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Abstract: We demonstrated in this work a filterless, multi-point and temperature-independent FBG
(fiber Bragg grating) dynamical demodulator using pulse-width-modulation (PWM). In this approach,
the FBG interrogation system is composed of a tunable laser and a demodulator that is designed to
detect the wavelength shift of the FBG sensor without any optical filter making it very suitable to
be used in harsh environments. In this work, we applied the proposed method that uses the PWM
technique for FBG sensors placed in high pressure and high-temperature environments. The proposed
method was characterized in the laboratory using an FBG sensor modulated in a frequency of 6 Hz,
with a 1 kHz sweeping frequency in the wavelength range from 1527 to 1534 nm. Also, the method
was evaluated in a field test in an engine of a thermoelectric power plant.
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1. Introduction

For practical reasons, the control electronics for many types of power machinery are usually
placed inside or close to the operating environment of the engine. For example, the monitoring
modules for dynamic pressure, temperature, and knock are placed directly in contact with the
engine [1]. The electronic modules that have been developed for monitoring different types of engines
(naval, thermoelectric, planes, military, and automotive) with specific emphasis on durability at
high-temperature operation [2–4].

Monitoring the instantaneous combustion chamber pressure data is required for the closed-loop
control of the fuel mass fraction burned in the engines [5,6]. The pressure sensors for this control must
be durable and accurate. Using closed-loop control improves engine performance and reduces the
emission of pollutants. The feedback system contains an intelligent data analysis system working with
an ECU (engine control unit) to precisely dose the fuel quantity in each combustion cycle of each of the
engine cylinders. In thermoelectric engines, the dynamical pressure has peaks higher than 250 bar,
and the temperature in the combustion chamber is higher than 300 ◦C. Piezoelectric sensors used to
measure the pressure of the combustion chamber currently are not durable when used continuously in
high temperatures (>300 ◦C) [5]. Thus, this application needs a robust and trusty pressure sensor.
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Optical fiber sensors are a good alternative to electronic sensors in many engineering applications
due to some intrinsic advantages, such as high temperature and chemical resistance and potential for
long-lifetime operation. A fiber Bragg grating (FBG) sensors have flexible characteristics, low cost and
are readily available [7]. Examples of FBG sensor applications include structural health monitoring in
civil engineering [8,9], electric power systems [10,11], railways and roadways monitoring [12,13], in oil
tanks monitoring and as chemical sensors [14,15], in biomechanics and in medicine [16,17]. FBG sensors
can be fabricated using optical fibers made of different materials, such as glass [18], polymers [19],
or sapphire [20].

Another issue of sensing system operation in a thermoelectric power plant is regarding the
FBG interrogators. Although many commercial FBG interrogators modules can measure parameters
running in frequencies higher than the engine’s combustion cycles, they cannot be installed close to
or inside the engines. The thermoelectric engine is high power machinery that dissipates a lot of
heat. The temperature can vary depending on each part of the engine casing. For example, at the
pressure monitoring point, the temperature in the case is higher than 300 ◦C. In the other parts that
have water cooling, the temperature is lower. The average temperature in the machine room reaches
55 ◦C. Considering that the ECU and the FBG demodulator need to be installed close to the engine
or its external body, the high temperatures will affect the operation of a supposed interrogation
module. In the interrogation module that uses lasers, semiconductor optical amplifiers (SOAs) and
Fabry-Perot filters [21], the cooler of the optoelectronics elements of the interrogator, will work in an
excessive regime of operation, causing the device to fail in advance [22]. Passive devices such as WDM
multiplexers, splitters, circulators also will be affected by the high temperatures. On the other hand,
the current technology of electronic devices that can be used in a high-temperature environment is
much more available than optoelectronic technology [2]. In addition, standard interrogators are not
able to send the signals from all FBG pressure sensors obtained on each sweep to each engine ECU.
Many commercial FBG interrogators record the measured data in an external computer in csv or text
files. When a single data reading must be taken for control of each cylinder, the receiver of the optical
sensing system could use, for example, the optical-edge-filtering technique [23] to detect the dynamic
pressure. However, the FBG center wavelength shift due to temperature variation in the combustion
chamber depends on the engine load [24]. Thus, the correct positioning of the optical edge filter in
real operation is critical to reproduce the exact dynamic pressure behavior of the combustion chamber.
Although some techniques were implemented to solve this problem [25], realizing this measurement in
a real application is still a serious challenge and the complexity of the optical source and filter control
of the edge filtering technique limits its use in this application. An alternative method based on the
dispersion delay effect of a dispersion-compensating fiber (DCF) can also be used to convert the FBG
wavelengths into the time domain [26], but its demodulator cannot be used near the engine.

