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Abstract: Sign languages are developed around the world for hearing-impaired people to 

communicate with others who understand them. Different grammar and alphabets limit the usage 

of sign languages between different sign language users. Furthermore, training is required for 

hearing-intact people to communicate with them. Therefore, in this paper, a real-time motion 

recognition system based on an electromyography signal is proposed for recognizing actual 

American Sign Language (ASL) hand motions for helping hearing-impaired people communicate 

with others and training normal people to understand the sign languages. A bilinear model is 

applied to deal with the on electromyography (EMG) data for decreasing the individual difference 

among different people. A long short-term memory neural network is used in this paper as the 

classifier. Twenty sign language motions in the ASL library are selected for recognition in order to 

increase the practicability of the system. The results indicate that this system can recognize these 

twenty motions with high accuracy among twenty participants. Therefore, this system has the 

potential to be widely applied to help hearing-impaired people for daily communication and normal 

people to understand the sign languages. 

Keywords: motion recognition; electromyography; long short-term memory neural network; 

bilinear model; sign language 

 

1. Introduction 

According to the World Health Organization, 466 million people are suffering from hearing loss 

around the world in 2020 [1]. Sign language is an essential tool for them to communicate with others. 

Recently, studies of deafness have adopted more complex sociocultural perspectives, raising issues 

of community identity, formation and maintenance, and language ideology [2]. As a meaning to 

construct individual communication, sign languages do not share the same standard worldwide. 

Instead, cultural difference along with other factors create a huge difference among the sign 

languages [3–6]. The physical component of sign languages usually consists of movement of forearm 

and hand motion. The formation of sentences is also different in terms of grammar, vocabulary, and 

alphabets among various sign languages [7]. Obstacles stand between hearing-intact people and 

hearing-impaired people when communicating; therefore, special training is required to understand 

the sign languages. 

Different approaches are applied to develop a sign language recognition system in which camera 

sensors and sensor-integrated gloves are commonly used. In 2014, C. H. Chuan et al. used the leap 

motion sensor to capture the hand movements of the user to recognize different hand gestures of the 

American Sign Language (ASL) [8,9]. H. E. Hayek et al. proposed a sign translator system by using a 
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hand glove in 2015 [10]. However, in some situations, limitations of these sensors exist. The camera 

sensor requires a lighting environment and has a limited detection range [11,12], and the glove is 

expensive and uneasy to be worn [13,14]. 

In order to solve the problems, researchers choose a kind of sensor based on electromyography 

(EMG) signal. The EMG signal collects bioelectrical signals of muscles during muscle extension or 

contraction from the forearm, which can avoid limitations of the camera sensors and the glove 

sensors. The EMG signal from the forearm can be utilized to control an artificial arm [15,16]. 

Moreover, functional states of muscle movements can be reflected by the EMG signal [17–21]. Savur 

and Sahin used a surface EMG signal to recognize the ASL letters alphabet to allow users to spell 

words and sentences with an accuracy of 60% [22]. Lionel and other researchers used convolutional 

neural networks (CNNs) on the EMG data of the forearm to recognize 20 Italian gestures [23]. 

Seongjoo and others used sensor fusion technology and group-dependent neural network models to 

recognize Korean sign language [24]. After the collection of EMG data, measures are applied to 

process raw EMG data. Features of the EMG data can be obtained by applying a model on each 

channel or modeling all channels as a whole [25]. In both the time domain and frequency domain, 

features are extracted to analyze the EMG data [26,27]. Recently, some studies are focusing on 

transforming time-series EMG data into images for utilizing image recognition techniques to avoid 

information loss during the feature extracting process [28,29]. Various classifiers are applied to 

identify different movements of muscles [30–32]. 

In essence, the sign language recognition system is to distinguish the time continuous gestures 

of forearms. Jaramillo-Yánez and others made a systematic review on this subject [33]. Various devices 

of different sampling rate ranging from 100 Hz to 1200 Hz were used to collect raw data [34–37]. 

Approximately 95% of the signal power was below 400–500 Hz, which required the sampling rate to 

reach 1000 Hz in order to gather all the information according to the Nyquist sampling theory [38–40]. 

However, studies employing a low sampling rate device still obtained a decent accuracy with 

different approaches applied [41–43]. Some of other studies only carried the experiment on single 

participant and developed systems which had high accuracy [44–46]. However, as an 

electrophysiological signal, the EMG signal has individual differences, which will greatly reduce the 

accuracy of the system based on a single participant [47]. The same movements of the same muscles 

in different people can generate different EMG signals. Several methods were proposed to tackle this 

problem [48–51]. Some researchers developed a bilinear model to overcome individual differences. 

In 2000, J. B. Tenenbaum et al. proposed the definition and the algorithm of a bilinear model to deal 

with the problem of face recognition [52]. In 2013, Matsubara et al. applied the bilinear model for the 

first time in the recognition of five types of hand gestures (four types of motion gestures and one type 

of static relaxation) to control a robot hand [53]. Later, in 2014, Wang Tao et al. used a bilinear model 

to perform a single-finger compression experiment under different contractions [54]. 

