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Abstract: Based on the homodyne detection, a compact and cost-effective all-fiber laser Doppler
vibrometer (LDV) with high resolution is presented. For the signal processing, the discrimination
algorithm combined with the nonorthogonal correction is applied. The algorithm corrects the
quadrature imbalance and other nonlinearity. In the calibration experiment, with the glass pasted on a
piezoceramic transducer (PZT), the velocity resolution of 62 nm/s at 4 kHz and displacement resolution
of 2.468 pm are achieved. For the LDV-based acousto-optic communication, the minimum detectable
sound pressure level (SPL) reached 0.12 Pa under the hydrostatic air-water surface. The results
demonstrate that the designed homodyne LDV has a low system background noise and can offer
high precision in the vibration measurement.
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1. Introduction

The laser Doppler vibrometer (LDV) is adopted primarily to measure the vibration characteristics
in an optical nonintrusive and remote way. The principle of the LDV relies on the coherent detection
concerning the Doppler frequency shift of the reflected or scattered laser beam from a moving
target [1,2]. Hitherto, its development has received great attention, and it is also widely applied to
various fields ranging from the acousto-optic detection for the underwater sound [3], the remote
voice acquirement [4], the health monitoring for the composite materials [5–8], the biomedical
assessments [9–12], the trace explosive detection [13,14], and the vibration analysis of the component
motions and the civil structures [15,16]. Compared with the contact sensors, such as the piezoelectric
accelerometer, the LDV is good at performing the noncontact vibration measurement of the rotating
structures. Abbas et al. [17] obtained the underwater vibration response of the blades of rotating
propellers by means of the LDV and compared this response with that obtained with the wireless
contact piezoelectric accelerometers.

Concerning whether the intermediate frequency (IF) equals zero or not, the LDV can be classified
into the homodyne detection and heterodyne detection. Pursuing a higher phase-sensitive detection,
some consideration of the signal to noise ratio (SNR) related to the optical homodyne and heterodyne
detection has been discussed previously [18]. The relative intensity noise (RIN) and phase noise of laser
and other optical phase variations caused by the internal factors of the LDV and surrounding noises will
restrict its minimum detectable capability. Compared with the homodyne detection, the heterodyne
detection can provide a good performance in the frequency band less than 1 kHz at the expense of a
much more complicated optical implementation and the extra signal demodulation processing for
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the IF signal. However, the serious IF crosstalk signal will impair the heterodyne LDV performance,
and substituting the fiber circulator with a polarization prism can eliminate this crosstalk to a certain
extent [19].

In recent years, the growing maturity of the LDV makes various types of LDVs commercially
available. Several types of multi-channel and multipoint LDVs have been well established; besides,
the continuous scanning LDV is investigated to measure the out-of-plane vibration of a structure
surface [20]. However, the frequency bandwidth should be taken into account when realizing the
LDV-based underwater acousto-optic communication. Under the hydrodynamic air–water interface,
the tiny vibration caused by the underwater sound source is amplitude modulated by the water surface
wave motion, and the movement of the water surface is at the level of cm/s or above. In order to obtain
the transmitted frequency of the underwater sound source, the water fluctuation must be detected
without any missing [21]. Besides, for the nondestructive testing (NDT) with the scanning LDV, it is
time-consuming and easy to lose focus during the scanning situation [22,23].

Whatever the single-point LDV, the multi-point LDV or the scanning LDV, the performance of
this small-amplitude vibration measurement requires that the spatial resolution or detection sensitivity
be as sensitive as possible. Reducing the noise floor level of the LDV is an effective way to improve
the performance of the LDV. In order to promote the detection sensitivity, many analyses related
to the measurement noise have been done [24]. The influence of the internal parasitic reflections of
the LDV is analyzed in Ref [25]. When measuring the rotational angular displacement with dual
LDVs, Ref [26] improves the measurement accuracy to 0.0088◦ after analyzing the influence of the
light intensity non-uniformity error, the systematic defect error, the synchronization error, and the
sampling frequency-caused error. Besides the analysis of SNR of the LDV, diverse optical configurations
and signal processing methods have been reported in the scientific literature and by commercial
manufacturers. With the birefringent dual-frequency LDV and a new signal-processing scheme
based on a digital signal processor lock-in amplifier and a low-frequency demodulation algorithm,
the average velocity resolution of this dual-frequency LDV is improved from 0.31 to 0.028 mm/s due to
the characteristics of good directionality, low speckle noise, and good coherence [27]. By using the
1550 nm all-fiber pulsed LDV and a new digital range gated signal processing method, the cochannel
interference can be eliminated, and the SNR of the demodulated signal is improved consequently [28].
As the spectrum leakage and fence effect decrease the measurement precision of the LDV significantly,
the trispectral interpolation of the Nuttall window is proposed for the LDV signal processing [29].
For the four-channel heterodyne LDV developed in Ref [30,31], a new calibration method based on the
Bessel function of the first kind is introduced to improve the measurement resolution. The minimum
detectable displacement of this LDV is up to 0.7 nm (RMS) at a bandwidth of 90 kHz and the vibration
velocity can reach 3.8 m/s. Recently, Ref. [32] employs the phase multiplication to enhance the LDV
measurement resolution, and the minimum detectable displacement of 72 nm with an error range of
±14 nm is achieved through direct counting of interference fringes.