In this work, we proposed an innovative filterless, multi-point, and temperature-independent FBG
dynamical demodulator using the pulse-width-modulation (PWM) technique. PWM is a modulation
technique that generates variable-width pulses to represent the amplitude of an analog input signal [27].
In [28], an interrogation system is presented based on pulse-modulation, that automatically recognized
reflection signals of FBGs even when the FBGs are installed in an arbitrary order or at a long distance
and affected by delays. This recognition technique was realized using pulse-modulating in the
wavelength-swept laser. However, in contrast to [28], our proposed scheme has a tunable laser that
sweeps a pre-set wavelength band where the FBG sensors work in continuous-wave (CW) mode.
The demodulator using robust electronic devices can be used near the engine, near the pressure sensor
and even integrated with the ECU to transform the wavelength variation-based signal, to a PWD
signal and finally in an analog intensity signal compatible with the ECU input port. This approach
can be used to measure many types of parameters using FBG sensors. In this work, we applied this
method for FBG sensors placed in high pressure and high-temperature environments. The system was
characterized in the laboratory using an FBG sensor modulated at a frequency of 6 Hz and a tunable
laser with a 1 kHz sweeping frequency and wavelength range from 1527 to 1534 nm. A commercial FBG
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interrogator was used to compare the results obtained in this application. Besides, it was evaluated in
a field test in an engine of a thermoelectric power plant.

2. The Proposed FBG-PWM Demodulator

Figure 1 shows the entire interrogation system where the FBG-PWM demodulator is used.
The optical source for this system is a tunable laser with an appropriate sweep frequency. The sweep
frequency must be higher than the maximum sensor frequency response to have enough sampled
points during the measurements. In the diagram of Figure 1, the laser output can be divided for
many demodulators in a power plant. Each splitter output is connected to the sensor using port 2
of an optical circulator. The FBG sensor in Figure 1 is used to measure dynamical pressure inside
an engine of a thermoelectric plant engine where the temperature is very high (>400 ◦C) and is not
stable. Port 3 of the circulator is used to connect the FBG reflected signal to the demodulator input.
In the demodulator unit, the FBG wavelength-shifted signal follows first to the photodetector. In
the photodetector, the optical signal is converted to electrical. Next, a transimpedance amplifier
amplifies and clips the signal. Next, a flip-flop type D (FFD) digital circuit transforms it in a PWM
signal. Next, low pass active filters are used at the output of the FFD to smooth the pulse train into a
stable analog voltage. This analog voltage is the recovered FBG wavelength shifting signal. In other
words, the variation of pulse width (PWM) is converted to an analog voltage directed related to the
FBG wavelength shifting that in turn, is related to the original engine cycles modulation. This signal
is sent to an ECU, which analyzes the signal and provides the correct commands to the engine in
closed-loop control.
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Figure 1. The proposed FBG-PWM demodulator. The letters from A to E represent points with signals
waveforms from the sweep laser to the demodulator output.

In this proposed sensing system scheme, only the pressure sensors and the demodulators need to
be placed close or on the case of the engine integrated with the ECU. The tunable laser mainly can be
installed in a room with controlled temperature.

The key elements to implement the filterless, multi-point, and temperature-independent FBG
dynamical demodulator are a tunable ring sweep laser [29] and the FFD digital circuit plus the active
filter. The tunable source for this application can be fiber lasers based on semiconductor optical
amplifiers or erbium-doped fiber using the Fabry-Perot filter. These lasers have narrow linewidth
(<5 pm) and high output power (>10 dBm).