Moreover, the review [33] showed that almost all the studies considered improving recognition 

accuracy and a few studies considered implementing actual real-time application on portable devices 

or embedded systems. In our research, a sign language motion recognition system based on 

electromyography (EMG) signal is proposed to realize a real-time application. Conventional EMG 

data processing methods are utilized to extract ten features from raw EMG data, and then the 

constructed features are input into a bilinear model. Conventional feature processing includes the 

feature dimensionality reduction and normalization. By extracting the features that have more 

contributions like the principal component analysis, as well as normalization of feature amplitude or 

time scale, individual differences can be eliminated within a certain range [55]. In addition, using a 

small number of training samples of test users to participate in the learning and training of the classifier 

can improve the recognition results of non-specific persons to a certain extent, like the transfer learning 

method [56]. By inputting the features into the bilinear model, the relationship between users and 

motions is considered. Thus, an EMG control interactive system with the ability to recognize non-

specific human motions with high accuracy is constructed. By using this system, the sign language 

motions which are commonly used in the daily life of hearing-impaired people can be recognized in 

real time and the meaning of these motions can be output to make normal people understand. 
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2. Mechanism and Algorithm 

In this proposed system, the EMG signal of muscle is obtained to classify into different motion 

categories. A long short-term memory (LSTM) neural network is utilized as a classifier since the 

LSTM has good performance in time-series data classification. The memory units in the LSTM can be 

of great help in maintaining the useful information and discarding the interferences from the 

previous input data to affect the current state positively. 

Firstly, the armband is worn on the user’s forearm. During the process of making hand motions, 

the surface EMG signal is recorded to analyze the information of the muscles, such as muscle 

contraction, extension, and relaxed. Secondly, several widely used features are calculated to obtain 

the characteristics of the EMG data in both the time domain and the frequency domain. The feature 

selection needs to be applied to reduce the computation cost of the system. Therefore, the 

permutation feature importance algorithm [57] is conducted, and then several useful features will be 

selected. Thirdly, the parameters of a bilinear model will be adjusted, then the selected feature values 

are decomposed by the bilinear model for extracting the motion-dependent factors to decrease the 

individual difference of the EMG data since it differs obviously among different people. Fourthly, 

the obtained motion-dependent factors are input into the LSTM for recognition. Finally, the motion 

label of the EMG data is used to output the corresponding meaning of the hand motion. The flow 

chart of the whole system is shown in Figure 1. 

 

Figure 1. The flow chart of the system. 

2.1. EMG Data Collection 

The EMG sensor applied in this system is a Myo armband which is manufactured by Thalmic 

Labs. Compared with other EMG sensors such as electrodes made by Delsys and Otto Block company, 

the Myo armband transmits EMG data through Bluetooth, which can ensure the quality of EMG 

signals by reducing noise caused by cables and make it easy to wear. The Myo armband shown in 

Figure 2 has eight EMG sensors whose sampling rate is 200 Hz. 
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Figure 2. The Myo armband. 

An example of the EMG data in eight channels is shown in Figure 3. 

 

Figure 3. The electromyography (EMG) data in eight channels. 

2.2. EMG Data Processing 

Since the EMG data provided by the armband is the time-series data that describes how the 

muscle state varies during the process of performing hand motions, conventional data processing 

methods are selecting suitable features in both time and frequency domains to calculate the feature 

values as the input of classifiers.  

The feature extraction is an important method to obtain useful characteristics of the EMG data 

and remove redundant or interfering information. Sometimes, the feature dimensionality reduction 

and the permutation feature importance are needed to select more important information from the 

feature values. Here, some commonly used features are listed as shown in Equations (1)–(10). 

The first part is about the time-domain features which are calculated based on the raw time series 

EMG data. As the most basic and commonly used feature in statistical analysis, the mean absolute 

value (MAV) is calculated as: 

���� =
�

�
∑ |(����)�|�

��� , � = 1,2, … , �, (1) 
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where j is the channel number of the EMG data, (����)� is the single value of the EMG data in 

channel j, N is the amount of the EMG data in channel j. 

The second one is the standard deviation (STD), which describes the value variation of the  

EMG data: 

���� = �
�

�
∑ ((����)�) − �)��

��� , � = 1,2, … , �, (2) 

where � is the average value of the EMG data in channel j. 

The third one is the root mean square (RMS). In the EMG analysis area, it is modeled as an 

amplitude modulated Gaussian random process, which relates to constant force and non-fatiguing 

contraction [58]. The RMS is calculated as follows: 

���� = �
�

�
∑ [(����)�]��

��� , � = 1,2, … , �. (3) 

The fourth one is the log detector (LOG), which provides the estimations of muscle contraction 

force [59], as shown in Equation (4). 

���� = �
�

�
∑ ��� |(����)�|�

��� , � = 1,2, … , �. (4) 

The final one is the average amplitude change (AAC), which is a measurement of the complexity 

of the EMG data and represents the average of the data difference over the time segment [59]. It can 

be calculated as: 

���� =  
�

���
∑ |(������)�

���
��� − (����)�|, � = 1,2, … , �. (5) 

The second part is the frequency-domain features that represent the generated power of the 

working muscle during muscle movements and can be used to detect muscle fatigue. In order to 

obtain the frequency-domain features, the power spectrogram of the EMG data is firstly calculated 

which is based on the Welch’s method. The data used in this research is obtained from a Myo band 

with a sampling rate of 200 Hz. The result is shown in Figure 4. 

