒𝑡𝑎 … , 𝐵𝑒𝑡𝑎 … , 𝐺𝑎𝑚𝑚𝑎 … ], (1) 

where the channels of the delta band are organized first, followed by the channels of the theta, alpha, 
beta, and gamma bands, following the frequency range order. 𝑐ℎ  represents the channels of each 
band, defined as presented in Equation (2): 𝑐ℎ = [𝐴𝐹3, 𝐴𝐹4, 𝐹3, 𝐹7, 𝐹8, 𝐹𝐶5, 𝑂2, 𝑃8, 𝑇8], (2) 

where 𝑐ℎ  must meet the collection criterion 𝑃 ≤ 𝑎 ∴ ∈ 𝑆𝑒𝑎𝑟𝑐ℎ 𝑆𝑝𝑎𝑐𝑒. These channels are the key 
areas of the brain for detecting driving fatigue [37]. The dataset format for the search space is 
frequency bands ×  channel ×  sample number (5 ×  9 × 8210). All the information is standardized 
in a range of {0, 1}. 

Furthermore, a new chromosome’s structure is defined. The structure contains the features and 
parameters evaluated for the chromosome to direct the search of elements. The general form of the 
structure is presented in Figure 3. 

 
Figure 3. Chromosome structure is built with the information of the selected genes and the weight of 
each element. 

Here, 𝑔𝑒𝑛  represents the chromosome genes encoded in a binary chain 𝑔𝑒𝑛 ∈ {0,1} 𝑖 =1,2, … , 𝑛; whenever the gene’s value is 1, the feature is selected to form the new chromosome and 
continue the evolutionary process. 𝐴𝑃  represents the adaptation parameters used as evaluation 
criteria to determine whether the chromosome continues in the evolutionary process. 

2.4. Fitness Function 

The fitness function (FF) evaluates each proposed chromosome’s quality to find the best 
combination of genes while maintaining a high genetic diversity in the population. The FF calculated 
for each chromosome generates the adaptation parameters (𝐴𝑃) based on the logistic regression 
algorithm’s performance. The parameters explore the chromosome’s properties to determine its 
ability to compete with other chromosomes. The chromosome’s features are divided into two sets. 
The first set builds the LoR model, and the second set is used to assess the quality of the chromosome 
and explore the effectiveness of the features according to the 𝐴𝑃 criteria. Equation (3) presents the 
general logistic regression model employed to calculate the 𝐴𝑃:  𝑙𝑜𝑔𝑖𝑠𝑡 = ( ),  

where 𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = (𝛽 + ∑ 𝛽 𝐵𝑎𝑛 ), (3) 

where 𝛽  is the intercept, 𝐵𝑎𝑛  represents the chromosome’s selected channels, and 𝛽  is the 
estimation coefficient calculated with the logit function for each variable 𝐵𝑎𝑛 . It determines the 

Figure 3. Chromosome structure is built with the information of the selected genes and the weight of
each element.

Here, genn represents the chromosome genes encoded in a binary chain gen ∈ {0, 1} i = 1, 2, . . . , n;
whenever the gene’s value is 1, the feature is selected to form the new chromosome and continue
the evolutionary process. APn represents the adaptation parameters used as evaluation criteria to
determine whether the chromosome continues in the evolutionary process.

2.4. Fitness Function

The fitness function (FF) evaluates each proposed chromosome’s quality to find the best
combination of genes while maintaining a high genetic diversity in the population. The FF calculated
for each chromosome generates the adaptation parameters (AP) based on the logistic regression
algorithm’s performance. The parameters explore the chromosome’s properties to determine its ability
to compete with other chromosomes. The chromosome’s features are divided into two sets. The first
set builds the LoR model, and the second set is used to assess the quality of the chromosome and
explore the effectiveness of the features according to the AP criteria. Equation (3) presents the general
logistic regression model employed to calculate the AP:

logistAP =
1

1 + e(Chromosome),
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where
Chromosome =

(
β0 +

∑n

i=1
βiBanchan

)
, (3)

where β0 is the intercept, Banchan represents the chromosome’s selected channels, and βi is the estimation
coefficient calculated with the logit function for each variable Banchan. It determines the importance of
the information provided by each feature based on the global fit of the generated chromosome. In
Equation (4), the general chromosome model is presented, implementing all the elements of the search
space:

chromosome =0.0165 + (−97.489) × TAF3+(−0.969) × TAF4+1.407× TF3+3.668× TF7+0.484×

TF8+(−5.119) × TFC5+(−1.347) × TO2+(0.688) × TP8+0.738× TT8+(0.298) ×DAF3+0.764×

DAF4+(−1.872) ×DF3+2.429× DF7+(−3.934) ×DF8+4.361×DFC5+2.538×DO2+(−1.247) ×DP8

+(−1.720) ×DT8+(−1.652) ×AAF3+1.560×AAF4+2.203×AF3+(−0.832) ×AF7+1.481×AF8+(−2.270)×

AFC5+1.806×A02+1.349×AP8+2.319×AT8+(−0.165) × BAF3+0.855× BAF4+1.550× BF3+1.393×

BF7+(−1.542) × BF8+(−6.378) × BFC5+2.311× BO2+2.245× BP8+1.114× BT8+(−0.964) ×GAF3+0.133×

GAF4+(−0.076) ×GF3+0.274×GF7+(−0.565) ×GF8+1.571×GFC5+0.053×GO2+(−0.079) ×GP8+(−0.377)×

GT8,

(4)

where β0 and βi are estimated from each frequency band (Banchan) and represent the global fit of the
search space, where βi provides the basis for the feature importance score and calculates each AP. The
configuration of the chromosome changes as its elements change.

AP are calculated from the chromosome generated and they are the accuracy of the adjustment
of the elements of the chromosome, the error rate for the adjustment, the number of genes of the
chromosome, and the significant elements of each chromosome. The parameters are explained below.

The accuracy of the adjustment of the elements evaluates the performance of the generated
chromosome and is calculated as presented in Equation (5):

f it calculated
f it calculated + f it incorrectly ′

(5)

where the number of correctly predicted values divided by the total number is evaluated. The range of
values is [0, 1], where 1 indicates a high level of accuracy.

The error rate for the adjustment of the elements quantifies the error that occurs when predicting
each chromosome, evaluating the number of predictions made incorrectly. It is calculated as presented
in Equation (6):

TR = Y −Y′, (6)

where the differences between the actual values Y and the predicted values Y’ are calculated. The
range of values is [0, 1], where values close to 0 indicate that the chromosome obtained a lower error fit.

The number of genes on the chromosome is used to evaluate the number of selected elements to
build the chromosome. This parameter aims to obtain a chromosome with fewer components capable of
describing the data’s behavior, reducing the probability of error, analysis time, and algorithm execution.

The significant element evaluates each of the chromosome gene’s contributions by comparing
the gene’s p-value with the significance level of α = 0.05. If the p-value is less than or equal to the
significance level, the evaluated variable is relevant and should remain on the final chromosome.

2.5. Selection

The selection process consists of building a list of chromosomes using the criteria established
in the AP, as described in Equation (7). This process begins by comparing the AP values of each
chromosome, where the chromosome with a higher adjustment rate and a lower error rate is positioned
at the top of the list. If these parameter values match, the chromosome with the fewest elements will
have the highest priority.
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Chr11 =
{
xban11 , xban12 , . . . , xban1n , xAPAcc , xAPET , xAPNG , xAPSE

}
Chr12 =

{
xban21 , xban22 , . . . , xban2n , xAPAcc , xAPET , xAPNG , xAPSE

}
Chr1m =

{
xbanm1 , xbanm2 , . . . , xbanmn , xAPAcc , xAPET , xAPNG , xAPSE

}
,

...
where Chr1m[xAPAcc ,xAPET ,xAPNG ] > Chr1n[xAPAcc ,xAPET ,xAPNG ] ∴ highest priority list

(7)

The elements with a value of xbannn < a are united in the same vector to create a new chromosome
and inherited in the next generation, as shown in Figure 4. This process directs the selection of elements
to form new chromosomes with better properties, selecting features with relevant information.
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2.6. Crossing

Once the best chromosomes are selected based on FF, the reproduction process begins with
the crossing between chromosomes, as observed in Equation (8). This phase consists of cutting the
chromosome at two selected points to generate new segments. One parent’s central segments and the
other parent’s lateral segment are chosen to create the descending chromosomes [38]. The crossing
provides the possibility of combining all of the chromosome parts to generate chromosomes that are
not created in the initial population.

Chr1

Chr2

Chr3

Chr4
...

Chrn



→

→
Chr1

[0010101]
Chr2

[1010101]
→ Chrchild1

→ [0010101]
Chrchild2

[1010101]
(8)

2.7. Mutation

The mutation generates a new chromosome different from those of the parents to maintain
diversity within the population and avoid premature convergence. It consists of randomly inverting
part of a gene on the chromosome to obtain variability within the population and discard chromosomes
from the new population [38].
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2.8. Detection Rules

Two stop rules are defined to stop the evolutionary process of the model, of which at least one must
be met. The first rule is met when the number of established chromosome generations is completed.
This number is defined based on experimentation and the number of features within the search space.
The second rule is met when the fitness function’s evaluation criteria are fulfilled (accuracy = 1, error
rate = 0).