Once the laser output changes in wavelength overtime during the sweep, the optical wavelength
variation of FBG in the engine becomes an electrical time variation in the demodulator. When the FFD
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receives the analog time variation signal of the FBG, it transforms this signal in a digital signal form
with a pulse width variation. The pulse width variation has the information of dynamical pressure
modulated in the FBG. Low pass active filters (two second-order Butterworth low pass filters) are
used at the output of the PWM circuit (D) to smooth the pulse train into a stable analog voltage.
The electrical-active-filter removes the digital modulation of the PWM signal recovering the original
FBG modulated-signal. Then, this recovered signal is sent to the ECU. No synchronization signal is
necessary for this system.

Figure 2 shows the signal waveforms from the tunable laser to the demodulator output. In this
figure, the signal E shows a typical engine combustion cycle. The signal-A shows the electrical sweep
of the tunable laser. The signal B is the laser output intensity. Although the signal intensity in B is
constant in time, the wavelength increases during the positive sweep slope, and it decreases during the
negative sweep slope. The signal-C is the FBG electrical signal that is modulated by the dynamical
wavelength variation. The signal-D is the digital output of the FFD circuit with pulse width modulation.
The signal-E is the active filter output showing an example of a typical engine combustion cycle.
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Figure 2. The letters from A to E represent points with signals waveforms from the sweep laser to the
demodulator output. In this figure, the signal in E shows a typical engine combustion cycle.

3. Demodulator Evaluation in Laboratory

To demonstrate this technique, we first tested the proposed system in the laboratory. Figure 3a
shows the scheme to simulate the temperature changes and dynamic pressures on the FBG. An arbitrary
waveform generator (BK4054B, B&K Precision Corporation, Yorba Linda, CA, USA) produced a
typical 6 Hz engine combustion frequency. This generator waveform voltage was amplified by one
piezoelectric driver connected to a piezoelectric transducer (model PK2FQP2- Figure 3b, (Thorlabs,
Newton, NJ, USA) that stressed a polyimide coated FBG coupled into the transducer. The tunable
laser used a triangle waveform frequency of 1 kHz to sweep the central wavelength from 1527 to
1534 nm. Figure 3c shows more details of the demodulator-electronic-circuit. The photodetector
plus transimpedance amplifier has a bandwidth of 400 kHz and, the active filter was composed of
two second-order Butterworth low pass filters with 50 Hz bandwidth. The FFD used was a 74HC74
digital circuit.
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Figure 3. (a) Scheme to simulate the temperature changes and dynamical pressures on FBG, (b) FBG
coupled to a PZT, and (c) electronic circuit of the demodulator.

The type D flip flop circuit changes the output logic level in the rising edge of the signal in the
clock input port. The FBG electrical signal from the transimpedance amplifier circuit is inserted into
the type D flip-flop clock input port and, the inverted flip-flop output port is connected to the input
port of the same chip. Thus, when the swept light is reflected by the FBG just the rising edge of the
spectrum alters the flip-flop output. When the sweep occurs from shorter to longer wavelengths
(positive slope of signal A), it is the left edge that changes the flip-flop output, and, when the sweep
occurs from longer to shorter wavelengths (negative slope of signal A), the right edge changes the
flip-flop. Since the FBG is varying dynamically from longer to shorter wavelengths and vice versa,
variations in rising and falling edge will create a PWM modulation.