 

Figure 4. The power spectrogram of EMG data. 

Then, the first frequency-domain feature is the mean frequency (MNF) which is the sum of the 

product of the EMG power spectrum and the frequency divided by the sum of spectrum intensity, as 

shown in Equation (6): 

���� = ∑ ����
�
��� ∑ ��

�
���⁄ , � = 1,2, … , �. (6) 

where �� is the frequency of the spectrum at the i-th frequency bin after the Fourier transform, ��  is 

the i-th spectrum value and N is the length of the frequency bin. 
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The second commonly used frequency-domain feature is the median frequency (MDF), which 

divides the spectrums into two regions with equal amplitude: 

∑ ���
���
��� = ∑ ��� =�

���
�

�
∑ ��

�
��� , � = 1,2 … , �. (7) 

Similar to the MNF, the mean power (MNP) is calculated as follows: 

���� = ∑ ����
�
��� ∑ ��

�
���⁄ , � = 1,2, … , �. (8) 

The next one is the power spectrum ratio (PSR), which measures the ratio between the maximum 

value and the whole energy of the EMG power spectrum: 

���� =  
��

�
=

∑ ��
����
����

∑ ��
��
��

, � = 1,2, … , �. (9) 

The last frequency-domain feature is the peak frequency (PKF), which is the frequency value 

where the maximum power value appears: 

���� = �� ����(��)�, � = 1,2, … , �. (10) 

After the feature calculation, the calculated feature values are firstly selected by a permutation 

feature importance process, and later input into a bilinear model to extract the motion-dependent 

factors for classification. 

2.3. Bilinear Model Algorithm 

According to the definition of the bilinear model, the EMG signal Y can be decomposed into the 

user-related factors Z and the motion-related factors X with a weight matrix W to describe the factor 

interactions, as shown in Figure 5 [52–54]. 

 

Figure 5. The composition of the EMG signal in the bilinear model. 

For a single EMG signal value y, it can be represented in the following form: 

� = � ����, (11) 

where � ∈ ��  represents the user-related factor and � ∈ �� represents the motion-related 

factor.  �� ∈ ��∗� is the parameter matrix of the bilinear model which describes the factor interactions 

between � and �. 

Suppose that the EMG signal is Y ∈ �� where � ∈ 1~� is the channel serial number of the EMG 

signal, the subject serial number is � ∈ 1~�, the motion serial number is � ∈ 1~�, and the data 

serial number for one motion is � ∈ 1~�. Therefore, the problem of fitting the bilinear model can be 

described as searching for suitable variables {���, ��, ��
� } for all u, c, m, and n, to minimize the 

difference between the constructed EMG signal which is calculated by Equation (11) and the original 

EMG signal Y. Therefore, the objective function of fitting the bilinear model is as follows: 

� = ∑ ∑ ∑ ∑ ||���
�� − �������

�||� �
���

�
���

�
���

�
��� . (12) 

Conventionally, the definition of the EMG signal is a multiple-dimensional matrix, in which each 

dimension describes different information such as users, channels, motions, and so on, respectively. 

However, in the bilinear model, the matrices are always two-dimensional in order to utilize some 

standard matrix processing algorithms. Therefore, the multiple-dimensional matrices are expanded 

into the stacked two-dimensional matrices where the data is arranged in a specific order. By using 

this concept, the obtained dataset of EMG signal Y can be presented in the following form: 
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� =

⎣
⎢
⎢
⎢
⎢
⎡

��� 
�� ⋯ ���

�� ���
�� ⋯ ���

��

 ⋮ ⋮ ⋮ ⋮
���

�� ⋯ ���
�� ���

�� ⋯ ���
��

���
�� ⋯ ���

�� ���
�� ⋯ ���

��

 ⋮ ⋮ ⋮ ⋮
���

�� ⋯ ���
�� ���

�� ⋯ ���
��⎦

⎥
⎥
⎥
⎥
⎤

∈ ���∗�� , (13) 

where U is the number of users, C is the number of channels, M is the number of motions, and N is 

the amount of data in one motion. Similarly, the definitions of the user-related matrix Z, the  

motion-related matrix X, and the weight matrix W are shown from Equations (14) to (16): 

� = [��, ��, ⋯ ��] ∈ ��∗� , (14) 

� = [��
�, ��

�, ⋯ ��
� , ⋯ ��

�] ∈ ��∗�� , (15) 

� = [��, ��, ⋯ ��] ∈ ���∗� . (16) 

Basically, the calculation methods of the stacked matrices are the same as normal matrices. 

However, there are still some differences. When the channel number of the EMG signal is larger than 

one, the data of the same user and motion but different channels should be considered as a whole 

part for the calculation, especially for the matrix transpose. Therefore, the stacked transpose (ST) is 

defined as follows: for a �� × � stacked matrix, its ST can be defined as a �� × � matrix, as shown 

in Figure 6. 

 

Figure 6. The Schematic diagram of the stacked transpose. 

