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Abstract: This review describes an ongoing effort intended to develop wireless sensor networks for
real-time monitoring of airborne targets across a broad area. The goal is to apply the spectrophotometric
characteristics of porphyrins and metalloporphyrins in a colorimetric array for detection and
discrimination of changes in the chemical composition of environmental air samples. The work
includes hardware, software, and firmware design as well as development of algorithms for
identification of event occurrence and discrimination of targets. Here, we describe the prototype
devices and algorithms related to this effort as well as work directed at selection of indicator arrays
for use with the system. Finally, we review the field trials completed with the prototype devices and
discuss the outlook for further development.

Keywords: reflectance; portable; autonomous; sensor; porphyrin; color value; chemical detection;
environmental monitoring

1. Introduction

This review addresses the development of a sensor system intended to offer utility in a wireless
sensor network for real-time monitoring of airborne chemical targets. These devices are intended to
offer a portable and low-power solution for real-time detection of small molecule chemical threats
in indoor and outdoor environments. Past efforts to detect such threats have applied a variety of
techniques, including Raman and IR spectroscopy [1–5], gas or liquid chromatography coupled
with mass spectroscopy [6–9], classic wet chemical assays [10,11], and others. For many of these
methods, samples are collected at the point of interest and sent to central laboratories for processing.
Such strategies can require hours to weeks before results are available, and they are not suitable
for real-time protection. Other approaches seek to avoid these limitations through adaptation of
devices for field use. The document Strategies to Protect the Health of Deployed U.S. Forces:
Detecting, Characterizing, and Documenting Exposures (summarized in their Appendix D) provides a
comprehensive list of technologies applied to chemical threat detection and references for detailed
information on these applications [12]. Within the US Department of Defense, M8 Chemical Detection
Paper and the Joint Chemical Agent Detector (JCAD) offer the most widely used approaches to portable
point detection. M8 paper provides detection in a colorimetric format with visual discrimination.
The JACD is a handheld, ion mobility spectrometry (IMS) based detector that has been available for
more than 15 years [13]. Each of these devices is intended for hand-held use by a technician at the site
of potential contamination.

More recently, the distributed microsensor paradigm has emerged as a potential solution to
the detection of chemical and biological compounds. Significant research and modeling of plume
dispersion, particularly in urban environments, points to the weakness of single detector deployment
and the need for a more distributed network [14–23]. The idea behind this approach is to utilize
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multiple low-cost sensors that are small, low power, and autonomous [24,25]. The devices could be
used with unmanned vehicles for deployment and/or delivery [26–30] or may be scattered around an
area of interest for long-duration monitoring. The concept of use involves a population of these sensors
rather than a single device. While no individual device would match the sensitivity of traditional
laboratory equipment, there are advantages to be found. First, at least one of the devices would be
expected to be nearer the point of origin than a centralized detector or detector bearing personnel,
resulting in a proportionally larger concentration, and reducing strict sensitivity requirements. Second,
a geographical distribution of the devices could also offer spatial and temporal information on the
movement of a chemical plume. Finally, detection may occur sooner as threats do not have to diffuse
to a centralized detector but will instead encounter devices at the perimeter and throughout the area.
Various detection methods have been tested in sensor networks [31–35]. There are several topics that
remain active areas of focus, such as controlling power use [31,36–38] and determining the best way to
deploy the sensors [39–42].

This review addresses development of a sensor system intended for distributed autonomous
applications, the Array-Based Environmental Air Monitor (ABEAM). The ABEAM is a colorimetric
array utilizing porphyrin and metalloporphyrin indicators with commercially available color sensing
chips. The work includes selection of indicator materials, hardware, firmware, and software design,
and development of algorithms for determination of responses. Over several generations of devices,
demonstrations have included laboratory-based screening of indicator responses, independent
laboratory evaluations, and outdoor deployments for periods of up to months. Here, we will
review the key components of the devices as well as specific results for their evaluation.

2. Indicators

The prototype sensors of this review use paper-supported, porphyrin, and metalloporphyrin
indicators for detection of chemical targets. Porphyrins offer a large macrocycle, strongly absorbing
visible light with the highest extinction coefficients in the blue region of the spectrum. Strong changes
in the spectrophotometric characteristics of this class of compounds resulting from changes in the
chemical composition of their immediate environment make them well suited to the application
described here [43]. These changes are commonly reported as changes in absorbance or fluorescence
(as in Figure 1) but can also be interrogated by the reflectance approach utilized by the prototype
devices described here.

A wide range of both natural and synthetic porphyrins are available with different porphyrin and
metalloporphyrin variants providing different responses to a given target. For example, porphyrins
and metalloporphyrins have been widely described for detection of volatile targets based on changes
in their spectrophotometric characteristics upon target interaction [44–47]. These interactions, however,
tend to be non-specific with broad ranges of compounds leading to changes in the characteristics of a
single indicator. As a result, the use of a single indicator for a specific target is not typical. Utilization
as an array with analysis based on a fingerprint response across a number of indicators has been
described [44,48–57].