2.9. Information Structuring

A new dataset is constructed based on the feature selection results, integrating the generated
chromosome elements to implement it as an input index, in order to recognize patterns in the prediction
model. In Equation (9), the general structure employed to build the new dataset is presented:

GALoRIS = {chromosome} ∴∈ New dataset, (9)

where the chromosome represents the new dataset defined as Chr =
{
xiyi

}N
i=1, where xi rerpresents

the selected features, yi is the categorization of data, and N is the number of samples. xi and yi are
structured as presented in Equation (10), in order to organize large amounts of EEG information from
multiple channels.

xi =
[
Ban1ch11,ch12,...,ch1n, Ban2ch21,ch22,...,ch2n, BanXchm1,chm2,...,chmn

]
yi = [0|1],

(10)

where xi contains the EEG signal’s data following the frequency range order and yi includes the
information of two cognitive states. In total, 8210 samples are implemented.

2.10. Classifiers

In this investigation, four classifiers were developed to implement the new dataset generated by
GALoRIS. The classifiers were designed in three steps, using the algorithms of SVM = [Linear: RBF],
LiR, and k-NN. The first step consisted of pre-processing the information, where the data were divided
into two groups: Training and testing. Here, 90% of the samples were used to train the model, and 10%
were used to perform the tests. The second step consisted of building the model with data destined to
train the model. The parameters and configurations of the model were adjusted. The last step was to
evaluate the trained model using data dedicated to testing the model.

The information was divided into training and test sets using k-fold cross-validation (k = 10).
k-fold is characterized by avoiding the overfitting of data during the model’s construction, being the
most frequently used technique in prediction studies [39]. k-fold randomly divides the data into k
subsets of an equal size, where the k-1 subset is used during the validation step, and the rest of the
subsets are used in the training step. The process is repeated k = 10 times when performance metrics
are calculated to evaluate each cycle model. The k results are averaged to obtain a single estimate. The
technique’s advantages are that all test sets are independent, and the result’s reliability is improved k
times [22,33].

The metrics used to evaluate the performance of the model are the sensitivity and precision. The
sensitivity metric evaluates cases that are correctly classified as true and is calculated with predictions
made correctly as a low cognitive workload (CLCW) and predictions made incorrectly as a high
cognitive workload (IHCW), as shown in Equation (11):

sensitivity =
CLCW

CLCW + IHCW
∗ 100. (11)
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The accuracy metric is related to the total number of predictions made correctly and is calculated
with CLCW, predictions made correctly as a high cognitive workload (CHCW), predictions made
incorrectly as a low cognitive workload (ILCW), and IHCW, as shown in Equation (12):

Accuracy =
CLCW + CHCW

CLCW + ILCW + IHCW + CHCW
∗ 100. (12)

2.11. Label

In the real world, data are not labeled. Therefore, in recent years, labeling indices have been
developed, which implement the frequency bands δ, θ, α, β, and γ to identify different states, as shown
in Table 1. However, these indices only use some bands and/or channels to evaluate people’s states.

Table 1. Indices used to calculate emotional and cognitive states of people using the
electroencephalographic (EEG) signal.

References States Metrics

[40] Lateral Index at Stress LIS =
Right−Le f t
Right+Le f t

[41] Cognitive-Affective (Frontal
Asymmetry) FA = Inα Right AF4

α Le f t F3

[42] Engagement β
α+θ

[43] Alert/Stress θ+α
β

[44] Valence α(FA3) − β(F3)

[44] Arousal β(AF3+AF4+F3+F4)
α(AF3+AF4+F3+F4)

[45] Alzheimer Thrup(x) = avd(x) + 1.5·stdev(x)
Thrdwn(x) = avd(x) − 1.5·stdev(x)

[46] Event-related desynchronization band power re f ence−band power test
band power re f erence ∗ 100

[47] Neuronal activity β
θ

[48] Load Index θ
α

[48] Equanimity B2
−α(α−α+θ)

B2+α(α+θ)

In this research, a labeling technique was developed to identify low and high cognitive workload
levels to categorize EEG information by implementing the generated chromosome.

The labeling technique consists of defining the upper and lower threshold of the dataset, and
calculating the sample’s average to obtain a vector. Afterward, the vector’s maximum and minimum
values are calculated and divided between the cognitive states, obtaining the interval’s size for each
state, as shown in Equation (13):

Thr(dataset) =
maxvalue−minvalue

cognitive states
, (13)

where maxvalue and minvalue represent the minimum and maximum value of the vector samples,
respectively; cognitive states represent the number of states to evaluate; and Thr(set) is the size
of the interval by state. The values of each sample are compared, where sample < Thrdwn = 0 or
sample > Thrup = 1. This technique finds the peaks in the timeline defined as moments with a high
cognitive workload during the experiment.
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3. Experimentation and Materials

3.1. Design of the Experiment

The Lane Change Test (LCT) version 1.2 simulator was used in the experiment, simulating a
vehicle’s most frequent driving conditions [49]. LCT is designed to quantitatively measure the level of
degradation of the subject’s performance while driving and performing other secondary tasks [42–44].

LCT consists of driving on a three-lane highway with a length of 3000 m, at a maximum speed
of 60 km/h. Along the way, instructions are presented that tell participants to change lanes through
traffic signs that appear next to the highway every 150 m. The signals are activated when there is
40 m between the vehicle and the sign. The participant must carry out the activity indicated by the
sign whilst respecting the traffic rules [50]. The experiment lasted approx. 80 min, divided into three
phases:

i. Baseline: The participant takes a seat and places the Emotiv EPOC sensor on their head [51].
The subject keeps their eyes closed and is acoustically isolated for 10 min, where the sensor is
activated to collect information;

ii. First Task (Task_1): The participant starts driving the vehicle without any distraction. During
driving, the EEG signals, ISA, and ER are collected. In the end, NASA-TLX is applied;

iii. Second task (Task_2): In order to increase the subject’s cognitive workload levels, the stress
induction protocol proposed in [7] is applied as a second task. The task consists of the random
mentioning of a series of digits that the participant has to repeat, following the order of the set
of numbers given. All measurements are collected.

3.2. Subjective Measures

ISA is a questionnaire applied every 2 min during the development of an activity. The participant
must provide the number that best describes their stress level, following a scale of 1 to 5: (1) boring;
(2) relaxed; (3) comfortable; (4) little busy; and (5) very busy [52]. The questionnaire’s weighting is
calculated by assigning a weight ranging from 1 to 10 to each task, according to the level of difficulty of
the task, where 1 represents a low difficulty task and 10 is a high difficulty task. The assigned weight is
multiplied by the number provided and averaged for the activities to obtain the ISA weighting ranging
from 1 to 100.

NASA-TLX is a post-exercise application that evaluates six factors defined as dimensions that
characterize the subjective workload [53]. The methodology proposed in [24] is used to obtain the
scale, ranging from 1 to 100.

3.3. Measurement of the Vehicle Performance

The vehicle performance is associated with the ability to keep the vehicle within safety margins.
To assess this capacity, ER was implemented in this investigation. ER evaluates the total activities
performed incorrectly concerning all of the activities presented during the experiment. In [15], the
authors explain the relationship between ER and high levels of cognitive workload. The greater the
number of activities carried out during a task, the higher the cognitive workload, increasing the error
rate. To estimate the ER of each subject, Equation (14) is defined, where the sum of the activities carried
out erroneously (ae) in relation to the total activities (at) presented during the task is calculated.

ET =
∑at=20

i=0

ae

at
, (14)

where i goes from no error to the maximum number of defined activities, where the activities (a) are
the lane changes exhibited during the simulation. The errors occur when the lane changes are not
performed.



Sensors 2020, 20, 5881 12 of 25

3.4. Collection and Extraction of EEG Signals

The EEG signal was acquired using the 14-electrode Emotiv EPOC headset sensor. The sensor
sent the signal wirelessly to a USB receiver and stored the information in an edk.dll file.

An application was developed with the LabVIEW Instrument using the edk.dll file to analyze and
visualize the EEG signal in real-time, as shown in Figure 5. The information was stored in a file with
the extension *.cvs, using the microvolt unit of measure. A 16 GB of RAM computer with an Intel Core
i7 (2.8 GHz) processor was used.
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A feature extraction process was implemented to analyze the collected information. This method
consisted of transforming the original signals into a vector of features representing the signal’s behavior.
In the literature, features in the time domain, frequency domain, and time-frequency domain are
distinguished [54]. In this investigation, the signal was analyzed in the frequency domain using the
spectral power density (PSD). PSD determines the distribution of the signal power in a frequency range,
facilitating the extraction of the most popular features in the context of the cognitive workload [55].
These features are defined as frequency bands and are Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz),
Beta (12–30 Hz), and Gamma (30–100 Hz) [23,56,57].

The signals are sensitive to activities called artifacts generated by the body’s movement, which
alter the quality of the signal [36]. Artifacts were removed by implementing the Butterworth filter of
order 5 with a cutoff frequency of 1 to 100 Hz based on [29,51,52]. Butterworth has a greater linear
response than other filters, allowing the efficient filtering and decomposition of EEG signals [58].

Fast Fourier Transform (FFT) was calculated with a Hanning window of 128 samples at a length
of T = 5s, in order to convert the signal from the time domain to the frequency domain and extract the
magnitude of the power spectrum of the delta, theta, alpha, beta, and gamma frequency bands.

The data format was channel * sample_number * frequency_bands (9 × 8210 × 5). All information
was standardized.

An interface was developed using LabVIEW to obtain the EEG data and extract the frequency
bands implementing PSD. Figure 6 shows the interface, where the signal frequency distribution
extracted from each of the bands can be observed. The maximum value of the power spectrum’s
magnitude was stored in a file with the extension *.csv [59].
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3.5. Dataset and Parameters

In [8,44,45], the authors suggest that using a combination of the band’s information helps to
identify cognitive states, obtaining better results in the classifier. In this research, seven subsets were
built based on four principles to analyze the information’s behavior, the relationship between the
features, and the prediction model’s performance, as shown in Table 2.