With all these definitions, two equivalent equations of the variables introduced above can be 

obtained as shown from Equations (17) and (18): 

� = [� ���] ���, (17) 

��� = [��] ���. (18) 

For determining the optimal matrices Z, X, and W, the iterative procedure is as follows. Firstly, 

the singular value decomposition (SVD) of the EMG signal Y is calculated as �
���
�⎯� � ∑ ��, where � 

and �� are unitary matrices and ∑ is a diagonal matrix whose diagonal elements are the singular 

values of the Y. Then, X is initialized as the first J rows of the ��. Next, from the initialized X and the 

EMG data Y, Z is updated as the first I rows of the ��, where [���] ��
���
�⎯� � ∑ ��. Finally, using the 

derived Z and the EMG data Y, updating the X as the first J rows of the �� , where 

[�����]��
���
�⎯� � ∑ ��. Except for the initialization of the X, the updating procedure of the Z and the X 

is a one-time iteration of the bilinear model algorithm. This algorithm converges within 10 iterations. 

Once the algorithm converges, the obtained matrix X of which each component ��
� corresponds to 

the motion label m is used for training a classifier.  

For testing the performance of the bilinear model, a new subject needs to perform at least one 

motion � to extract his/her user-related matrix ���� with Equation (19): 

 ����  = {[[���]�� ]} �  ∗  ����_�
�� , (19) 
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where {∙}� means the pseudo-inverse matrix of matrix{∙}, ����_�  is EMG data of the new subject 

when performing the motion m, and W and ��  are previous weight matrix and the corresponding 

motion matrix from the obtained matrix X, respectively. With the new user-related matrix ����, the 

new weight matrix ����_� is derived by Equation (20): 

����_� =  {� ����_�
��{����}��

��
 }�  × {��}� . (20) 

Finally, with the derived ���� and ����_�, a new motion-related matrix ����_� for motion m 

is extracted by Equation (21): 

����_� =  {[����_�
������]�� } �  ×  ����_� . (21) 

The new motion-related matrix ����_� of which each component �����
� corresponds to the 

motion label m is obtained for testing the classifier. 

2.4. Hand Motion Classify 

In this paper, an LSTM is chosen as the hand motion classifier. In order to introduce the LSTM, 

firstly, the concept of a recurrent neural network (RNN) needs to be clarified. An RNN is a kind of 

deep neural network whose current node weight is not only decided by the current input but also 

affected by the previous input [60]. Therefore, the RNN is widely applied to deal with the data which 

can be considered to be related in time slices; that is, the state generated at the current time point is 

affected by the previous time point, and it will affect the output state at the subsequent time point.  

However, for a long time-series data, since the structure of the RNN is essentially a recursive 

nested structure, which will cause the problem of “gradient explosion” or “gradient vanish” so that 

all the previous information is lost [60]. Therefore, the LSTM is introduced to add mainly three gates 

to control the information circulation: how much previous information dropping, how much current 

information inputting, and how much current information outputting. With these gates controlling 

the information circulation, the performance of the LSTM is much better than the simple RNN in a 

long time-series data classification task. Therefore, in this paper, the LSTM is selected as the classifier. 

The structure of the LSTM is shown in Figure 7. 

 

Figure 7. The structure of the long short-term memory (LSTM). 

3. Experiment 

The experiment consisted of two steps. The first step was to carry the experiment on a single 

participant. The second step was to experiment with multiple participants. 

For the first step, the first thing to confirm was that the EMG signal could be used to recognize 

different hand motions for one participant. According to the ASL library, 20 hand motions of different 

meanings that are used for actual communication by hearing-impaired people were selected for 

recognition. The 20 hand motions are shown in Table 1. Some examples are shown in Figure 8. 
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Table 1. The 20 hand motions. 

Motion No. Motion Name Motion No. Motion Name 

M1 How are you? M11 Where is the store? 

M2 Nice to meet you. M12 How can I get food? 

M3 See you later. M13 How much does it cost? 

M4 That’s what I mean. M14 Yes, thank you. 

M5 I don’t understand. M15 I am sorry. 

M6 What is your name? M16 Where is the hospital? 

M7 Where are you from? M17 I don’t feel good. 

M8 What happens? M18 Please help me. 

M9 What is wrong? M19 Please write it. 

M10 Please call 911. M20 I love you. 

 

Figure 8. Sign language motions. 

The participant was asked to wear the armband on his right hand since the selected 20 motions 

include the right-hand motions and the participant was right hand dominated. The experiment 

environment setting is shown in Figure 9. 

 

Figure 9. The environment settings of EMG data obtaining. 

At the beginning of the experiment, the participant was asked to watch the videos of the sign 

language motions recorded in advance and practiced the motions in order to finish the motion within 

three seconds. What is more, before the experiment day, the participant was asked not to conduct 

heavy activities that require the right hand in dominate to avoid the muscle fatigue of his forearm. 

For the second step, in order to apply the system to a wide range of users, the experiments on 

multiple participants were conducted. Twenty healthy male participants whose ages are between 23 

and 25 and whose dominant hand is the right hand are recruited. For each participant, each hand 
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motion is performed within three seconds, and each experiment was conducted under the same 

condition and environment as the participant one. 