Porphyrin and metalloporphyrin indicators can also be applied in combination with antimicrobial
peptides for a similar approach to detection of biological compounds [58–60]. This type of modification
of the peripheral porphyrin structure is similar to that used for chemical detection. The difference is in
the incorporation of a modification specifically designed to change upon target interaction rather than
being designed to closely associate a target with the porphyrin structure. Again, these interactions tend
to be non-specific requiring use of an array-based response for discrimination of biological targets.

2.1. Porphyrin Based Chemical Detection

The approach taken here for chemical detection is similar to that described by Suslick et al. [44,47,61,62]
and others [44,62–67] in that reflectance-based color changes are used; however, the indicators are selected for
a real-time detection application and tend to yield reversible changes. This is a consideration that also leads
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to collection and use of a different type of data. Other approaches focus on image processing and automation
of this task [44,52,61,68–70], including development of algorithms for use with smartphones [71–73].
Those types of approaches sample at a time point following a specific exposure duration using detection
elements that undergo irreversible changes. The real-time effort described here evaluates a continuous data
stream and uses RGB (red, green, blue) color values rather than photographs of the indicator [74].

The porphyrin indicators are supported on WypAll X60 paper using a dip and dry deposition
approach optimized based on evaluation of sensor responses for materials with varied porphyrin
concentrations [75]. The deposition procedure was designed to produce sufficient porphyrin loading
and homogeneous coverage of the support material without overloading the support, a condition that
reduces indicator responsiveness [74]. The specific indictors selected were identified using several
types of experiments depending on the prototype version in use [74–76]. The most commonly used
screening experiment used continuous data collection over periods of 1 to 14 days with multiple
exposure and purge periods. A glove chamber (65 L; Techni-Dome, Bel-Art, Wayne, NJ, USA) was
used to house the devices and provide a controlled environment. The volume was purged with
humidified air for baseline conditions. Exposures were accomplished by adding a volume of target to
the humidified air stream to produce alcohol concentrations of 0.05, 0.16, 0.32, 0.53, 1.06, and 1.58 ppm.

In addition to evaluation with the prototype devices, a series of porphyrins were evaluated in
solution [77–79]. The work proposes the use of affinity coefficients in identification of indicators for
use in paper supported arrays. Solution binding experiments can be completed rapidly, and large
datasets are available in the literature. If the approach provides a valid method for selection of
indicators, it would significantly speed the process. These experiments evaluated metalloporphyrin
variants of meso-tetra(4-aminophenyl) porphyrin (N4TPP) [77], meso-tetra(4-carboxyphenyl) porphyrin
(C4TPP) [78], and meso-tetra(4-sulfonatophenyl) porphyrin (S4TPP) [79] using ethanol, methanol,
and isopropanol as the targets (Figure 1). Affinity coefficients were determined based on the intensity
changes in the absorbance spectra. The various porphyrins and metalloporphyrins showed varying
affinity (over six orders of magnitude) and changes in extinction coefficient upon interaction with the
targets. Comparison of these results to those obtained using paper supported materials is ongoing.
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Figure 1. (a) Absorbance spectra of C4TPP in the absence and presence of ethanol. (b) Difference
absorbance spectra (right) are calculated as porphyrin + target minus porphyrin only. C4TPP is
9.86 mM in deionized water (black). Ethanol is 57 (red), 113 (blue), 169 (green), 225 (gray), 280 (purple),
335 (orange), 390 (lime), and 444 mM (pink). Arrows indicate increasing target concentration [78].

2.2. Antimicrobial Peptide Based Biological Detection

Antimicrobial peptides (AMPs) are a group of biomolecules that recognize and kill biological
targets by binding to and disrupting cell membranes. These compounds are stable under environmental
extremes and offer high affinity with overlapping binding interactions. Arrays of these compounds have
been applied previously to detection and classification of bacterial and viral targets [80–84]. Optical
approaches typically use a surface immobilized antimicrobial peptide in combination with an additional
reagent, a tracer of some type. Porphyrin-peptide conjugates have been used previously for targeting
of photoactive reagents [85–89]. For the application described here, porphyrin-modified antimicrobial
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peptides also provide target recognition, but a change in the spectrophotometric signature of the
porphyrin upon interaction with that target is used for indication. No additional reagents are necessary.
While systems requiring additional reagents are poorly suited to long-term monitoring applications,
the porphyrin-modified antimicrobial peptide beacons facilitate the long-term application desired.

An initial study provided proof of concept data for the use of porphyrin-modified antimicrobial
peptides for indication of bacterial presence [58,60]. Sensing of the bacteria is a result of changes in the
local environment of the covalently attached porphyrin resulting from conformational changes in the
antimicrobial peptide. Peptides with little to no change in conformation upon target interaction did not
provide changes in absorbance or fluorescence upon exposure to the targets, Escherichia coli and Bacillus
cereus (Figure 2a) [58,60]. Different spectrophotometric changes were observed for constructs based
on antimicrobial peptides that do change upon target binding. Addition of coordinated metal to the
constructs altered the spectrophotometric characteristics and the noted changes. An initial evaluation
of the constructs in a paper-supported format was reported [90], but detailed evaluation and analysis
of these materials is still underway.
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Figure 2. (a) Interaction of 5-mono(4-carboxyphenyl)-10, 15, 20-triphenyl porphine (C1TPP) conjugated
to the indolicidin antimicrobial peptide with bacterial cells. Absorbance difference spectra are
calculated based on the point-by-point subtraction of the spectrum of the construct from that
of the construct in the presence of target [58,60]. (b) Absorbance characteristics for the C1 end
C1S3TPP modified indolicidin (16 mM): N-(α-maleimidoacetoxy) succinimide ester (AMAS, black),
(N-γ-maleimidobutyryl-oxysuccinimide ester) (GMBS, red), N-(ε-maleimidocaproyloxy)succinimide
ester (EMCS, green), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS, blue), succinimidyl
4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC, gray).