Table 2. Datasets analyzed in the model following the four principles to analyze the
information’s behavior.

Dataset Features No. of Features

Subset_1

Delta_AF4,Delta_T8,Delta_AF3,Delta_F3, Delta_F7, Delta_F8,
Delta_FC5, Delta_O2, Delta_P8, Alpha_AF4, Alpha_F3, Alpha_F7,
Alpha_F8, Alpha_FC5, Alpha_O2, Alpha_P8, Alpha_T8, Beta_AF3,
Beta_AF4, Beta_F3, Beta_F7, Beta_F8, Beta_FC5, Beta_O2, Beta_P8,

Beta_T8, Gamma_AF4, Gamma_F3, Gamma_F7, Gamma_F8,
Gamma_FC5, Gamma_O2, Gamma_P8, Gamma_T8

36

Subset_2 Alpha_AF4, Alpha_F3, Alpha_F7, Alpha_F8, Alpha_FC5, Alpha_O2,
Alpha_P8, Alpha_T8 9

Subset_3
Beta_AF4, Beta_F3, Beta_F7, Beta_F8, Beta_FC5, Beta_O2, Beta_P8,

Beta_T8, Gamma_AF4, Gamma_F3, Gamma_F7, Gamma_F8,
Gamma_FC5, Gamma_O2, Gamma_P8, Gamma_T8

18

Subset_4
Alpha_AF4, Alpha_F3, Alpha_F7, Alpha_F8, Alpha_FC5, Alpha_O2,

Alpha_P8, Alpha_T8, Beta_AF3, Beta_AF4, Beta_F3, Beta_F7,
Beta_F8, Beta_FC5, Beta_O2, Beta_P8, Beta_T8,

18

Subset_5

Alpha_AF4, Alpha_F3, Alpha_F7, Alpha_F8, Alpha_FC5, Alpha_O2,
Alpha_P8, Alpha_T8, Beta_AF3, Beta_AF4, Beta_F3, Beta_F7,
Beta_F8, Beta_FC5, Beta_O2, Beta_P8, Beta_T8, Gamma_AF4,

Gamma_F3, Gamma_F7, Gamma_F8, Gamma_FC5, Gamma_O2,
Gamma_P8, Gamma_T8

27

Subset_6

Delta_AF4, Delta_T8, Delta_AF3, Delta_F3, Delta_F7, Delta_F8,
Delta_FC5, Delta_O2, Delta_P8, Alpha_AF4, Alpha_F3, Alpha_F7,
Alpha_F8, Alpha_FC5, Alpha_O2, Alpha_P8, Alpha_T8, Beta_AF3,
Beta_AF4, Beta_F3, Beta_F7, Beta_F8, Beta_FC5, Beta_O2, Beta_P8,

Beta_T8

27

Subset_7

Delta_AF4, Delta_T8, Delta_AF3, Delta_F3, Delta_F7, Delta_F8,
Delta_FC5, Delta_O2, Delta_P8, Alpha_AF4, Alpha_F3, Alpha_F7,

Alpha_F8, Alpha_FC5, Alpha_O2, Alpha_P8, Alpha_T8,
Gamma_AF4, Gamma_F3, Gamma_F7, Gamma_F8, Gamma_FC5,

Gamma_O2, Gamma_P8, Gamma_T8

27
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First, a dataset with all of the data was built to analyze the data. Second, a dataset was constructed
with the alpha band’s information characterized by efficiently recognizing cognitive states [60]. Third,
a dataset was built with the beta and gamma band information related to a single cognitive state [55,61].
Finally, four datasets were constructed with information related to two cognitive states [36,62]. The
band’s information was combined. All datasets followed the criterion of statistical selection, where
Bch ≤ a ∴ ∈ Search Space.

The parameters defined in this work are based on [31,58,63,64] and were configured during
model development in the training phase, selecting the one that obtained the best performance. For
GALoRIS, the number of generations is 30, with a population size of 100 genes for each generation.
A tournament selection of size t = 5 is configured, where individuals are “turned” t times to be selected.
The two-point crossover is established with a probability of crossing of 0.8 to perform mating between
two individuals. The mutation is simple, with a probability of mutating of 0.1. In Figure 7, the analysis
of the performance of GALoRIS during the evolutionary process is presented. In particular, with a
population of 100, the algorithm achieved the best performance from generation 30.Sensors 2020, 20, x FOR PEER REVIEW 14 of 24 
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For SVM, the parameters were C = [0.0001, 1000] and γ = [0.00001, 10], and for k-NN, it was k =

[1, 10].
GALoRIS was used as a hyperparameter selection strategy for SVMRBF and k-NN. RiL and

SVMLineal were implemented with a basic configuration.

4. Results

4.1. Subjective and Vehicle Performance Measures

The results obtained from ISA, NASA-TLX, and ER in the experiment are presented in Table 3.
The results obtained in task_2 were greater than those in task_1 in terms of all measures, where the
subjects showed an increase in the cognitive workload during the experiment’s phases. The data of
subject_2 were deleted because the subject presented sickness problems during the experiment.
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Table 3. Instantaneous Self-Assessment (ISA), NASA-Task Load Index (TLX), and error rate (ER) results
of the experiment.

ISA NASA-TLX ER

Subjects Task_1 Task_2 Task_1 Task_2 Task_1 Task_2

Subject_1 16.66 34.44 4.33 65.67 3 12
Subject_3 31.10 57.77 12.67 56.67 4 7
Subject_4 25.55 51.10 20.33 70.67 3 8
Subject_5 21.10 43.33 64.33 68.67 2 4

Total 23.10 43.32 28.33 61.80 19 34

4.2. EEG Signals

Table 4 presents a descriptive analysis of each of the frequency bands extracted from the EEG
signals. The results show that the values of the alpha, beta, and gamma bands in task_2 were higher
than those in task_1. Furthermore, the results of the delta and theta band increased during tarea_1.
These results are due to the fact each band is related to a cognitive state [8,59,65–67]. For example,
the increment in delta [68] or theta [61,69] wave activity is associated with a low cognitive workload,
fatigue, or a relaxation state. The increment in alpha [28,70], beta [68], or gamma [65,71] wave activity
is associated with a high cognitive workload, stress state, or overload of mental effort.

Table 4. Descriptive analysis of EEG signals.

Bands Task Mean Std. Deviation

Delta
Task_1 10.9193 1.20741

Task_2 9.8171 0.5733

Theta
Task_1 10.2063 0.4682

Task_2 9.9971 0.11242

Alpha Task_1 10.4613 0.48171

Task_2 10.6696 0.46037

Beta
Task_1 22.4447 0.89813

Task_2 23.2951 0.3818

Gamma
Task_1 15.5624 0.19241

Task_2 15.8033 0.16196

4.3. Statistical Test Results

Table 5 shows the results obtained from the Student t-test, where the mean, standard deviation,
and p-value of each measure obtained during task_1 and task_2 can be observed.

Table 5. Results of Student’s t-test.

Task_1 Task_2 p-Value
M ± SD M ± SD

NASA-TLX 25.41 ± 715.7 65.42 ± 38.25 p ≤ 0.048
ISA 23.60 ± 38.18 46.66 ± 101.24 p ≤ 0.001
ER 3 ± 0.66 8.25 ± 8.25 p ≤ 0.028

DELTA 0.106 ± 0.084 0.028 ± 0.040 p ≤ 0.038
THETA 0.056 ± 0.032 0.041 ± 0.007 p ≤ 0.383
ALPHA 0.074 ± 0.033 0.088 ± 0.032 p ≤ 0.05

BETA 0.917 ± 0.063 0.977 ± 0.026 p ≤ 0.036
GAMMA 0.432 ± 0.013 0.449 ± 0.011 p ≤ 0.005
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The ISA results indicate a significant difference between task_1 (M = 23.6, S = 38.1, t(3) = −11.54)
and task_2 (M = 46.6, S = 101.2), with a value of p ≤ 0.001. NASA-TLX had a value of p ≤ 0.04, where
task_1 (M = 25.4, S = 715.7, t(3) = −3.2) and task_2 (M = 65.4, S = 38.2) exhibited significant differences.

ER had a value of p ≤ 0.02, where task_1 (M = 3, S = 0.6, t(3) = −3.9) and task_2 (M = 8, S = 8)
exhibited significant differences. The values obtained in the EEG signals were alpha (M = −0.20, SD =

0.17), beta (M = −0.085, SD = 0.60), delta (M = 110.2, SD = 0.81), and gamma (M = −0.24, SD = 0.09),
with values of (p ≤ 0.05, t(4) = −2.656), (p ≤ 0.03, t(4) = −3.119), (p ≤ 0.03, t(4) = 3.041), and (p ≤ 0.005,
t(4)= −5.529), presenting statistically differences between the two phases of the experiment, where
alpha, beta, and gamma obtained higher values with a high cognitive workload. Moreover, delta
obtained higher values with a low cognitive workload. The theta band (M = 0.20, SD = 0.477), with (p
≤ 0.383, t(4) = 0.980), did not present a significant difference.