4. Results 

4.1. Single-Person Experiment 

In this experiment, the participant was required to perform each motion within three seconds 

which was corresponding to 600 pieces of EMG data. For each motion, the repeating cycle was set as 

10, and moreover this cycle was repeated five times, changing the sensor position to obtain enough 

EMG data as much as possible in order to perform the permutation importance method. The obtained 

EMG data of one participant is shown in Figure 10. 

 

Figure 10. The obtained raw EMG data of 20 motions of participant one (10 times repeating for each 

motion). 

The time-domain features and the frequency-domain features introduced in Section 2.2 were 

calculated with the window size of 600. Therefore, for each motion, 20 feature stacks were obtained. 

For example, the calculated RMS feature values from one channel of the EMG data of participant one 

are shown in Figure 11. Each motion was performed 50 times, and there were 20 motions in total. 

 

Figure 11. The root mean square (RMS) feature value of one channel from obtained EMG data of 

participant one. 

First, all the 10 features were used for training and testing of the LSTM. In the LSTM, after using 

different learning rates ranging from 0.00001 to 0.001, the learning rate is set to 0.0001 for higher 

accuracy possible. The iteration time is set to 500 which can make the validation loss converge on the 
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training dataset. The training dataset and the testing dataset are with a ratio of 0.8 and 0.2, respectively. 

Each motion is performed totally 50 times. The results of the LSTM are shown in Table 2.  

The result of permutation feature importance is shown in Table 3. From Table 3, the priority of 

the features based on the feature importance is that, for time-domain features, RMS > LOG > AAC >> 

STD > MAV, and for frequency-domain features, PSR > MNP > MDF >> MNF > PKF. As the result, 

six features, RMS, LOG, AAC, PSR, MNP, and MDF were selected. After the feature datasets were 

calculated and selected by evaluating the feature importance, the obtained six feature values were 

input into the classifier. The average of accuracy with the six features slightly decreased by 0.7%, 

meanwhile, the computation time decreased by 30%. 

Table 2. The classification result of the LSTM on the single participant. 

 Predicted Label 

A
ct

u
al

 L
ab

e
l 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

M1 47 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

M2 0 49 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

M3 1 0 47 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 

M4 0 0 0 48 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

M5 0 0 1 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M6 0 0 0 0 0 49 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

M7 0 0 0 0 0 0 49 0 0 0 1 0 0 0 0 0 0 0 0 0 

M8 0 0 0 1 0 0 0 47 0 0 0 0 1 0 0 1 0 0 0 0 

M9 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 

M10 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 

M11 0 0 0 0 0 0 1 0 0 0 49 0 0 0 0 0 0 0 0 0 

M12 0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 1 0 

M13 0 0 0 0 0 1 0 0 0 0 0 0 49 0 0 0 0 0 0 0 

M14 0 0 0 0 0 0 0 0 0 0 0 2 0 48 0 0 0 0 0 0 

M15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 

M16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 

M17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 49 0 0 0 

M18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 

M19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 

M20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 48 

Table 3. The importance of selected ten features. 

 Time-Domain Features Frequency-Domain Features 

MAV STD RMS LOG AAC MNF MDF MNP PSR PKF 

Accuracy 98.54% 97.38% 77.34% 87.68% 89.74% 97.94% 88.48% 86.52% 81.72% 96.30% 

Importance 1.32% 2.48% 22.52% 12.18% 10.12% 2.92% 11.42% 14.34% 19.14% 3.56% 

4.2. Multi-Person Experiment 

After the single person experiment, multi-person experiment was performed. In this experiment, 

the participants were required to perform each motion within three seconds, which corresponded to 

600 pieces of EMG data. For each motion, the repeating cycle is set as 10. To verify the effectiveness 

of the bilinear model, data, with and without, the bilinear model process were input to the LSTM to 

test the accuracy. 
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4.2.1. Classification without the Bilinear Model 

With the feature calculation method mentioned in the previous section, the feature stacks from 

19 participants were used for the training, and the features from one participant were used for the 

testing. This procedure repeats for 20 times as twenty-fold cross-validation with each time changing 

the testing participant until all the participants were tested once.  

The calculated features of 20 motions were directly input into the LSTM for classification. The 

classification result of 20 participants is shown in Table 4. The learning rate was set to 0.0001, and the 

iteration time was set to 500.  

Table 4. The total classification results of 20 participants. 