The output voltage in E can be express by (1) [30]:

Vo = δ·VPWM (1)

where VO is the averaged output voltage, δ is the duty cycle of the PWM waveform and VPWM is its
amplitude. Considering that the tunable laser sweep time determines the total spectral range (BW)
and the FBG produces a dynamical time variation signal proportional to dynamical wavelength shift
(∆λ), δ can be written as:

δ = ∆λ/BW (2)

and VO can be written as:
Vo = (∆λ/BW)·VPWM (3)

Therefore VO can be increased without reducing the noise-signal ratio reducing the spectral range
of the sensing system. Figure 4a,b show the measured signals in C (red) and D (blue) respectively
for FBG position in minimum (a) and maximum PZT displacement (b). Figure 5a,b are the PWM
signals in D for two distinct PZT displacement amplitudes. These signals were measured in E using
an oscilloscope.
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Figure 4. (a) and (b) Signal in C and D respectively for FBG position in minimum and maximum
PZT strain.
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Figure 5. PWM signals in D for two distinct PZT strain amplitudes, (a) strain amplitude = 0.2 Vpp and (b)
strain amplitude = 1.4 Vpp. The vertical axis is voltage (1V/div) and the horizontal axis is time (10 µs/div).

A critical evaluation regarding this proposed system refers to the characteristic of the PWM
demodulated signal in terms of trustworthiness to the original FBG modulated signal. We compare in
Figure 6 the modulation signal of the arbitrary-waveform-generator, the FBG signal measured in E,
and the signal measured of FBG using a commercial FBG interrogator (100 Hz sweep frequency si155
Hyperion from Micron Optics, Atlanta, GA, USA). The commercial interrogator signal was obtained
after post-processing. We can observe in Figure 6 that the demodulated signal in E is a good copy of the
generator signal waveform; however, some noise can be observed in the signal base. We will comment
on the noise source in Section 4. Also, we observed that the signal of the commercial interrogator
has not enough sampled points to define all the events in an engine cycle curve. Next, we evaluated
quantitatively, the demodulated signal characteristics.
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Figure 6. Qualitatively comparison of the signal of the waveform arbitrary generator, the signal in the
demodulator output, and the signal measured using a commercial FBG interrogator.

Figure 7a,b show the linearity performance respectively for the demodulator and for the commercial
interrogator for four different FBG center wavelengths from 1532.03 to 1532.78 nm. The optical input
power in the photodetector was −16 dBm.
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Figure 7. Signal linearity measured in four FBG center wavelengths, (a) measured in the demodulator
output (E point) and (b) measured by a commercial FBG interrogator.

These wavelengths centers represent the FBG at different temperatures inside the engine.
This wavelength range (750 pm) corresponds to a temperature variation of 57 ◦C for an FBG sensitivity
of 13 pm/◦C [24]. In this measurement procedure, we were limited in the wavelength range due
to the PZT voltage limitation. The demodulator could measure the signal in the entire wavelength
range determined by the tunable laser sweep (7 nm). We observed that the signals’ linearities in
the demodulator output are enough to reproduce the original characteristics of the FBG modulated
signal with good quality. We attributed the variation in the offset of the curves to the PZT technical
characteristics that are not stable with the time.

4. Demodulator Evaluation in a Field Test

The objective of the field test was to verify the performance of the PWM demodulator in terms of
signal processing using a dynamical FBG pressure sensor installed in an environment with variable
temperature. It was not the test proposal to test the demodulator itself at high temperatures in
this project stage. The field tests take place in Centrais Elétricas da Paraíba (EPASA), which is a
thermoelectric power plant. This thermoelectric power plant has an installed power of 340 MW,
obtained from 40 model 3240 engines (MAN Diesel SE, Augsburg, Bavaria, Germany). The angular
speed of each motor is 720 rpm, and heavy fuel oil (OCB1) is used to combustion engines. Each engine
has 18 cylinders and uses a mechanical injection pump to control the fuel oil injection. This mechanism
reduces the possibility of adjustments in the injected fuel volume and the same proportion limits the
better management of the engines. In the field tests, the pressure sensors were connected in a pressure
monitoring point available for each engine cylinder. To compare the pressure signals, we used again
the commercial FBG interrogator and the data previously obtained from a reference sensor (model HLV
4.0 from Kistler Group, Winterthur, Switzerland), which is a standard sensor used in the thermoelectric
power plant.