Table 6 presents the correlation index between the subjective, vehicle performance and EEG
signal, where the correlation is generally medium-high. Of the examined measures, ISA and RT
presented a medium-high correlation, with alpha (r2 = 0.3, r2 = 0.6), beta (r2 = 0.4, r2 = 0.6), delta (r2 =

−0.5, r2 = −0.7), and gamma (r2 = 0.6, r2 = 0.8), suggesting a convergence between these measures.
NASA-TLX is an independent measure of physiological measures, as in [72], which may be due to a
post-exercise measure. Additionally, the theta band demonstrated independence, with subjective and
performance measures.

Table 6. Results of Pearson’s correlation.

Subjective Performance Physiological Measures

ISA NASA RT Alpha Beta Delta Gamma Theta

ISA —
NASA 0.598 —

RT 0.612 0.538 —
Alpha 0.301 −0.168 0.680 —
Beta 0.488 −0.113 0.642 0.873 —
Delta −0.519 −0.097 −0.745 −0.830 −0.894 —

Gamma 0.610 0.062 0.815 0.851 0.856 −0.805 —
Theta −0.121 0.206 −0.247 −0.592 −0.727 0.768 −0.329 —

4.4. Labeling Results

The results of applying the data labeling methodology in dataset_1 are Thrup = [0.0076, 0.0110) and
Thrdwn = [0.0110, 0.0176) labeling the data as Thrup = 0 and Thrdwn = 1. The interval threshold values
for each dataset are dataset_2 = Thrup = [0.0049, 0.0084) and Thrdwn = [0.0084, 0.0113), Dataset_3 =

Thrup = [0.0036, 0.0110) and Thrdwn = [ 0.0110, 0.0130), Dataset_4 = Thrup = [0.0043, 0.0110) and
Thrdwn = [ 0.0110, 0.0131), Dataset_5 = Thrup = [0.0072, 0.0110) and Thrdwn = [ 0.0110, 0.0134),
Dataset_6 = Thrup = [0.0026, 0.0110) and Thrdwn = [ 0.0110, 0.0131), and Dataset_7 = Thrup =

[0.0084, 0.0110) and Thrdwn = [ 0.0110, 0.0133). The threshold interval range is x < 0.0110 ≤ x in
most cases.

4.5. GALoRIS Results

Table 7 presents the GALoRIS results, where the AP obtained from each dataset created can be
observed. For example, in subset_1, the proposed method reduced the number of attributes from 36 to
13 features on average, representing 64% less of the original data, and obtained a 97% performance for
adjustment of the elements. A considerable reduction in the original dataset’s dimensionality generates
a more efficient model and is ideal in real-time applications.
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Table 7. Experimental results of GALoRIS.

Subset Chromosomes Features Selection #
Gens Acc ER Time (s)

Subset 1

[0,1,1,1,0,0,0,1,0,
1,1,1,1,0,0,0,1,1,
0,0,0,1,0,0,0,1,0,
0,0,0,1,0,0,0,0,0]

‘Delta_AF4′, ‘Delta_F3′, ‘Delta_F7′,
‘Delta_P8′, ‘Alpha_AF3′, ‘Alpha_AF4′,

‘Alpha_F3′, ‘Alpha_F7′, ‘Alpha_P8′,
‘Alpha_T8′, ‘Beta_F7′, ‘Beta_P8′, ‘Gamma_F7′

13 97.7% 2.26% 580.84

Subset 2 [0,0,1,0,1,0,1,0,0] ‘Alpha_F3′, ‘Alpha_F8′, ‘Alpha_O2′ 3 77.34% 22.6% 201.67

Subset 3 [1,1,1,0,1,1,0,1,1,
0,1,0,0,1,1,0,0,1]

‘Beta_AF3′, ‘Beta_AF4′, ‘Beta_F3′, ‘Beta_F8′,
‘Beta_FC5′, ‘Beta_P8′, ‘Beta_T8′,

‘Gamma_AF4′, ‘Gamma_F8′, ‘Gamma_FC5′,
‘Gamma_T8′

11 88.7% 11.2% 394.05

Subset 4 [1,1,0,1,1,1,1,1,1,
1,1,1,1,0,1,1,1,1]

‘Alpha_AF3′, ‘Alpha_AF4′, ‘Alpha_F7′,
‘Alpha_F8′, ‘Alpha_FC5′, ‘Alpha_O2′,
‘Alpha_P8′, ‘Alpha_T8′, ‘Beta_AF3′,

‘Beta_AF4′, ‘Beta_F3′, ‘Beta_F7′, ‘Beta_FC5′,
‘Beta_O2′, ‘Beta_P8′, ‘Beta_T8′

16 94.4% 5.55% 455.52

Subset 5
[0,1,1,1,1,1,1,1,1,
0,0,0,1,0,1,1,0,1,
1,0,1,0,1,0,1,0,1]

‘Alpha_AF4′, ‘Alpha_F3′, ‘Alpha_F7′,
‘Alpha_F8′, ‘Alpha_FC5′, ‘Alpha_O2′,

‘Alpha_P8′, ‘Alpha_T8′, ‘Beta_F7′, ‘Beta_FC5′,
‘Beta_O2′, ‘Beta_T8′, ‘Gamma_AF3′,

‘Gamma_F3′, ‘Gamma_F8′, ‘Gamma_O2′,
‘Gamma_T8′

17 95.4% 4.51% 637.29

Subset 61
[1,0,1,1,0,0,1,1,1,
0,1,1,1,1,1,0,0,0,
1,1,1,1,0,1,1,0,1]

‘Delta_AF3′, ‘Delta_F3′, ‘Delta_F7′,
‘Delta_O2′, ‘Delta_P8′, ‘Delta_T8′,

‘Alpha_AF4′, ‘Alpha_F3′, ‘Alpha_F7′,
‘Alpha_F8′, ‘Alpha_FC5′, ‘Beta_AF3′,

‘Beta_AF4′, ‘Beta_F3′, ‘Beta_F7′, ‘Beta_FC5′,
‘Beta_O2′, ‘Beta_T8′

18 96.5% 3.42% 618.34

Subset 62
[1,0,1,1,1,0,1,1,1,
0,0,0,0,0,0,1,0,1,
0,1,1,0,0,1,0,0,1]

‘Delta_AF3′, ‘Delta_F3′, ‘Delta_F7′, ‘Delta_F8′,
‘Delta_O2′, ‘Delta_P8′, ‘Delta_T8′,

‘Alpha_O2′, ‘Alpha_T8′, ‘Beta_AF4′, ‘Beta_F3′,
‘Beta_FC5′, ‘Beta_T8′

13 96.5% 3.42% 618.34

Subset 63
[1,0,0,1,1,0,1,1,0,
0,0,0,0,0,1,0,0,0,
1,1,0,0,0,1,1,0,0]

‘Delta_AF3′, ‘Delta_F7′, ‘Delta_F8′,
‘Delta_O2′, ‘Delta_P8′, ‘Alpha_FC5′,

‘Beta_AF3′, ‘Beta_AF4′, ‘Beta_FC5′, ‘Beta_O2′
10 96.5% 3.42% 618.34

Subset 64
[0,0,0,0,0,0,0,0,1,
1,0,0,1,0,0,0,1,1,
1,1,0,0,0,0,1,0,0,1]

‘Delta_T8′, ‘Alpha_AF3′, ‘Alpha_F7′,
‘Alpha_P8′, ‘Alpha_T8′, ‘Beta_AF3′,

‘Beta_AF4′, ‘Beta_O2′
8 96.5% 3.42% 618.34

Subset 7
[1,1,0,1,1,0,0,0,1,
1,1,1,0,1,0,1,1,0,
1,1,1,1,1,1,1,0,1]

‘Delta_AF3′, ‘Delta_AF4′, ‘Delta_F7′,
‘Delta_F8′, ‘Delta_T8′, ‘Alpha_AF3′,

‘Alpha_AF4′, ‘Alpha_F3′, ‘Alpha_F8′,
‘Alpha_O2′, ‘Alpha_P8′, ‘Gamma_AF3′,

‘Gamma_AF4′, ‘Gamma_F3′, ‘Gamma_F7′,
‘Gamma_F8′, ‘Gamma_FC5′, ‘Gamma_O2′,

‘Gamma_T8′

19 90.25% 9.75% 425.94

Subset_2 achieved a 77% performance, with 3 selected features; subset_3 obtained 88%, with 11
selected features; subset_4 achieved 94%, identifying 16 features with relevant information; in subset_5,
17 features were identified, obtaining 95%; in subset_6, four sets of combinations were defined, with a
96% performance in each with 8, 10, 13, and 18 features; and finally, subset_7 achieved 90%, establishing
19 features.

In addition, Table 7 shows the results of the chromosomes generated in each dataset,
where each element of the vector is a chromosomes gene (Chr) that represents whether a
feature is selected. For example, in subset_1, the individual created by GALoRIS is Chr =

[0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
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where xn = 1 ∴ ∈ Chr′ is defined as Chr
′

= [x2, x3, x4, x8, x10, x11, x12, x13, x17, x18, x22, x26]. Each element
xn corresponds to a feature, creating the new chromosome with 13 selected features, as shown below:

Chr’ = [DeltaAF4, DeltaF3, DeltaF7, DeltaP8, AlphaAF3, AlphaAF4, AlphaF3, AlphaF7, AlphaP8, AlphaT8, BetaF7, BetaP8, GammaF7]

Table 7 shows that most of the attributes proposed in subset_4 are selected, demonstrating that
the combination of alpha and beta bands can identify the vehicle driver’s cognitive states. Otherwise,
it can be observed that subse_2 and subse_3 obtained a lower percentage for their performance, with
values of 88.79% and 77.34%, respectively.