 Predicted Label 

A
ct

u
a

l 
L

ab
e

l 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

M1 101 2 5 1 3 7 7 4 10 3 5 4 8 1 11 6 7 6 4 5 

M2 6 107 3 3 6 7 2 4 6 6 3 5 3 6 6 4 4 8 5 6 

M3 6 11 117 3 7 4 4 5 3 8 4 3 2 4 1 4 4 3 4 3 

M4 6 4 7 109 4 4 1 7 3 4 3 5 5 2 4 1 9 7 5 10 

M5 7 5 3 2 116 2 5 8 4 4 1 2 4 3 3 1 5 8 9 8 

M6 4 2 9 1 4 126 8 2 3 3 5 3 5 3 4 3 2 6 3 4 

M7 6 5 2 4 5 7 113 7 6 1 5 4 4 1 6 5 7 5 4 3 

M8 5 1 7 4 3 8 1 120 4 1 3 3 2 6 1 6 5 15 2 3 

M9 4 5 4 3 3 0 9 2 112 4 3 4 2 2 3 6 8 8 12 6 

M10 5 5 7 8 7 4 7 4 4 104 4 4 3 3 3 10 2 8 4 4 

M11 5 5 2 5 7 6 11 3 4 7 103 1 2 5 2 3 5 8 7 9 

M12 6 4 5 4 4 8 3 4 3 6 4 107 3 5 7 5 5 6 6 5 

M13 3 3 5 4 5 5 7 7 9 5 3 4 98 4 1 9 6 6 7 9 

M14 5 4 5 6 3 2 8 6 2 3 4 3 3 122 1 2 3 6 6 6 

M15 5 2 5 3 7 2 11 2 6 5 3 1 5 6 115 5 3 7 3 4 

M16 4 3 8 4 8 3 4 1 4 2 5 3 4 9 5 116 1 2 7 7 

M17 5 6 4 10 3 5 6 3 4 5 4 2 6 2 3 8 108 9 6 1 

M18 4 4 3 4 3 5 4 10 2 3 4 3 6 4 8 3 6 117 3 4 

M19 4 2 4 5 4 5 8 4 10 2 2 4 7 6 3 2 4 4 115 5 

M20 9 4 3 5 8 1 7 2 7 7 2 4 8 3 5 2 6 7 6 104 

The accuracy of 20 motions is shown in Table 5. 
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Table 5. The classification accuracy of 20 hand motions on 20 participants. 

Motion Name Accuracy Motion Name Accuracy 

M1: How are you? 50.5% M11: Where is the store? 51.5% 

M2: Nice to meet you. 53.5% M12: How can I get food? 53.5% 

M3: See you later. 58.5% M13: How much does it cost? 49.0% 

M4: That’s what I mean. 54.5% M14: Yes, thank you. 61.0% 

M5: I don’t understand. 58.0% M15: I am sorry. 57.5% 

M6: What is your name? 63.0% M16: Where is the hospital? 58.0% 

M7: Where are you from? 56.5% M17: I don’t feel good. 54.4% 

M8: What happens? 60.0% M18: Please help me. 58.5% 

M9: What is wrong? 56.0% M19: Please write it. 57.5% 

M10: Please call 911. 52.0% M20: I love you. 52.0% 

The accuracy of each participant is shown in Table 6. 

Table 6. The classification accuracy of 20 participants. 

Name Accuracy Name Accuracy 

Participant 1 60.5% Participant 11 49.5% 

Participant 2 50.5% Participant 12 62.0% 

Participant 3 71.5% Participant 13 48.0% 

Participant 4 61.0% Participant 14 61.0% 

Participant 5 49.0% Participant 15 61.5% 

Participant 6 64.0% Participant 16 59.5% 

Participant 7 54.0% Participant 17 50.0% 

Participant 8 49.5% Participant 18 54.5% 

Participant 9 57.5% Participant 19 51.5% 

Participant 10 46.5% Participant 20 48.0% 

4.2.2. Classification with the Bilinear Model 

From Table 5, almost all the motions cannot be correctly classified when the training data is not 

obtained from the test participant. What is more, from Table 6, the average classification accuracy of 

20 motions among 20 participants drops sharply to 55.70%. As a result, it can be considered that the 

individual difference among different participants has strong influences on the EMG data so that the 

classification results are far from ideal. In order to solve the problem caused by the individual 

difference of the EMG data, as mentioned in Section 2.3, the bilinear model algorithm was applied. 

In this research, the user number U was 19 which was corresponding to the number of participants 

whose data was used for the training. The channel number C was set to 8 since there were 8 EMG 

sensors in the armband. The motion number M and the amount of data in each motion N were set at 

20 and 10, respectively. The selection of the parameter I and J has a big influence on the final 

decomposition results since the values of the I and the J are the size of ��, which contains the user 

factors, and the size of ��
�, which contains the motion factors, respectively.  

However, no theory or formula can describe how to decide the best I and J values. The choices 

of the I and the J were based on the prior experience, which means that the I and the J were adjusted 

according to the final classification accuracy. In this research, the range of the I was from 1 to 10, and 

the range of the J was from 10 to 200. Therefore, the results of different pairs of the I and the J were 

compared to select the most suitable one. The results of how the accuracy varies with different pairs 

of the I and the J are shown in Figure 12. 
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Figure 12. The influence of different I and J on the classification accuracy. 

As shown in Figure 12, different pairs of the I and the J are compared to find the optimal choices. 

In Figure 12, the black curve with red points is the curve where the highest accuracy 90.5% occurs, of 

which the values of the I and the J are 6 and 120, respectively. Roughly, except for this line, the area 

of Figure 12 can be divided into three parts, which shows different situations of how the I and the J 

vary to influence the classification accuracy. 

The first part is the lower part where the J is less than 80, no matter what value the I is, the 

classification accuracy was lower than 60%. It can be considered that when the J is lower than 80, the 

obtained motion matrix X does not contain enough motion factors for classification. This part is called 

the “lack of fitting” part. 