A series of crosslinker variations were considered for preparation of an indolicidin-based construct
using meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl) porphyrin (C1S3TPP, Figure 2b) [59].
The goal in generation of the constructs was to provide an array in which the peptide components
provide target recognition, with the porphyrin providing the detected signal. For the approach to
function properly, the spectrophotometric characteristics of the porphyrin should be impacted by the
change in the structure of the peptide upon target binding. A direct interaction of the porphyrin with
the bacterial target would likely result in nonspecific changes to the spectrophotometric characteristics.
The crosslinker series was intended to provide control over the point of modification and the ratio
of porphyrin to peptide. The study found that the nonspecific 1-Ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC)/N-hydroxysuccinimidyl ester (NHS)-based chemistry provided
constructs with the largest change in spectrophotometric characteristics upon target interaction [59].
Other crosslinkers produced constructs that failed to show spectrophotometric changes or showed
only small to moderate changes in characteristics. Work focused on the use of these indicators with the
prototype devices is ongoing.

3. Devices

A number of reports describing the development of array-based sensing approaches are
available [44,61,76,91], including both electrochemical and optical approaches [61,91–94]. Optical
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methods can be based on image capture, typically requiring significant post processing, or may be
based on simple color intensity measurements [44,52,61,68–70]. Commercial portable sensors have
been described based on analysis of reflected color or intensity. These devices may use analysis of
a spectrum or may employ photodiodes with optical color filters. Breakout boards (i.e., Parallax
Color-PAL; Seeed Studio Grove I2C Color Sensor; Hamamatsu C9331) to facilitate these types of
applications are available. These types of devices have been used in a limited number of applications
previously [95,96].

The earliest work in development of the device described here evaluated the TCS3200-DB
color sensing breakout board (Parallax, Inc., Rocklin, CA, USA). This device provides a color
light-to-frequency integrated circuit with white LED illumination, and an adjustable lens. The board
was used in a reflectance-type measurement with 2.54 cm standoffs used to mount the sensor above
an indicator supporting platform. Firmware was developed on an Arduino Uno using a firmware
sketch for collection of frequency data and a converter providing RGB numbers and saving to a text
file. Briefly, the LEDs were turned on and data were collected in time increments of 1 s for white, red,
green, and blue signals.

In order to create a multi-indicator device (Multiplex), a customized multiplex platform was
developed [74,97]. This variant utilized six of the TCS3200-DB breakout boards. A custom-printed
circuit board (PCB) utilizing an ATMega microcontroller (ATMega 328P, Microchip Technology, San Jose,
CA, USA) was designed. This board regulated the timing of events, counted pulses, and reported
the results to a computer. Communications between the sensor device and the controlling computer
were via USB; power was supplied through a DC barrel jack (Figure 3a). A software-based graphical
user interface (GUI) was developed using LabWindows (National Instruments, Austin, TX, USA).
Each color sensing board sequentially measured four colors: Red, green, blue, and white. As an
example, the microcontroller enabled sensor #1, this turned on the LEDs and initiated communication
of data. The timer channel counted the number of pulses received from the white sensor channel and
stored the result. The process was repeated three additional times for the red, green, and blue channels,
respectively (0.8 s total). Sensor #1 was then disabled, and sensor #2 was enabled to follow the same
process. This continued through all six sensors (4.8 s total). Finally, data were sent to the controlling
computer. The total time for a single read of the device at 100 ms integration (per channel) was fixed
by this process at 5 s. For this device, custom Delrin holders for each of the breakout boards provided
the 2.54 cm standoff and supported the indicator material. They were designed to sit as the lid on a
60 mm petri dish to support the indicator material over a liquid sample for vapor testing.
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Figure 3. (a) Photograph of the Multiplex including custom printed circuit board (PCB) with
six TCS3200-DB RGB color sensors and six custom holders attached. Photo: US Naval Research
Laboratory/Jamie Hartman. (b) Photograph of the ABEAM-6 including custom printed circuit board
(PCB) with housing and custom wind tunnel support for color sensors and indicators. Additional
detail is provided in the Supplementary Information, Figures S1 and S2.

The next device variant (ABEAM-6) added an enclosure and autonomous capabilities to the
sensor package allowing for unattended operation and use in outdoor environments (Figure 3b).
The housing was machined from Delrin plastic for chemical resistance; black was selected to minimize
stray reflections. Holes in the housing for USB connection, power, and fans are located on the bottom
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to allow for use in outdoor environments. This device included an upgraded microcontroller (XMEGA
64A3U-AU, Microchip Technology, San Jose, CA, USA) and flash memory suitable for deployment
durations of greater than 14 days; the original device accommodated only 7 days of data. The device
was powered using a 7.5 V power supply (or set of batteries). A PC equipped with custom software
(LabWindows, National Instruments, Austin, TX, USA) was used to control the beginning and end
of data collection and to download data from the device; connection was not required during data
collection. Data were acquired in real time and stored on flash memory.