The features with a high selection rate are Delta_F7 (p = 1.29× 10−27), Alpha_AF4 (p = 4.14×
10−26), Alpha_F3 (p = 5.80 × 10−5), Alpha_F7 (p = 5.50 × 10−16), Alpha_F8 (p = 6.03 × 10−22),
Alpha_O2 (p = 9.14× 10−9), Alpha_P8 (p = 1.76× 10−15), Beta_AF4 (p = 3.38× 10−13), and Beta_FC5
(p = 4.19 × 10−24), demonstrating that they have relevant information that can be used to identify
different cognitive states of vehicle drivers. On the other hand, the features with the lowest selection
rate are Theta_T8 (p = 0.292), Alpha_T8 (p = 0.518), Gamma_AF3 (p = 0.407), Gamma_AF4 (p = 0.501),
Gamma_FC5 (p = 0.677), Gamma_O2 (p = 0.517), and Gamma_T8 (p = 0.887).

The GALoRIS’s average runtime is 516.867 s. EEG signals comprise a high dataset dimension [73],
and this directly increases the computational complexity by structuring the data, selecting features,
and classifying the data.

4.6. Classifier Results

Table 8 shows the results obtained with each algorithm. The SVM-RBF obtained, on average,
the best performance during the training and testing phases, with a 96.50% and 96.14% accuracy,
respectively, and a 96.64% sensitivity in the model, i.e., when the driver is in a specific cognitive state,
the model is able to predict that state 96% of the time. k-NN obtained, on average, 95.80%, 95.46%,
and 95.47%, respectively. SVM-Linear obtained, on average, 84.97%, 84.87%, and 84.80%, respectively.
Finally, LiR achieved, on average, 85.33%, 85.21%, and 85.21%, respectively.

Table 8. Classifier results obtained with the linear support vector machine (SVM), SVM-radial basis
function (RBF), k-nearest neighbors (k-NN), and linear regression (LiR).

Subset
SVMRBF k-NN SVMLINEAL LiR

Train Test Sens Train Test Sens Train Test Sens Train Test Sens

Subset 1 96.77 96.71 96.64 97.67 97.50 97.50 89.38 89.29 89.36 89.57 89.43 89.46

Subset 2 85.50 84.36 84.34 82.59 81.66 81.89 66.03 65.97 65.92 65.02 64.96 64.94

Subset 3 97.61 97.02 97.00 94.91 94.26 94.38 85.60 85.57 85.53 85.02 84.87 84.92

Subset 4 98.27 98.16 98.08 98.70 98.50 98.50 91.02 90.73 90.68 90.25 90.09 90.06

Subset 5 97.70 97.27 97.28 97.61 97.46 97.42 89.66 89.50 89.40 89.06 88.91 88.89

Subset 61 98.38 98.24 98.28 98.76 98.64 98.60 91.39 91.27 91.18 90.79 90.59 90.78

Subset 62 96.75 96.54 96.57 98.40 98.17 98.20 86.90 86.86 86.80 86.52 86.47 86.38

Subset 63 98.54 98.27 98.27 97.28 96.90 96.98 84.71 84.64 84.49 84.58 84.45 84.43

Subset 64 97.97 97.72 97.67 95.38 95.03 94.84 79.97 79.96 79.90 79.59 79.50 79.51

Subset 7 97.55 97.17 97.14 96.73 96.50 96.35 85.08 84.94 84.78 92.95 92.82 92.80

Total 96.50 96.14 96.64 95.80 95.46 95.47 84.97 84.87 84.80 85.33 85.21 85.21

In general, subset_6_1 achieved the best testing performance in the four classifiers, with a 94.68%
accuracy on average, followed by subset_4, with a 94.37% accuracy on average; subset_5, which
obtained an average of 93.28%; subset_1, with a 93.23% accuracy on average; subset_7, which achieved
an average of 92.85%; subset_6_2, with a 92.01% accuracy on average; subset_6_3, which obtained an
average of 91.06%; subset_3, with a 90.43% accuracy on average; subset_6_4, with an 88.05% accuracy
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on average; and finally, subset_2, which achieved an average of 74.23%. Additionally, the table shows
the standard deviation obtained in the test phase in each classifier.

5. Conclusions and Discussion

The results obtained from GALoRIS were compared with the most frequently used feature selection
algorithms in the literature to analyze EEG signals’ Mutual Information (MI) and conduct principal
component analysis (PCA) [74]. MI and PCA were evaluated using the seven datasets proposed in this
research, and the results are presented in Table 9.

Table 9. Performance results of the four classifiers using the GALoRIS, Mutual Information (MI), and
principal component analysis (PCA) algorithms.

Subset
GALoRIS MI PCA

SVM
RBF k-NN SVM LiR SVM

RBF k-NN SVM LiR SVM
RBF k-NN SVM LiR

Subset 1 96.77 97.50 89.29 89.43 87.78 86.87 76.37 77.40 80.48 80.08 69.03 68.78

Subset 2 84.36 81.66 65.97 64.96 98.78 98.17 98.32 97.65 98.66 99.33 98.62 98.72

Subset 3 97.02 94.26 85.57 84.87 88.00 86.87 76.37 77.40 86.05 85.38 83.46 83.43

Subset 4 98.16 98.50 90.73 90.09 84.65 81.21 78.47 76.85 79.38 78.19 60.44 61.26

Subset 5 97.70 97.46 89.50 88.91 87.78 86.87 76.37 77.40 76.33 75.06 62.39 62.08

Subset 6 97.91 97.18 85.68 85.25 87.08 85.26 78.68 77.43 83.16 82.42 68.17 67.75

Subset 7 97.17 96.50 84.94 92.82 85.53 82.06 76.40 76.12 79.59 79.26 65.89 65.46

Total 96.14 95.46 84.87 85.21 88.51 86.76 80.14 80.04 83.38 82.82 72.57 72.50

As observed in the table, GALoRIS obtained the best performance results, achieving a total
average accuracy in the four classifiers of 90.42%, followed by MI with 83.86% and PCA with 77.81%.
GALoRIS-SVMRBF obtained the best results, with a value of 96.14%.

In the literature, work related to this research has been found, as shown in Figure 8. In [75],
a feature extraction method was explored based on rhythm entropy to classify the EEG signals. The
classification rate achieved was 89.7% using SVM with leave-one-out-cross-validation (LOOCV). In [29],
a model with GA and SVM is proposed to classify several databases. The model obtains, on average,
a value of 91%. In [76], an algorithm employed to stabilize EEG signal patterns based on a graph
regularized extreme learning machine is proposed. It achieved a 69.67% and 91.07% accuracy. In [77],
an algorithm for selecting features based on the mutual partial information algorithm that eliminates the
less significant information of the EEG signals and develops a classifier using the linear discrimination
analysis algorithm is proposed, obtaining an 88.7% accuracy. In [78], the granger causality algorithm
is implemented to extract the most relevant EEG signal features and develop a classifier with SVM,
obtaining an 82.66% accuracy. In [79], a system for emotion classification based on the EEG signal
using statistical measures and KNN is proposed. The system achieved an 86.12% accuracy on average.
In [80], emotional stress state detection using a genetic algorithm and k-NN based on EEG signals
is proposed. It achieved a 71.76% accuracy. In [81], a system multi-objective genetic algorithm and
SVM are designed to find the most relevant features and classify the EEG signal. They achieved a
94.4% accuracy. In [82], feature selection is developed based on a genetic algorithm using regularized
neighborhood component analysis to enhance the motor imagery signal’s classification performance.
The system achieved a 78.9% accuracy on average. In [83], a classifier based on multimodal EEG
data is proposed for depression recognition using genetic algorithms and SVM, k-NN, and decision
trees, achieving an accuracy rate of 86.98%. In [84], a feature selection algorithm of EEG oscillatory
activity related to motor imagery using a hierarchical genetic algorithm is presented, achieving a
76.04% accuracy. GALoRSI-SVM obtains an accuracy of 96.14% in data classification, significantly
improving the classifier performance.
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In this study, we have introduced a new feature selection model for pattern recognition called
GALoRIS. GALoRIS selects EEG features based on exploring the fusion of information and identifying
the principal features that contribute to recognizing cognitive states and structure a new dataset capable
of optimizing the classification process to build a robust and powerful learning model.

The results of this research demonstrate several aspects. First, the measures proposed in this
research allow the subject’s level of cognitive workload while driving a vehicle to be evaluated.
Second, statistical tests evaluated the relation between measures and cognitive states to observe
the subject’s internal behavior and determine whether different cognitive workload levels could be
obtained during the experiment. With the statistical results, it could be observed that when the level of
difficulties increased, the drivers perceived an increase in the cognitive workload demand, affecting
their concentration and increasing the errors. Third, combining features from multiple sources can
improve the model; in fact, an improvement in the classification performance from 10% to 20% could be
observed compared to using features from a single data source. Finally, the main objective of GALoRIS
is to propose a new search strategy for more efficiently exploring the information of EEG signals and
identifying the features that can help describe cognitive states while driving a vehicle. The GALoRIS
results show that feature selection algorithms for pattern recognition are fundamental to obtaining
high percentages of precision in the prediction models. Moreover, GALoRIS was proven to support
datasets of various sizes, selecting the attributes with relevant properties, reducing the original dataset
by 64% and maximizing the predictive capacity in the prediction models to achieve a 98% accuracy in
information classification. The features used in this research work can be considered as the reference
point for identifying a high and low cognitive workload of vehicle drivers.