The second part is the left top corner where the value of the I is less than 6 and the J is more than 

120. In this case, accuracy was between 80% and 90%. It can be considered that the user factors cannot 

be completely separated from the EMG data; in other words, the obtained motion matrix X still had 

some user factors, which cause the accuracy was less than 90%. This part is called the “less suitable 

fitting” part. 

The third part is the right top corner where the value of the I is more than 6 and the J is more 

than 120. In this case, the accuracy was almost the same which was from 87.5% to 90%. It can be 

concluded that almost all the user factors and the motion factors were well separated so that 

increasing the values of the I and the J had little influence on the accuracy, which is called as the 

“algorithm converged” part.  

Therefore, in this research, the value of the I and the J were set at 6 and 120, respectively. The 

extracted motion matrix factor values are shown in Figure 13. The motion matrix factor values were 

input into the LSTM for classification. The twenty-fold cross-validation with each time changing the 

testing participant until all the participants were tested. The learning rate was set to 0.0001, and the 

iteration time was set to 500. With the bilinear model applied, the accuracy of 20 participants, the 

results of the participant one, the results of 20 participants, and the accuracy of 20 motions are shown 

from Tables 7–9. 
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Figure 13. The extracted motion matrix factor values of participant one by the bilinear model. 

Table 7. The classification accuracy of 20 participants with the bilinear model. 
 

Predicted Label 

A
ct

u
a

l 
L

ab
e

l 

 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 

M1 196 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 

M2 0 197 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 

M3 0 1 198 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M4 0 0 1 194 1 0 0 1 0 0 0 1 0 0 0 0 2 0 0 0 

M5 0 0 0 0 194 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 

M6 0 1 0 0 0 197 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

M7 0 0 0 0 0 1 195 0 0 1 0 1 0 0 0 1 0 0 0 1 

M8 0 0 0 0 0 1 0 199 0 0 0 0 0 0 0 0 0 0 0 0 

M9 0 0 0 0 0 0 0 0 199 0 0 0 0 0 0 0 1 0 0 0 

M10 0 1 1 0 1 3 1 0 1 188 0 0 1 1 0 0 0 0 2 0 

M11 0 0 0 0 0 0 0 0 0 0 196 0 0 1 0 1 0 0 1 1 

M12 0 2 0 0 0 0 0 1 0 0 0 196 0 0 0 0 0 1 0 0 

M13 0 0 1 0 0 0 0 0 1 0 0 0 198 0 0 0 0 0 0 0 

M14 0 0 0 0 0 0 0 0 1 0 0 0 1 198 0 0 0 0 0 0 

M15 0 0 1 0 1 0 0 0 0 0 0 0 1 0 193 0 0 2 0 2 

M16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 198 0 0 0 1 

M17 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 194 1 1 1 

M18 0 0 1 0 1 1 0 0 0 0 0 0 0 0 2 0 1 194 0 0 

M19 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 196 0 

M20 0 0 0 0 1 1 0 0 0 0 0 1 0 1 4 1 0 0 1 190 

Table 8. The classification accuracy of 20 motions with the bilinear model. 

Motion Name Accuracy Motion Name Accuracy 

M1: How are you? 98.0% M11: Where is the store? 98.0% 

M2: Nice to meet you. 98.5% M12: How can I get food? 98.0% 

M3: See you later. 99.0% M13: How much does it cost? 99.0% 

M4: That’s what I mean. 97.0% M14: Yes, thank you. 99.0% 

M5: I don’t understand. 97.0% M15: I am sorry. 96.5% 

M6: What is your name? 98.5% M16: Where is the hospital? 99.0% 
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M7: Where are you from? 97.5% M17: I don’t feel good. 97.0% 

M8: What happens? 99.5% M18: Please help me. 97.0% 

M9: What is wrong? 99.5% M19: Please write it. 98.0% 

M10: Please call 911. 94.0% M20: I love you. 95.0% 

Table 9. The classification accuracy of 20 participants with the bilinear model. 

Name Accuracy Name Accuracy 

Participant 1 98.5% Participant 11 95.0% 

Participant 2 98.0% Participant 12 100.0% 

Participant 3 99.0% Participant 13 95.0% 

Participant 4 100.0% Participant 14 98.0% 

Participant 5 96.5% Participant 15 98.5% 

Participant 6 98.5% Participant 16 94.5% 

Participant 7 99.0% Participant 17 95.5% 

Participant 8 97.5% Participant 18 98.0% 

Participant 9 98.5% Participant 19 99.0% 

Participant 10 98.0% Participant 20 98.0% 

5. Discussion 

To demonstrate the effectiveness of the bilinear model, the comparison of RMS feature values 

and motion factors from the other two participants were conducted as shown in Figures 14 and 15. 

In Figure 14, graph (a) and graph (b) are of the same EMG data channel and the same feature, but 

from two participants. As shown in Figure 14, the RMS feature values of the two participants differ 

greatly. In contrast, after the introduction of the bilinear model, as shown in Figure 15, almost all the 

interferences of user factors are removed so that the values of the motion factors are much more 

similar. Although there are some differences between the motion factor values, it can be considered 

that the motion factors extracted from 19 participants are a little limited to represent the others’ motions. 