The thermoelectric power plant has a harsh environment. The internal average temperature in
the machine room is around 55 ◦C, and close to the engines, it can be higher, limiting the continuous
uses of standard electronic equipment.
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Figure 8a shows the pressure sensor scheme [31]. The FBG was fixed in two points of a stainless
steel substrate. A pre-stress was applied in FBG before the fixation. According to Figure 8a, the FBG is
placed outside of the engine combustion chamber, and it is stressed by a mechanism composed of one
1-mm thickness membrane and one piston. Only one side of the membrane contacts the high-pressure
and high-temperature gas inside the engine’s combustion chamber. When the membrane is deformed,
by the pressure, it moves a piston that stresses the FBG accordingly. In the field tests, we use FBG
pressure sensors connected in a point of pressure monitoring available for each engine cylinder, as we
can observe in Figure 8b.
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Figure 8. (a) Scheme of the FBG pressure sensor and (b) sensor connected in the pressure monitoring
point of the engine.

Figure 9a shows the point in the engine where the FBG pressure sensor was installed. Figure 9b
shows the demodulator, the tunable laser kit, and the interrogator installed in a control room, 50 m
from the engine under test.
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Figure 9. (a) Point in the engine where the FBG pressure sensor was installed and (b) interrogator and
the demodulator tool kit installed in a control room 50 m from the engine under test.

Figure 10 shows the curves of wavelength shifting versus pressure for one FBG sensor obtained
previously of the field trial, considering the Bragg wavelength in room temperature that was 1532.90 nm
(sensor #1). This sensor was submitted to 3 cycles of static pressure to verify the sensor hysteresis.
As we can observe, the sensor curves are linear. The R2 coefficient is 0.9943. The other pressure sensor
used in the field test had the Bragg wavelength at room temperature at 1548.12 nm.
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Figure 10. Wavelength shifting versus pressure sensor for sensor #1 used in the field test.

Figure 11 shows de PWM signal versus time of sensor #1 at the engine monitoring point obtained
during the temperature stabilization period. The Video S1 (in Supplementary Materials) shows the
evolution of this signal seen in an oscilloscope during the stabilization period.
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Figure 11. PWM signal versus time of sensor #1 that was obtained during the temperature stabilization
period at the engine monitoring point.

Figure 12 shows a qualitative comparison of the dynamic curves of sensor #1 in the monitoring
point of engine combustion obtained by the PWM demodulator (with 10 moving average) and
the commercial interrogator in terms of wavelength shifting considering the Bragg wavelength in
room temperature.
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Figure 12. Dynamical curves of FBG pressure sensor in the monitoring point of engine combustion
obtained by the PWM demodulator and the interrogator.

As we can observe, the output signal intensity of the demodulator in Figure 12 is lower than
the one obtained in laboratory measurements showed in Figure 7a. In Figure 7a the peak-to-peak
intensity is ~0.12 V versus ~0.009 V in Figure 12. This fact is partly attributed to the higher sweep
range used in field tests (~20 nm) compared with the sweep range used in laboratory measurements
(7 nm). This higher sweep range was implemented to measure different Bragg wavelengths of two
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FBG sensors. Also, we observed that the PWM signal presents the narrowest linewidth compared with
the interrogator signal.

The total wavelength shifting showed in the peak bases in Figure 12 for the interrogator signal
(~8380 pm) is attributed to FBG sensor substrate deformation and the temperature of FBG in the
monitoring point. Based on the stainless steel FBG substrate dimensions where the FBG was fixed
(70 mm), its thermal expansion coefficient 16.10−6 ◦C−1, and the FBG temperature sensitivity of
13 pm◦C−1 [24], we can estimate that the temperature operation for this sensor was around 200 ◦C.