4. Algorithms

In addition to hardware, software, and firmware, algorithms for identifying event occurrence and
interpreting indicator responses are necessary for a complete sensor package. As described above,
most prior work has focused on image analysis with the sensor device generating images that are
processed with a computer using custom software for analysis. For the prototypes described here,
the intention was to utilize real-time RGB color values with an algorithm that required minimal
processing power for event identification. The aim was to minimize cost of devices as well as reduce the
required communication events from the distributed devices to central reporting node. This required
significantly different approaches to data handling and determination of event occurrence. Here,
we focus on event detection; the classification algorithm is still under development and is likely to
reside on the central node and not on the individual devices. The algorithms developed for use with
the prototype devices began with exclusion of anomalous data points [75,76,97,98]. Individual RGB
values were compared to those reported for the previous time point. The prior value was substituted
for the current values, if the absolute value of the difference between the two time points was greater
than 35% of the signal. The white channel data were ignored by all algorithms.

4.1. Standard Deviation Algorithm

Initial work utilized a standard deviation based algorithm [76]. For this approach, detection
criteria were based on examination of the red, green, and blue color channels for each of the six
indicators. For a given time point, the standard deviation for each color channel (RGB) of each color
sensor (indicator) was computed using the 12 most recently collected data points. The standard
deviations were then divided by the average intensity for the 12 points. If the result of this calculation
for the three color channels was greater than 0.00015, the data were determined to represent a potential
detection event; similarly, if any two of the values were greater than 0.015, a possible event was
identified. For the complete device (all six indicators), a detection event was indicated if the minimum
number of indicators reported an event simultaneously; this requirement may be for one to six seats as
defined by the application. Once an event has been identified, a cool down window of 30 min was
initiated. All detection events within that window were included as part of the initial event, and the
window was extended to 30 min past the last set of data meeting detection criteria (Figure 4).

The standard-deviation-based algorithm provided rapid event detection (1 min or less) with
minimal instrument warm up time (1 min). When used with the original prototype (Figure 3a),
ROC analysis indicated a sensitivity (or true positive rate) of 0.87 with a specificity of 0.92 for an
8 ppm detection threshold [76]. Improvements to performance could be achieved through requiring a
response on more than one indicator material. Unfortunately, this algorithm failed when applied to
data collected using the housed prototype device (Figure 3b). In the initial experiments, petri dishes
were used to expose the indicator materials to targets [74]. These types of exposures have little
relevance to the expected target concentration changes for an environmental sensor system. Exposure
of the device using the glove chamber was intended to better simulate the application conditions [74].
These exposures produced a significantly different time dependence in the change in color values for
the indictors. The differences reflected the time required to reach peak concentration and the slow
return to baseline conditions. The standard deviation algorithm for the dataset collected using this
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approach yielded sensitivity 0.07 with specificity 0.99. Manual analysis of the data, on the other hand,
indicated that detection of ethanol at 160 ppb should be possible.
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Figure 4. Pseudocode describing the standard-deviation-based algorithm [76].

4.2. Slope Algorithm

Given the failure of the standard deviation based algorithm when used with environmentally
relevant exposures, an additional algorithm was developed [76]. Slope-based detection criteria were
used again based on examination of the red, green, and blue color channels for each of the six indicators
(Figure 5). Here, the thresholds for detection were fixed for each color value of each indicator based
on data collected during device warm up, the first 120 data points following initiation of the device.
The initial intensity was used in the following formula:

∅ = ae
−RGB

b + c (1)

where RGB was the initial intensity value for a given color channel. The parameters used in this
approach depended on the minimum number of indicators required for a detection event or on the
initial intensity values: a = 20 for one indicator or 70 for more than one and b = 130 for one indicator
or 30 for more than one. The value of c was equal to the larger value of two possible values: A user
specified value (default 0.45◦) or the algorithm calculated angle of the dot product of the standard error
for the 120 data points collected during initiation of the device. These parameters were optimized
using a set of controlled exposures in the enclosure experiments.

For event detection, linear regression was used to compute the slope and r2 value for each of the
colors (RGB) over two time windows, Active and Background. The Active window was the 20 most
recent time points; the Background window was populated by the next 120 most recent time points.
These windows were used for calculation of the cosine of the angle between the slopes. Each of the
three color values was considered for each indicator, and the value was compared to the cosine of the
Threshold angle determined above. If the cosine of the angle between the Background and Active
slopes was less than that of the Threshold angle and the r2 value for the Active window was greater
than 0.67, the color value was counted as 1. If the r2 value was greater than 0.8, that color was counted
as 2. The counts were summed for a given indicator; a value greater than 1 led to that indicator being
considered to have detected an exposure [98]. Rapid changes resulting from high dose exposures were
captured by an additional test. The Snap window contained only the 10 most recent data points. If the
angle between the Snap slope and the Background slope was greater than 12◦ then the RGB channel
contributed 1 to the running total. As with the standard deviation algorithm, an event window was
used for determination of the end point; 60 min in this case.
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Figure 5. Pseudocode describing the sloped-based algorithm.