 

(a) 
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(b) 

Figure 14. The RMS feature values of 20 motions from different participants:(a) participant four; (b) 

participant five. 

 

(a) 

 

(b) 

Figure 15. The motion matrix factor values of 20 motions from different participants; (a) participant 

four; (b) participant five. 



Sensors 2020, 20, 5807 18 of 22 

 

In Table 6, participant three has the highest accuracy of 71.5%, and participant ten has the lowest 

accuracy of 46.5%. The accuracy difference between the two participants is 25%, which can indicate 

the existence of the individual difference. In Table 9, participant four and twelve have the highest 

accuracy of 100%, and participant sixteen has the lowest accuracy of 94.5%. The accuracy difference 

among the participants has decreased to 5.5%. Moreover, the average accuracy has increased to 

99.7%. Compared with the results of Tables 6 and 9, by applying the bilinear model algorithm, the 

influence of the individual difference has been largely decreased, which shows that the bilinear 

model is very effective in the decomposition of user factors and motion factors. 

In Table 5, motion six has the highest accuracy of 63.0%, which means that the motions are barely 

recognized. In Table 8, motion eight and nine have the highest accuracy of 99.5%, and motion ten has 

the lowest accuracy of 94.0%. The accuracy difference is 5.5%. It can be concluded that almost all the 

20 motions are well classified. Misjudgments can be considered that they are mostly caused by the 

similarities among the 20 motions. For motion ten, the reason it has more misjudgments than the 

other motions is that it includes more sequential gestures than the others. Another reason can be that 

the user factors cannot be completely removed and the motion factors are just representative among 

the 19 participants, which means there are still some differences between the training motion matrix 

and the testing motion matrix. If more motion data can be obtained from different people, the 

influence of the individual difference will be no longer a significant problem that has influence on 

the classification accuracy. 

The Myo band has a sampling rate of 200 Hz, which in some cases, is not enough to obtain all 

the information of the EMG signal. However, in this research, with an accuracy of 99.7%, it is 

reasonable to address that this limitation of sampling rate has little impact on this system. 

Table 10 shows the performance and characteristics of our proposed system and other studies 

using the Myo band as a sensor device [61]. Even though the performance metrics of these studies 

cannot be compared directly due to different experiment settings, they are helpful for qualitative 

comparisons. Among them, the studies of [43,62] had the high accuracy more than 99%; however, the 

number of recognized gestures was less than 10, and [62] needed about 1 s to perform the recognition. 

On the other hand, although the study of [42] needed only 3 ms, the accuracy is 85.1%. Compared 

with other studies, our proposed system can recognize 20 sign language motions with 97.7% accuracy 

among 20 participants, and also can perform a real-time recognition with a delay time of less than 50 

ms on a PC platform with Intel Core-i7 3.2 GHz and no GPU. Therefore, our system has the potential 

to be widely applied, and may be implemented into smart phones to realize a real-time daily 

conversation system by hand gestures for hearing-impaired people. 

Table 10. Comparison with other studies using a Myo band. 

Study RTP (ms) Gestures Duration (s) Participants Repetition Classifier Accuracy (%) 

Savur [22] NI 27 2 10 20 SVM 60.9 

Hu [34] NI 52 5 27 10 LCNN 87.0 

Kerber [41] 500 5 NI 14 NI SVM 95.0 

Chung [42] 3 5 5 120 50 ANN 85.1 

Raurale [43] 4.5/8.8 9 5 10 20 RBF 99.0 

Zhang [61] 200 21 2 13 30 GRU 89.6 

Nasri [62] 940 6 10 35 195 GRU 99.8 

Ali [63] NI 18 5 40 6 LSTM 89.5 

He [64] 400 52 5 27 10 LSTM 75.5 

Ours 50 20 3 20 10 BL + LSTM 97.7 

Note: RTP represents real-time performance. NI means the corresponding term is not indicated in the 

paper clearly. LCNN is the combination of LSTM and CNN. ANN is an artificial neural network. RBF is 

a radial basis function neural network. GRU means gated recurrent units. BL means a bilinear model. 

6. Conclusions 

This paper presented a user-independent sign language motion recognition system based on the 

electromyography signal for both helping hearing-impaired people communicate with others more 



Sensors 2020, 20, 5807 19 of 22 

 

easily in their daily life and training normal people to understand the sign language motions. This 

proposed motion recognition system could recognize 20 meaningful and widely used ASL motions 

with high accuracy. 

In this paper, the characteristic of the EMG signal was analyzed and utilized for motion 

recognition. The EMG signal itself is a strong indicator representing the muscle movements; however, 

it has obvious individual differences among multiple people. Therefore, in this research, the bilinear 

model algorithm was applied to obtain motion factors for classification. With the introduction of the 

bilinear model, the interferences of user factors were largely decreased and the motion factors were 

extracted for classification. Finally, the LSTM was used as the classifier of motions. Moreover, the 

permutation importance of the features was performed to select the most important features to 

reduce computation time-consuming. As a result, the LSTM with the bilinear model could realize 

real-time hand gesture recognition with very high accuracy among 20 participants. 
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