Although the average processing time of GALoRIS was 516.867 s, this is regarded as an average
time based on [39,78,83,85]. It is essential to consider that the selection of features is a procedure that is
only carried out once and does not affect the model’s test time. It was observed that the processing
time was reduced by 80% at this stage.

Future work on this research topic will implement a new dataset to assess the model’s predictive
ability developed in this research.

Author Contributions: P.B.-S. and A.R. defined the experimental setup and acquired the experimental data.
P.B.-S., A.R. and A.G.-I. processed and analysed data. All the authors co-wrote the manuscript and approved the
final text. All authors have read and agreed to the published version of the manuscript.



Sensors 2020, 20, 5881 21 of 25

Funding: This work has been funded by the Ministry of Science, Innovation and Universities of Spain under grant
number TRA2016-77012-R.

Conflicts of Interest: The authors declare no conflicts of interest.

Data Availability: The datasets generated and/or analysed during the current study are available from the
corresponding authors on reasonable request.

Ethical Statement: All subjects gave their informed consent for inclusion before they participated in the study. The
study was conducted in accordance with the Declaration of Helsinki, and the experimental protocol was developed
following the ethics committee’s regulations of the Polytechnic University of Catalonia and the Governing Council
Commission of Inquiry (Agreement no. 45/2015). All methods were performed in accordance with relevant
guidelines and regulations.

References

1. Yan, L.; Huang, Z.; Zhang, Y.; Zhang, L.; Zhu, D.; Ran, B. Driving risk status prediction using Bayesian
networks and logistic regression. IET Intell. Transp. Syst. 2017, 11, 431–439. [CrossRef]

2. NASA TLX: Task Load Index NASA TLX. Available online: https://humansystems.arc.nasa.gov/groups/TLX/

tlxapp.php (accessed on 3 July 2019).
3. Instantaneous Self Assessment of Workload (ISA). Available online: https://ext.eurocontrol.int/ehp/?q=node/

1585 (accessed on 3 July 2019).
4. Faure, V.; Lobjois, R.; Benguigui, N. The effects of driving environment complexity and dual tasking on drivers’

mental workload and eye blink behavior. Transp. Res. Part F Traffic Psychol. Behav. 2016, 40, 78–90. [CrossRef]
5. Liu, J.; Gardi, A.; Ramasamy, S.; Lim, Y.; Sabatini, R. Cognitive pilot-aircraft interface for single-pilot

operations. Knowl. Based Syst. 2016, 112, 37–53. [CrossRef]
6. Dussault, C.; Jouanin, J.-C.; Philippe, M.; Guezennec, C.-Y. EEG and ECG changes during simulator operation

reflect mental workload and vigilance. Aviat. Space. Environ. Med. 2005, 76, 344–351. [PubMed]
7. Jacobé de Naurois, C.; Bourdin, C.; Stratulat, A.; Diaz, E.; Vercher, J.L. Detection and prediction of driver

drowsiness using artificial neural network models. Accid. Anal. Prev. 2019, 126, 95–104. [CrossRef]
8. Cao, L.; Li, J.; Xu, Y.; Zhu, H.; Jiang, C. A Hybrid Vigilance Monitoring Study for Mental Fatigue and Its

Neural Activities. Cognit. Comput. 2016, 8, 228–236. [CrossRef]
9. Baig, M.Z.; Aslam, N.; Shum, H.P.H. Filtering techniques for channel selection in motor imagery EEG

applications: A survey. Artif. Intell. Rev. 2019. [CrossRef]
10. Wang, L.; Xue, W.; Li, Y.; Luo, M.; Huang, J.; Cui, W.; Huang, C. Automatic epileptic seizure detection in EEG

signals using multi-domain feature extraction and nonlinear analysis. Entropy 2017, 19, 222. [CrossRef]
11. Nakisa, B.; Rastgoo, M.N.; Tjondronegoro, D.; Chandran, V. Evolutionary computation algorithms for feature

selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 2018, 93, 143–155.
[CrossRef]

12. Bhatti, M.H.; Khan, J.; Khan, M.U.G.; Iqbal, R.; Aloqaily, M.; Jararweh, Y.; Gupta, B. Soft Computing-Based
EEG Classification by Optimal Feature Selection and Neural Networks. IEEE Trans. Ind. Inform. 2019, 15,
5747–5754. [CrossRef]

13. Tao, W.; Li, C.; Song, R.; Cheng, J.; Liu, Y.; Chen, X. EEG-based Emotion Recognition via Channel-wise
Attention and Self Attention. IEEE Trans. Affect. Comput. 2020, 1–12. [CrossRef]

14. Liu, Y.; Ding, Y.; Li, C.; Cheng, J.; Song, R.; Wan, F.; Chen, X. Multi-channel EEG-based emotion recognition
via a multi-level features guided capsule network. Comput. Biol. Med. 2020, 123, 103927. [CrossRef]
[PubMed]

15. Wang, Z.M.; Hu, S.Y.; Song, H. Channel Selection Method for EEG Emotion Recognition Using Normalized
Mutual Information. IEEE Access 2019, 7, 143303–143311. [CrossRef]

16. Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R.; Gassert, R. A penalized time-frequency band feature selection
and classification procedure for improved motor intention decoding in multichannel EEG. J. Neural Eng.
2019, 16, 16019. [CrossRef]

17. Tavares, G.; San-Martin, R.; Ianof, J.N.; Anghinah, R.; Fraga, F.J. Improvement in the automatic classification
of Alzheimer’s disease using EEG after feature selection. In Proceedings of the 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1264–1269. [CrossRef]

http://dx.doi.org/10.1049/iet-its.2016.0207
https://humansystems.arc.nasa.gov/groups/TLX/tlxapp.php
https://humansystems.arc.nasa.gov/groups/TLX/tlxapp.php
https://ext.eurocontrol.int/ehp/?q=node/1585
https://ext.eurocontrol.int/ehp/?q=node/1585
http://dx.doi.org/10.1016/j.trf.2016.04.007
http://dx.doi.org/10.1016/j.knosys.2016.08.031
http://www.ncbi.nlm.nih.gov/pubmed/15828633
http://dx.doi.org/10.1016/j.aap.2017.11.038
http://dx.doi.org/10.1007/s12559-015-9351-y
http://dx.doi.org/10.1007/s10462-019-09694-8
http://dx.doi.org/10.3390/e19060222
http://dx.doi.org/10.1016/j.eswa.2017.09.062
http://dx.doi.org/10.1109/TII.2019.2925624
http://dx.doi.org/10.1109/TAFFC.2020.3025777
http://dx.doi.org/10.1016/j.compbiomed.2020.103927
http://www.ncbi.nlm.nih.gov/pubmed/32768036
http://dx.doi.org/10.1109/ACCESS.2019.2944273
http://dx.doi.org/10.1088/1741-2552/aaf046
http://dx.doi.org/10.1109/SMC.2019.8914006


Sensors 2020, 20, 5881 22 of 25

18. Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of Perceived Mental Stress Using A Commercially
Available EEG Headband. IEEE J. Biomed. Health Informatics 2019, 23, 2257–2264. [CrossRef]

19. Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.;
Valenza, G. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics
using wearable sensors. Sci. Rep. 2018, 8, 1–15. [CrossRef]

20. Batres-Mendoza, P.; Montoro-Sanjose, C.R.; Guerra-Hernandez, E.I.; Almanza-Ojeda, D.L.;
Rostro-Gonzalez, H.; Romero-Troncoso, R.J.; Ibarra-Manzano, M.A. Quaternion-based signal analysis
for motor imagery classification from electroencephalographic signals. Sensors 2016, 16, 336. [CrossRef]

21. Sun, H.; Xiang, Y.; Sun, Y.; Zhu, H.; Zeng, J. On-line EEG classification for brain-computer interface based on
CSP and SVM. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai,
China, 16–18 October 2010; Volume 9, pp. 4105–4108.

22. Bhattacharyya, S.; Khasnobish, A.; Chatterjee, S.; Konar, A.; Tibarewala, D.N. Performance analysis of LDA,
QDA and KNN algorithms in left-right limb movement classification from EEG data. In Proceedings of the
2010 International Conference on Systems in Medicine and Biology, Istanbul, Turkey, 10–13 October 2010;
pp. 126–131.