5. Demonstration and Evaluation

Initial work was completed using the earliest, unhoused device (Figure 3a) [74]. These tests
used custom Delrin holders, designed to sit as the lid on a 60 mm Petri dish, to screen indicators and
evaluate the performance of the color sensing devices. Exposures were completed by first collecting
baseline data over an empty Petri dish (60 mm; total volume 57 mL). The holder was then moved
to a warmed dish containing 1 mL or less of an alcohol target. Following exposure, the holder was
moved back onto the empty dish to monitor changes as the indicator returned to baseline. Figure 6
provides an example of the data resulting from one such experiment. These evaluations were used to
identify indicator materials that showed promise for use in an alcohol (isopropanol, ethanol, methanol)
detection array. Alcohols were selected for much of this work because the low hazards associated
with their use provided flexibility in the types of exposures and environmental conditions that could
be considered. In total, 130 porphyrin and metalloporphyrin indicators were screened for the three
alcohol targets at five exposure levels. Based on the results, a set of six materials was selected: N4TPP,
silver (Ag N4TPP) and zinc (Zn N4TPP) variants of N4TPP, and silver (Ag DIX), yttrium (Y DIX),
and thallium (Tl DIX) variants of Deuteroporphyrin IX bis ethylene glycol. The indicators were selected
based on their providing varied response across the three targets and on the scale of the intensity
changes upon exposure. Both exposure indication and target discrimination were desired in this array.

A similar type of experimental setup was used to evaluate both porphyrin and titanyl indicators
intended for the detection of peroxides related to illicit explosives manufacture [97]. While the prototype
device reports RGB color values, the changes observed for the titanyl indicators were negligible on the
red and green channels. The rates of change in reflectance for the titanyl indicators were found to be
concentration dependent (Figure 7). The initial work with porphyrin indicators focused on reversible,
chemosorptive interactions. The titanyl indicators were reactive and non-reversible (Figure 7),
demonstrating the potential for use of the prototype device with other types of indicator materials.
The porphyrin indicators (Co DIX and Cu DIX) provided reversible changes in reflectance upon exposure
to peroxides. They also provided responses upon exposure to sulfuric, nitric, and hydrochloric acid [97].
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Figure 6. Porphyrin responses to stagnant alcohol exposures (0.5 mL ethanol). Shown here are
time-dependent responses for the porphyrin functionalized WypAll materials upon exposure to
targets under the petri dish method: (a) Deuteroporphyrin IX bis ethylene glycol (DIX), (b) meso
tetra(4-aminophenyl)porphyrin (N4TPP), (c) Cd DIX, (d) Ce DIX, (e) Co DIX, (f) Fe DIX. Dashed lines
indicate the beginning and end of the exposure duration. Data have been normalized to the average
total signal during the initialization period.
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Figure 7. Paper supported titanyl indicators. (a) Shown here are the normalized blue color values
for indicator swatches before and during exposure to vapor evolving from water (orange) and 3%
(gray), 1.2% (blue), 0.3% (green), 0.15% (red), and 0.06% (black) solutions of hydrogen peroxide in
water. Pictured here are the fresh (b) and exposed (c) titanyl indicators [97].

The Delrin housed devices (Figure 3b) were used for a large number of evaluations including
those completed in outdoor environments and in a glove chamber (65 L; Techni-Dome, Bel-Art, Wayne,
NJ, USA) [75,76]. The enclosure was used to complete screening evaluations similar to those completed
with the unhoused device as well as to evaluate additional targets. The six-element array identified
above (N4TPP, Ag N4TPP, Zn N4TPP, Ag DIX, Y DIX, and Tl DIX) was used for collection of several
large datasets. The majority of the work utilized three prototypes running simultaneously. In indoor
experiments, they were contained in a single environment for collection of 3771 h of continuous
operation (data were downloaded once per week). Outdoor experiments used the three prototypes
in three different locations for collection of 19,597 h of data (Figure 8). Both types of experiments
included exposures to alcohols at various points during data collection. Initial assessments of the
datasets indicated a difference indicated a significant loss in specificity (based on receiver operating
characteristics, ROC) when the devices were moved from indoor to outdoor environments. Adjustments
to the algorithm were made in an attempt to address these differences. Specificity could be improved
using changes to the detection thresholds or the minimum indicator requirements but only at the
expense of sensitivity [75].

A follow-up experiment considered the potential impact of adjusting device parameters. Additional
data (1148 h indoor, and 1056 outdoor) was collected for comparison of different device integration times
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(Figure 9) [75]. The initial datasets were collected at 100 ms with indoor sensitivity of 0.5 and specificity 1.0.
The 400 ms indoor dataset yielded ROC specificity and sensitivity of 1.0 under a single indicator requirement.
Similar outdoor data, however, yielded high false positive rates under the single indicator requirement.
A variation of the algorithm requiring three indicator responses and using a reduced detection threshold
yielded specificity 0.94 and sensitivity 0.83 (300 ms data). Further improvements to false positive rates could
be made only through sacrificing sensitivity. Including untreated WypAll as one of the indicator materials
(a negative control) further improved performance with specificity 0.97 and sensitivity 1.0. In the optimized
approach 145 h of outdoor data provided a run time of 70 h before a false response was detected.