Finally, Figure 13 shows a comparison of the PWM signal and the reference sensor. The time scale
was synchronized in order to have a better comparison of the temporal characteristics of the sensors.
Except for the noise in the PWM signal base, it shows a response similar qualitatively to the reference
sensor. The first hypothesis for noise was due to the tunable laser jitter [32], which would originate
from the triangular signal source that sweeps the laser. In our experiments, we used the BK Precision
model BK4054B waveform generator. This generator features an RMS 300 ps + 0.05 ppm cycle-to-cycle
jitter in 1 kHz and 1 Vpp. Considering the sweep frequency of 1 kHz (1 ms cycle), a variation of 300 ps
would have little effect on the creation of the observed noise. A second hypothesis raised would be due
to the noise margin in the decision threshold of the Flip-Flop D 74LC74 logic gate, which could widen
or shorten the PWM pulses due to the variation of the decision point. This hypothesis was discarded
since the voltage levels provided by the optical receiver of the demodulator to the Flip-Flop D inputs
were designed to work saturated. Finally, the most likely hypothesis is attributed to the residual noise
originated from the demodulator’s power supply. The noise frequency is close to 60 Hz.
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Figure 13. Dynamical curves of FBG pressure sensor in the monitoring point of engine combustion
obtained by the PWM demodulator and the reference.

5. Discussion

To obtain a robustness FBG system for instantaneous combustion chamber control,
we demonstrated a filterless, multi-point, and temperature-independent FBG dynamical demodulator
using PWM, which can be installed close or inside the engine operating environment.
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The demodulator uses just electronic components except for the photodetector. All these devices
must be selected for operation in high temperatures. Besides, the demodulator works digitally,
which reduces the error on the FBG signal conversion. Because the laser output changes in wavelength
and time during the sweep, the optical wavelength variation of FBG in the engine became an electrical
time variation in the demodulator. When the demodulator receives the analog time variation signal
of FBG, it transforms this signal in a digital signal with a pulse width variation. The pulse width
variation has the information of dynamical pressure modulated in the FBG. The active electrical filter
removes the digital modulation of the PWM signal recovering the original FBG modulated-signal.
This recovered signal is sent to the ECU. No synchronization signal is necessary for this system.

The maximization of the demodulator output signal can be obtained by reducing the laser sweep
spectral band to the spectral band of the operation temperature of the sensors. The Bragg wavelength
(in room temperature) can be the same wavelength for all sensors in the network, but this condition is
not obligatory.

The laboratory tests demonstrated that the proposed demodulator reproduced the engine
characteristics adequately. Also, the demodulator signal had more resolution than the commercial
interrogator. The laser sweep frequency must be 10 times higher than the maximum sensor frequency
response to have enough sampled points during the measurements. We also observed some noise in
the signal base (in laboratory and field test) that we attribute to the residual noise originated from
the demodulator’s power supply. Also, we measured the linearity of the demodulator signal that is
enough to reproduce the original characteristics of the FBG modulated signal.

In the field test, the demodulator was not tested close to the engine, where we have
high-temperatures. The objective of the field test was to verify the performance of the PWM
demodulator in terms of signal processing using a dynamical FBG pressure sensor installed in an
environment with variable temperature. The design of the electronic-board of the demodulator with
high-performance electronic devices is a future project. The demodulator worked well in the field test
and, it was proved by the comparison of the PWM signal with the reference pressure sensor.

6. Conclusions

In this work, we investigated an innovative filterless, multi-point, and temperature-independent
FBG dynamical demodulator using the PWM technique. The demodulator was developed to monitor
the instantaneous combustion chamber pressure in closed-loop control of fuel mass fraction burned of
the thermoelectric engines. The demodulator must work integrated with an ECU close to the engine,
where the temperature is high.

The system was characterized in the laboratory using an FBG sensor modulated in a frequency of
6 Hz and a tunable laser with a 1 kHz sweeping frequency and wavelength range from 1527 to 1534 nm.
A commercial FBG interrogator was used to compare the results obtained in this application. Besides,
it was evaluated in a field test in an engine of a thermoelectric power plant. The demodulator worked
well in the field test and, it was proved by the comparison of the PWM signal with one reference
pressure sensor. Briefly, we will evaluate the demodulator, integrated with an ECU, very close to the
engine in closed-loop control of fuel mass fraction burned of the thermoelectric engines.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/20/5825/s1,
Video S1: The FBG-PWM signal seen in an oscilloscope during the stabilization period.
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