23. Guo, Z.; Pan, Y.; Zhao, G.; Cao, S.; Zhang, J. Detection of Driver Vigilance Level Using EEG Signals and
Driving Contexts. IEEE Trans. Reliab. 2018, 67, 370–380. [CrossRef]

24. Wei, Z.; Zhuang, D.; Wanyan, X.; Liu, C.; Zhuang, H. A model for discrimination and prediction of mental
workload of aircraft cockpit display interface. Chinese J. Aeronaut. 2014, 27, 1070–1077. [CrossRef]

25. Zhang, Y.; Wang, Y.; Zhou, G.; Jin, J.; Wang, B.; Wang, X.; Cichocki, A. Multi-kernel extreme learning machine
for EEG classification in brain-computer interfaces. Expert Syst. Appl. 2018, 96, 302–310. [CrossRef]

26. Chen, L.L.; Zhao, Y.; Ye, P.F.; Zhang, J.; Zou, J.Z. Detecting driving stress in physiological signals based on
multimodal feature analysis and kernel classifiers. Expert Syst. Appl. 2017, 85, 279–291. [CrossRef]

27. Rahmad, C.; Ariyanto, R.; Rizky, D. Brain Signal Classification using Genetic Algorithm for Right-Left Motion
Pattern. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 247–251. [CrossRef]

28. Pal, S.K.; Wang, P.P. Genetic Algorithms for Pattern Recognition; CRC Press: Boca Raton, FL, USA, 2017.
29. Phan, A.V.; Le Nguyen, M.; Bui, L.T. Feature weighting and SVM parameters optimization based on genetic

algorithms for classification problems. Appl. Intell. 2017, 46, 455–469. [CrossRef]
30. Murugappan, M.; Murugappan, S. Human Emotion Recognition Through Short Time Electroencephalogram

(EEG) Signals Using Fast Fourier Transform (FFT). In Proceedings of the IEEE 9th International Colloquium
on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 8–10 March 2013; pp. 289–294. [CrossRef]

31. Yan, S.; Tran, C.C.; Wei, Y.; Habiyaremye, J.L. Driver’s mental workload prediction model based on
physiological indices. Int. J. Occup. Saf. Ergon. 2017, 25, 1–9. [CrossRef] [PubMed]

32. Jenke, R.; Peer, A.; Buss, M. Feature extraction and selection for emotion recognition from EEG. IEEE Trans.
Affect. Comput. 2014, 5, 327–339. [CrossRef]

33. Koelstra, S.; Mühl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP:
A database for emotion analysis; Using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31.
[CrossRef]

34. Nuamah, J.K.; Seong, Y. Neural correspondence to human cognition from analysis to intuition-implications
of display design for cognition. Proc. Hum. Factors Ergon. Soc. 2017, 2017, 51–55. [CrossRef]

35. Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The dry revolution: Evaluation
of three different eeg dry electrode types in terms of signal spectral features, mental states classification and
usability. Sensors 2019, 19, 1365. [CrossRef]

36. Lin, C.T.; Chuang, C.H.; Huang, C.S.; Tsai, S.F.; Lu, S.W.; Chen, Y.H.; Ko, L.W. Wireless and wearable EEG
system for evaluating driver vigilance. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 165–176.

37. Huo, X.Q.; Zheng, W.L.; Lu, B.L. Driving fatigue detection with fusion of EEG and forehead EOG. In
Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada,
24–29 July 2016; pp. 897–904. [CrossRef]

38. Beheshti, I.; Demirel, H.; Matsuda, H. Classification of Alzheimer’s disease and prediction of mild cognitive
impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking
and a genetic algorithm. Comput. Biol. Med. 2017, 83, 109–119. [CrossRef]

http://dx.doi.org/10.1109/JBHI.2019.2926407
http://dx.doi.org/10.1038/s41598-018-32063-4
http://dx.doi.org/10.3390/s16030336
http://dx.doi.org/10.1109/TR.2017.2778754
http://dx.doi.org/10.1016/j.cja.2014.09.002
http://dx.doi.org/10.1016/j.eswa.2017.12.015
http://dx.doi.org/10.1016/j.eswa.2017.01.040
http://dx.doi.org/10.14569/IJACSA.2018.091134
http://dx.doi.org/10.1007/s10489-016-0843-6
http://dx.doi.org/10.1109/CSPA.2013.6530058
http://dx.doi.org/10.1080/10803548.2017.1368951
http://www.ncbi.nlm.nih.gov/pubmed/28820660
http://dx.doi.org/10.1109/TAFFC.2014.2339834
http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.1177/1541931213601508
http://dx.doi.org/10.3390/s19061365
http://dx.doi.org/10.1109/IJCNN.2016.7727294
http://dx.doi.org/10.1016/j.compbiomed.2017.02.011


Sensors 2020, 20, 5881 23 of 25

39. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Matsumoto, K. An Empirical Comparison of Model
Validation Techniques for Defect Prediction Models. IEEE Trans. Softw. Eng. 2017, 43, 1–18. [CrossRef]

40. Al-Shargie, F.; Tang, T.B.; Badruddin, N.; Kiguchi, M. Towards multilevel mental stress assessment using
SVM with ECOC: An EEG approach. Med. Biol. Eng. Comput. 2018, 56, 125–136. [CrossRef]

41. B-Alert Cognitive-Affective Metrics. Available online: https://imotions.com/blog/eeg/ (accessed on 20
January 2020).

42. Eldenfria, A.; Al-Samarraie, H. Towards an Online Continuous Adaptation Mechanism (OCAM) for Enhanced
Engagement: An EEG Study. Int. J. Hum. Comput. Interact. 2019, 35, 1960–1974. [CrossRef]

43. Kamzanova, A.; Kustubayeva, A.; Matthews, G. Diagnostic monitoring of vigilance decrement using EEG
workload indices. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; Sage
Publications Sage CA: Los Angeles, CA, USA, 2012; Volume 56, pp. 203–207.

44. Ramirez, R.; Palencia-Lefler, M.; Giraldo, S.; Vamvakousis, Z. Musical neurofeedback for treating depression
in elderly people. Front. Neurosci. 2015, 9, 354. [CrossRef]

45. Fiscon, G.; Weitschek, E.; Cialini, A.; Felici, G.; Bertolazzi, P.; De Salvo, S.; Bramanti, A.; Bramanti, P.; De
Cola, M.C. Combining EEG signal processing with supervised methods for Alzheimer’s patients classification.
BMC Med. Inform. Decis. Mak. 2018, 18, 35. [CrossRef]

46. Nuamah, J.K.; Seong, Y. Support vector machine (SVM) classification of cognitive tasks based on
electroencephalography (EEG) engagement index. Brain-Comput. Interfaces 2018, 5, 1–12. [CrossRef]

47. Petrantonakis, P.C.; Leontios, J. EEG-based emotion recognition using advanced signal processing techniques.
Emot. Recognit. A Pattern Anal. Approach 2014, 269–293. [CrossRef]

48. Milind Gaikwad Effect of Meditation on Cognitive Workload. In EEG-Based Emotion Analysis and Recognition;
SGGS IET, Nanded: Maharashtra, India, 2019; pp. 88–107.

49. Krause, M. LCT FOR SILAB. Available online: https://www.lfe.mw.tum.de/en/downloads/open-source-tools/
lct-for-silab/ (accessed on 30 September 2019).

50. Mattes, S.; Hallén, A. Surrogate distraction measurement techniques: The lane change test. Driv. Distraction
Theory Eff. Mitig. 2009, 107–121. [CrossRef]

51. Zhong, N.; Bradshaw, J.M.; Liu, J.; Taylor, J.G. Detecting Emotion from EEG Signals Using the Emotive Epoc
Device. IEEE Intell. Syst. 2011, 26, 16–21. [CrossRef]

52. Tattersall, A.J.; Foord, P.S. An experimental evaluation of instantaneous self-assessment as a measure of
workload. Ergonomics 1996, 39, 740–748. [CrossRef]

53. Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H. Cognitive workload modulation through degraded
visual stimuli: A single-trial EEG study. J. Neural Eng. 2015, 12. [CrossRef] [PubMed]

54. Kim, H.S.; Hwang, Y.; Yoon, D.; Choi, W.; Park, C.H. Driver workload characteristics analysis using EEG
data from an urban road. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1844–1849. [CrossRef]

55. Kim, M.M.-K.; Kim, M.M.-K.; Oh, E.; Kim, S.-P. A Review on the Computational Methods for Emotional State
Estimation from the Human EEG. Comput. Math. Methods Med. 2013, 2013, 573734. [CrossRef] [PubMed]

56. Engström, J.; Markkula, G. Effects of visual and cognitive distraction on lane change test performance.
In Proceedings of the Fourth International Driving Symposium on Human Factors in Driver Assessment,
Training and Vehicle Design, Stevenson, WA, USA, 9–12 July 2007; Volume 4.

57. Young, K.L.; Lenné, M.G.; Williamson, A.R. Sensitivity of the lane change test as a measure of in-vehicle
system demand. Appl. Ergon. 2011, 42, 611–618. [CrossRef]

58. Daud, S.S.; Sudirman, R. Butterworth Bandpass and Stationary Wavelet Transform Filter Comparison for
Electroencephalography Signal. Proc. Int. Conf. Intell. Syst. Model. Simul. ISMS 2015, 2015, 123–126.
[CrossRef]

59. Becerra-Sánchez, E.P.; Reyes-Muñoz, A.; Guerrero-Ibáñez, J.A. Wearable Sensors for Evaluating Driver
Drowsiness and High Stress. IEEE Lat. Am. Trans. 2019, 17, 418–425. [CrossRef]

60. Kamzanova, A.T.; Kustubayeva, A.M.; Matthews, G. Use of EEG workload indices for diagnostic monitoring
of vigilance decrement. Hum. Factors 2014, 56, 1136–1149. [CrossRef]

61. Nandish, M.; Michahial, S.; P, H.K.; Ahmed, F. Feature Extraction and Classification of EEG Signal Using
Neural Network Based Techniques. Int. J. Eng. Innov. Technol. 2012, 2, 1–5. [CrossRef]

http://dx.doi.org/10.1109/TSE.2016.2584050
http://dx.doi.org/10.1007/s11517-017-1733-8
https://imotions.com/blog/eeg/
http://dx.doi.org/10.1080/10447318.2019.1595303
http://dx.doi.org/10.3389/fnins.2015.00354
http://dx.doi.org/10.1186/s12911-018-0613-y
http://dx.doi.org/10.1080/2326263X.2017.1338012
http://dx.doi.org/10.1002/9781118910566.ch11
https://www.lfe.mw.tum.de/en/downloads/open-source-tools/lct-for-silab/
https://www.lfe.mw.tum.de/en/downloads/open-source-tools/lct-for-silab/
http://dx.doi.org/10.1201/9781420007497.ch8
http://dx.doi.org/10.1109/MIS.2011.83
http://dx.doi.org/10.1080/00140139608964495
http://dx.doi.org/10.1088/1741-2560/12/4/046020
http://www.ncbi.nlm.nih.gov/pubmed/26065874
http://dx.doi.org/10.1109/TITS.2014.2333750
http://dx.doi.org/10.1155/2013/573734
http://www.ncbi.nlm.nih.gov/pubmed/23634176
http://dx.doi.org/10.1016/j.apergo.2010.06.020
http://dx.doi.org/10.1109/ISMS.2015.29
http://dx.doi.org/10.1109/TLA.2019.8863312
http://dx.doi.org/10.1177/0018720814526617
http://dx.doi.org/10.9790/9622-0811025360