Independent evaluation of the housed prototype was completed, including exposure to a series of
previously unevaluated targets (Table 1) [99]. These evaluations used six indicators materials: N4TPP,
Ag N4TPP, Zn N4TPP, Au DIX, Y DIX, and Tl DIX, basing the selections largely on the initial array
described above. The evaluations required some alterations to the way the algorithm was implemented
to meet the requirements of the evaluation methodology. Previously, 120 data points were used to
populate the initial Background window with an additional 20 points required to populate the Active
window. A shorter warm-up period was required for these evaluations. To accommodate this need,
the initial 30 data points were entered into the buffer in four positions. The data used by the algorithm
have the same data at 0, 30, 60, and 90 s, the data collected at time = 0 s. The data at 120, 150, 180,
and 210 s is replication of the data collected at the 30 s time point. At 15 min, entry of data into the
algorithm returns to normal. One other alteration was made, where the cool down period was changed
from 120 points (60 min) to 10 points (5 min).Sensors 2020, 20, x FOR PEER REVIEW 10 of 21 
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Figure 8. Red, green, and blue (RGB) profiles for data collected in an outdoor environment for a period
between 6 and 8 July 2015: (a) Zn N4TPP and (b) Ag DIX. (c) The temperature (black) and humidity
(gray) recorded by a co-located data logger are also provided [75].

The changes made to the algorithm in combination with the way the devices were evaluated had a
negative impact on the outcome of the experiments [99]. A recurring event was noted at approximately
1500 s (0.42 h). Based on the changes made to the way the algorithm windows were populated, this was
the first time point at which detection could begin following the 25 min warmup period. In this set of
experiments, the fans of the prototype were used to circulate the air within the test setup; air flow was
initiated at the time that data collection began. The associated humidity data shows a steep change
through the first hour of data while the test chamber is equilibrated. The initial Background window
for the algorithm was populated by data reflecting the rapid humidity change, and the changing slope
caused an event trigger when the detection algorithm came online. It is also important to note that



Sensors 2020, 20, 5857 11 of 21

the threshold angles for each color of each indicator and the associated standard deviations were
fixed by the first 120 points in the matrix; this was the only calculation of those values for a given use
cycle. This calculation defined the sensitivity of the algorithm; large changes during this period had a
negative impact on performance.

Table 1 provides two sets of algorithm responses. The first is based on the reported events
provided by the dripfeed algorithm during the experiments. The second set used a modified algorithm
after experiments were completed [99]. Here, we take exposure to ethylene oxide as an example of the
data collected during this set of evaluations (Figure 10). The prototype device was exposed to 78 and
361 ppm ethylene oxide vapor. Events were noted prior to the beginning of exposures as described
above. For a total of 15 exposures, a single exposure associated detection event was noted.
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Figure 9. Normalized RGB color value dataset collected for N4TPP and Zn N4TPP in the laboratory
(a) and in an outdoor environment (b) comparing 100, 300, 400, 500 ms integration for the prototype
devices. Temperature (black) and humidity (grey) are reported using a co-located device [75].

Alteration of a new detection algorithm without sufficient datasets risks overtraining where
the device and algorithm have been tuned to respond well under test conditions that may not
accurately reflect other applications. This was observed for the initial algorithm development described
above [99]. The data generated during this test of the prototype were not sufficient for generation
of a new automated algorithm. The intrinsic response of the device was, however, examined using
the slopes of the collected data over time. This was a manual investigation, but it provided a better
idea of the possible response profiles that the algorithm was not designed to capture (Figure 11).
The complication of early data points became apparent in this dataset. The low concentration exposures
produced little response from the device; higher concentration exposures produced characteristic
responses from the N4TPP, Ag N4TPP, Zn N4TPP, and Tl DIX indicators. Adjustment of the detection
thresholds (again, a manual analysis), indicated that it should be possible to improve detection of
ethylene oxide and the other targets (Table 1) [99].
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Table 1. Performance summary [99].

Target Total Exposures Initial Algorithm
Events

Altered Algorithm
Events 1

Ethylene oxide, 78 ppm 9 1 5
Ethylene oxide, 361 ppm 6 0 5

Simple Green 6 3 0
Sarin, 0.22 mg/m3 (Simple Green) 7 1 6

Sulfur Mustard, 1.2 mg/m3 6 0 3
Sulfur Mustard, 2.5 mg/m3 7 5 7

Chlorine gas, 5 ppm 6 6 6
Chlorine gas, 100 ppm 7 4 4

VX, 0.013 mg/m3 6 0 4
VX, 0.022 mg/m3 6 0 5

1 Based on post-processing of data collected.
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Figure 10. Ethylene oxide exposures at 78 ppm. Dashed lines indicate the beginning of chemical stream
flow. Humidity and temperature data collected during the experiment are also provided [99].



Sensors 2020, 20, 5857 13 of 21

Sensors 2020, 20, x FOR PEER REVIEW 13 of 21 

 

 

Figure 11. Slopes for ethylene oxide exposures. Here, a 30-point sliding window is applied to 

calculation of the slope. Prior to slope calculation, intensity values are normalized to the first intensity 

value for each color of each indicator. Dashed lines indicate the beginning of chemical stream flow, 

78 ppm ethylene oxide [99]. 

During the course of these experiments, the device suffered several failures [99]. The power plug 

connection was damaged through user interaction, requiring replacement of the control board. 

During board replacement, the connector on the control board for one of the color sensors was 

damaged. A final failure of the control board was found to be a result of corrosion on the main board. 

This corrosion followed exposure to Cl2, a corrosive gas. The result of these failures was an 

incomplete dataset; however, a significant amount of data were available. As shown in Table 1, the 

prototype was able to detect a number of the compounds used, but the results were mixed. This 

detection occurred with a non-optimal algorithm implementation, during multiple device failures, 

and without an optimized set of indicator materials. Significantly improved performance would be 

expected if these issues were addressed. 

6. Ongoing Work 

While the prototype system described in this review was proven to provide detection of targets 

under the desired conditions, it fell short in many aspects. Six indicators were insufficient for real-

world applications. A larger array would allow for better target discrimination and avoidance of false 

positive/negative responses. The openings in the current housing, necessary for power and 

communications, make isolation of the electronics difficult, leading to failures resulting from long-

duration environmental exposure as well as upon exposure to corrosive targets [99]. Finally, the 

device did not include onboard power or remote communication capabilities (Table 2). These lacking 

capabilities prevent the use of the devices in a distributed network, requiring USB tethering to a 

laptop computer or other supplementary data logger for communications. 

Figure 11. Slopes for ethylene oxide exposures. Here, a 30-point sliding window is applied to
calculation of the slope. Prior to slope calculation, intensity values are normalized to the first intensity
value for each color of each indicator. Dashed lines indicate the beginning of chemical stream flow,
78 ppm ethylene oxide [99].

During the course of these experiments, the device suffered several failures [99]. The power plug
connection was damaged through user interaction, requiring replacement of the control board. During
board replacement, the connector on the control board for one of the color sensors was damaged. A final
failure of the control board was found to be a result of corrosion on the main board. This corrosion
followed exposure to Cl2, a corrosive gas. The result of these failures was an incomplete dataset;
however, a significant amount of data were available. As shown in Table 1, the prototype was able to
detect a number of the compounds used, but the results were mixed. This detection occurred with a
non-optimal algorithm implementation, during multiple device failures, and without an optimized
set of indicator materials. Significantly improved performance would be expected if these issues
were addressed.

6. Ongoing Work

While the prototype system described in this review was proven to provide detection of targets
under the desired conditions, it fell short in many aspects. Six indicators were insufficient for
real-world applications. A larger array would allow for better target discrimination and avoidance
of false positive/negative responses. The openings in the current housing, necessary for power
and communications, make isolation of the electronics difficult, leading to failures resulting from
long-duration environmental exposure as well as upon exposure to corrosive targets [99]. Finally,
the device did not include onboard power or remote communication capabilities (Table 2). These lacking
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capabilities prevent the use of the devices in a distributed network, requiring USB tethering to a laptop
computer or other supplementary data logger for communications.

Table 2. Device summary.

Device Multiplex ABEAM-6 ABEAM-15

Number of Indicators 6 6 15
Memory Duration (30 s

sampling) 7.5 days 60 days 12 days

Size (LxWxH) Not housed 27.4 × 7.6 × 7.6 cm 19.1 × 8.9 × 11.7 cm
Weight 450 g 1.6 kg 2.2 kg 1

Software Platform LabWindows LabWindows Java/JavaFX

Sensor Hardware TCS 3200 TCS 3200, 3400, 34725,
and AS 7262 TCS 34725

5 s Integration Times 100 ms 100–500 ms 2 100–600 ms
Available Gain No Some 3 Up to 64×
Microcontroller ATMEGA 328-P XMEGA64-A3U-AU XMEGA64-A3U-AU

Wireless
Communications No No Yes

USB Communications Yes Yes Yes
Power Management No No Yes

Fans No Yes No
Outdoor Housing No Yes Yes

Batteries No No Yes
Drip feed, Real-time

Detection No Yes Yes

Networkable No No Yes
Dimmable LEDs No No Yes
1 Includes batteries. 2 The ABEAM-6 offers up to 500 ms of integration time on a 5 s collection cycle for the TCS 3414
sensor hardware only. All other ABEAM-6 sensor hardware offers 100 ms only. 3 All sensors except the TCS 3200
offer gain of up to 64×.