Sensors 2020, 20, 5881 24 of 25

62. Yuvaraj, R.; Murugappan, M.; Ibrahim, N.M.; Omar, M.I.; Sundaraj, K.; Mohamad, K.; Palaniappan, R.;
Mesquita, E.; Satiyan, M. On the analysis of EEG power, frequency and asymmetry in Parkinson’s disease
during emotion processing. Behav. Brain Funct. 2014, 10, 12. [CrossRef]

63. Parvinnia, E.; Sabeti, M.; Jahromi, M.Z.; Boostani, R. Classification of EEG Signals using adaptive weighted
distance nearest neighbor algorithm. J. King Saud Univ. Inf. Sci. 2014, 26, 1–6. [CrossRef]

64. Riaz, F.; Hassan, A.; Rehman, S.; Niazi, I.K.; Dremstrup, K. EMD-based temporal and spectral features for
the classification of EEG signals using supervised learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24,
28–35. [CrossRef]

65. Zammouri, A.; Chraa-Mesbahi, S.; Ait Moussa, A.; Zerouali, S.; Sahnoun, M.; Tairi, H.; Mahraz, A.M. Brain
waves-based index for workload estimation and mental effort engagement recognition. J. Phys. Conf. Ser.
2017, 904. [CrossRef]

66. Puma, S.; Matton, N.; Paubel, P.-V.V.; Raufaste, É.; El-Yagoubi, R. Using theta and alpha band power to assess
cognitive workload in multitasking environments. Int. J. Psychophysiol. 2018, 123, 111–120. [CrossRef]

67. Nuamah, J.K.; Seong, Y.; Yi, S. Electroencephalography (EEG) classification of cognitive tasks based on task
engagement index. In Proceedings of the 2017 IEEE Conference on Cognitive and Computational Aspects of
Situation Management (CogSIMA), Savannah, GA, USA, 27–31 March 2017; pp. 1–6.

68. Jap, B.T.; Lal, S.; Fischer, P. Comparing combinations of EEG activity in train drivers during monotonous
driving. Expert Syst. Appl. 2011, 38, 996–1003. [CrossRef]

69. Lin, Q.; Huang, J.B.; Zhong, J.; Lin, S.; Xue, Y. Feature selection and recognition of electroencephalogram
signals: An extreme learning machine and genetic algorithm-based approach. Proc. Int. Conf. Mach. Learn.
Cybern. 2015, 2, 499–504. [CrossRef]

70. Tao, P.; Sun, Z.; Sun, Z. An Improved Intrusion Detection Algorithm Based on GA and SVM. IEEE Access
2018, 6, 13624–13631. [CrossRef]

71. Johnson, P.; Vandewater, L.; Wilson, W.; Maruff, P.; Savage, G.; Graham, P.; Macaulay, L.S.; Ellis, K.A.;
Szoeke, C.; Martins, R.N.; et al. Genetic algorithm with logistic regression for prediction of progression to
Alzheimer’s disease. BMC Bioinform. 2014, 15, S11. [CrossRef]

72. Matthews, G.; Reinerman-Jones, L.E.; Barber, D.J.; Abich, J. The psychometrics of mental workload: Multiple
measures are sensitive but divergent. Hum. Factors 2015, 57, 125–143. [CrossRef]

73. Amo, C.; de Santiago, L.; Barea, R.; López-Dorado, A.; Boquete, L. Analysis of gamma-band activity from
human EEG using empirical mode decomposition. Sensors 2017, 17, 989. [CrossRef]

74. Mahmoudi, M.; Shamsi, M. Multi-class EEG classification of motor imagery signal by finding optimal time
segments and features using SNR-based mutual information. Australas. Phys. Eng. Sci. Med. 2018, 41,
957–972. [CrossRef]

75. Tian, Y.; Xu, W.; Yang, L. Cortical Classification with Rhythm Entropy for Error Processing in Cocktail Party
Environment Based on Scalp EEG Recording. Sci. Rep. 2018, 8, 1–13. [CrossRef] [PubMed]

76. Zheng, W.L.; Lu, B.L. A multimodal approach to estimating vigilance using EEG and forehead EOG. J. Neural
Eng. 2017, 14. [CrossRef] [PubMed]

77. Zhao, H.; Guo, X.; Wang, M.; Li, T.; Pang, C.; Georgakopoulos, D. Analyze EEG signals with extreme learning
machine based on PMIS feature selection. Int. J. Mach. Learn. Cybern. 2018, 9, 243–249. [CrossRef]

78. Li, X.; Chen, X.; Yan, Y.; Wei, W.; Wang, Z.J. Classification of EEG signals using a multiple kernel learning
support vector machine. Sensors 2014, 14, 12784–12802. [CrossRef] [PubMed]

79. Bajaj, V.; Taran, S.; Sengur, A. Emotion classification using flexible analytic wavelet transform for
electroencephalogram signals. Health Inf. Sci. Syst. 2018, 6, 1–7. [CrossRef]

80. Shon, D.; Im, K.; Park, J.H.; Lim, D.S.; Jang, B.; Kim, J.M. Emotional stress state detection using genetic
algorithm-based feature selection on EEG signals. Int. J. Environ. Res. Public Health 2018, 15. [CrossRef]

81. Valenzuela, O.; Jiang, X.; Carrillo, A.; Rojas, I. Multi-Objective Genetic Algorithms to Find Most Relevant
Volumes of the Brain Related to Alzheimer’s Disease and Mild Cognitive Impairment. Int. J. Neural Syst.
2018, 28. [CrossRef]

82. Malan, N.S.; Sharma, S. Feature selection using regularized neighbourhood component analysis to enhance
the classification performance of motor imagery signals. Comput. Biol. Med. 2019, 107, 118–126. [CrossRef]

83. Cai, H.; Qu, Z.; Li, Z.; Zhang, Y.; Hu, X.; Hu, B. Feature-level fusion approaches based on multimodal EEG
data for depression recognition. Inf. Fusion 2020, 59, 127–138. [CrossRef]

http://dx.doi.org/10.1186/1744-9081-10-12
http://dx.doi.org/10.1016/j.jksuci.2013.01.001
http://dx.doi.org/10.1109/TNSRE.2015.2441835
http://dx.doi.org/10.1088/1742-6596/904/1/012008
http://dx.doi.org/10.1016/j.ijpsycho.2017.10.004
http://dx.doi.org/10.1016/j.eswa.2010.07.109
http://dx.doi.org/10.1109/ICMLC.2015.7340607
http://dx.doi.org/10.1109/ACCESS.2018.2810198
http://dx.doi.org/10.1186/1471-2105-15-S16-S11
http://dx.doi.org/10.1177/0018720814539505
http://dx.doi.org/10.3390/s17050989
http://dx.doi.org/10.1007/s13246-018-0691-2
http://dx.doi.org/10.1038/s41598-018-24535-4
http://www.ncbi.nlm.nih.gov/pubmed/29666460
http://dx.doi.org/10.1088/1741-2552/aa5a98
http://www.ncbi.nlm.nih.gov/pubmed/28102833
http://dx.doi.org/10.1007/s13042-015-0378-x
http://dx.doi.org/10.3390/s140712784
http://www.ncbi.nlm.nih.gov/pubmed/25036334
http://dx.doi.org/10.1007/s13755-018-0048-y
http://dx.doi.org/10.3390/ijerph15112461
http://dx.doi.org/10.1142/S0129065718500223
http://dx.doi.org/10.1016/j.compbiomed.2019.02.009
http://dx.doi.org/10.1016/j.inffus.2020.01.008


Sensors 2020, 20, 5881 25 of 25

84. Leon, M.; Ballesteros, J.; Tidare, J.; Xiong, N.; Astrand, E. Feature Selection of EEG Oscillatory Activity
Related to Motor Imagery Using a Hierarchical Genetic Algorithm. In Proceedings of the 2019 IEEE Congress
on Evolutionary Computation (CEC) Wellington, New Zealan, 10–13 June 2019; pp. 87–94. [CrossRef]

85. Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of sampling and cross-validation tuning strategies
for regional-scale machine learning classification. Remote Sens. 2019, 11. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/CEC.2019.8789948
http://dx.doi.org/10.3390/rs11020185
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Statistical Analysis 
	GALoRIS 
	Population 
	Fitness Function 
	Selection 
	Crossing 
	Mutation 
	Detection Rules 
	Information Structuring 
	Classifiers 
	Label 

	Experimentation and Materials 
	Design of the Experiment 
	Subjective Measures 
	Measurement of the Vehicle Performance 
	Collection and Extraction of EEG Signals 
	Dataset and Parameters 

	Results 
	Subjective and Vehicle Performance Measures 
	EEG Signals 
	Statistical Test Results 
	Labeling Results 
	GALoRIS Results 
	Classifier Results 

	Conclusions and Discussion 
	References