Based on lessons learned with the initial prototypes and keeping in mind the desire to design a
distributed network, a new prototype device is being evaluated (Figure 12) [100,101]. This device is
intended to provide the necessary expanded instrument capabilities while retaining similar size, weight,
and power (SWaP) characteristics at a manageable cost. The physical geometry of the instrument is
crucial to this design. Here, the intention was to increase the number of indicators without significantly
changing the size of the device. This requires a completely different approach to the optical design as
well as a different approach to design of indicator coupons; a single coupon bearing all of the indicators
is necessary to accommodate the smaller footprint. The data sampling rate and the autonomous
deployment duration are also important. With an increase in the number of indicators, each sampling
cycle generates significantly more data than that of the six-element array. Physical isolation of the
instrument electronics from the environment, incorporation of wireless communications, and onboard
power/power management were also priorities.

In this new device, the older TCS3200-DB breakout boards have been replaced with TCS34725
surface mount RGB sensors. Rather than providing a pulse train proportional to intensity, these output
a voltage proportional to intensity of the signal. This allows for higher data throughput, resulting in
faster sampling cycles even with the increased number of array elements. As an example, the original
TCS 3200-DB breakout board was limited to 100 ms integration for a 5 s sampling cycle. The current
design (ABEAM-15) can perform the 5 s sampling cycle at integration times of up to 600 ms. Software
for this device has been re-written in Java. The user interface was re-written using JavaFX, removing
many of the limitations of the old LabWindows based GUI. Experimental modes have been expanded
to include autonomous operation with post collection analysis, drip-feed analysis, and a distributed
microsensor network mode utilizing a star-point topology with real-time analysis. The detection
algorithm used to identify the occurrence of events has not changed, but the implementation has been
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updated. The devices can be used singly or as a network containing up to six devices controlled by a
laptop computer.
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Figure 12. (a,b) Images of the ABEAM-15 prototype sensor. The device includes fifteen surface mount
RGB sensors, eight cool white LEDs, and three printed circuit boards: The bottom control board,
the middle board with a 5 × 3 array of color sensors, and the top illumination board. This device can be
utilized wirelessly for real-time detection.

7. Conclusions and Future Outlook

Here, we have provided a review of the hardware and algorithm development for a prototype
sensor system intended for distributed autonomous applications. Through several device generations,
evaluations have included a wide range of conditions and scenarios: Laboratory based screening and
longer duration indoor evaluations, independent laboratory evaluations, and outdoor deployments.
While the devices offer demonstrated capabilities directed toward the desired distributed application,
the ABEAM-6 instrument falls short in incorporation of necessary power and communications
capabilities as well as in the total number of indicator materials. The 15-element array currently
under evaluation offers significant improvements in capability over that of the original six-element
device, but there are advantages to be found in further expansion of the number of array elements.
More elements offer the potential for improved discrimination of targets as well as data redundancy,
a feature that can improve confidence. It may also be possible to incorporate different types of indicator
materials in a larger array, providing greater insight into target concentrations.

In redesigning the prototype to both incorporate 24 elements and provide long-duration unattended
operation, the spacing of the detection elements must be considered. In the 15-element device [100],
indicator spots are located 14 mm apart in a five-by-three array. It is likely possible to reduce both the
size of the spots and the spacing between them, but the limitations will have to be determined. A change
in the illumination of the spots will also be considered; in the current layout, some of the indicators
are illuminated by multiple overlapping LED patterns while others are illuminated by a single LED.
It would be preferable to have uniform illumination of all indicator materials. Evaluations of the current
system have demonstrated inefficiencies leading to faster than predicted battery drain and highlighting
the need for adjustments to available battery power and power management. Addition of increased
battery capacity would also increase size and weight, but improvements should be possible through
redesign of onboard power management strategies. Beyond these considerations, the flash memory
is undersized for long durations of onboard storage. Incorporation of these types of modifications
should facilitate expansion to 24 indicator elements while supporting further reductions in size and
maintaining the sampling frequency of the 15-element device.

The general sensing approach described here has been used previously; however, applications
were in dosimetry or in end-point type detection [44,61]. Much of the related work also relies
on exposure of the indicators followed by removal and analysis by image capture, an approach
requiring significant processing power and time. The prototype devices described here are directed at
long-term, autonomous monitoring of changes in the chemical composition of an environmental air
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sample, an application requiring significantly different performance characteristics. The devices for
this application must provide long-duration unattended function. While additional development is
necessary to meet the goals of the application, this review provides a summary of progress to date and
demonstrates the feasibility of the sensing concept and its potential strengths and weaknesses through
a wide range of evaluations and demonstrations.

8. Patents

Patent application: US 2017/0343471 30 November 2017 “Method for Analysis of Data Related
to Use of Reflectance Based Color Changes in Real Time Sensing Applications,” A.P. Malanoski, B.J.
White, J.S. Erickson, D.A. Stenger.

US 9,581,594 28 February 2017 “Porphyrin-modified antimicrobial peptides for application as
indicators of microbial targets,” C.R. Taitt, B.J. White.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/20/5857/s1,
Figure S1: Block diagram for the ABEAM-6 prototype sensor [101], Figure S2. The ABEAM-6 control board is 7.0”
long × 2.0” wide (17.78 cm × 5.08 cm). Selected components and dimensions have been labeled. (a) Front side. (b)
Back side. (c) Control board mounted in a partially assembled housing (top view). Two fans and six Parallax
TCS3200-DB sensors have been added. The cables that connect the sensors to the board have been removed for
clarity [101].
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