In view of our previous research, it was observed that the match and the balance between the local
oscillator (LO) laser beam and the transmitted laser beam is a fundamental and critical guarantee for
achieving the highly sensitive experiment results. Insufficient control may produce associated noise
and measurement error. In addition, referring to the acousto-optic detection for the underwater sound,
the infrared radiation laser is more advantageous than other lasers. Besides, the in-air platforms give
a real demand that the LDV should be able to present a non-contact and fast response with a high
performance as well as a simple and easy-implementable structure.

In this letter, a compact cost-effective eye-safe wide-band high-sensitivity homodyne LDV with
a self-correction ability of nonorthogonality and nonlinearity is designed. With a piece of thin glass
pasted on the ring-shaped piezoceramic transducer (PZT), the minimum resolvable velocity resolution
and the frequency response of this self-made homodyne LDV are investigated. With the compensation
of the optical path on the LO laser arm, the system background noise is able to be kept at the same
level with an increase in the detection distance. Compared with the results obtained with the air-water



Sensors 2020, 20, 5801 3 of 11

interface under the hydrostatic water surface in the anechoic tank, the detection capabilities acquired
with the vibrating glass are discussed.

2. Homodyne LDV Instrument and Principle

Due to the rapid progress in the compact solid-state and fiber laser technology, the laser sources
get an excellent opportunity, and components operating at eye-safe wavelength range are commercially
available. In this case, it is possible to build more compact LDVs with small power consumption
and low-cost fiber optical components. The schematic layout of the LDV based on the homodyne
detection is shown in Figure 1. The laser operating at a wavelength λ of 1550 nm is the single-mode
continuous-wave linearly polarizing semiconductor laser with an output power of 5 mW and a spectral
line width of 1 kHz. After the single-mode polarizing fiber optical isolator (PFOI), the laser beam
was split into two parts by a 1 × 2 single-mode polarizing fiber optical splitter (PFOS). To be specific,
the first part acts as the LO laser beam while the second part plays the role of the transmitted laser beam.
Through a single-mode polarizing fiber optical circulator (PFOC) and a telescope consisting of an
aspherical lens with the aperture of 50 mm and the focal length of 200 mm, the transmitted laser beam
was directed normally and focuses on the vibration surface. Meanwhile, the returned optical signal
was collected with the same telescope and mixed with the LO laser beam in the single-mode polarizing
optical 2 × 4 90◦ hybrid. Instead of the traditional electrical method realizing the phase difference of
90◦, the optical 2 × 4 90◦ hybrid here can eliminate the random phase drift caused by the heat from the
chips and guarantee a stable phase difference. Then, the mixed optical signals were detected by the
balanced photoreceiver 1 (BP1) and balanced photoreceiver 2 (BP2) in order to reduce the influence
of the common noise as much as possible. The outputs of BP1 and BP2 were frequency modulated
signals and the modulation frequency was the Doppler shift frequency caused by the vibration of the
detected surface. Subsequently, the two output signals were sampled by a dual-channel high-speed
data acquisition card (DAC), and then undertook signal processing in the computer. In order to make
the system set-up and the alignment more flexible and reliable, the fiber optical components were
used. In addition to that, as the phase changing comes from the optical signal propagation difference
between two arms of this homodyne LDV, an easy and promising implement idea is to add a certain
length fiber onto the LO laser beam arm. Therefore, the local noise of this LDV can be kept at the same
level even if the detection distance increases.
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Figure 1. Schematic layout of the homodyne LDV.

Theoretically, the phase difference between the outputs of BP1 and BP2 was 90◦. Whereas suffering
the minor phase imbalance of the two beams, imperfect phase bias offset of the optical 90◦ hybrid,
and other factors in practice, there are the quadrature imbalance and other nonlinearity that can
decrease the phase measuring accuracy to a great extent. Therefore, signal processing falls into
two steps. In the first step, the nonorthogonal correction was to carry out the correction algorithm
to modify the quadrature phase shift error and other systematic phase imbalance errors; in the
second step, the discrimination algorithm tended to obtain the interested vibration parameters of the
vibrating surface.
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The outputs of BP1 and BP2 are described as the in-phase signal i(t) and the quadrature signal
q(t), shown in Equations (1)–(3). Due to the mismatch of quadrature and other nonlinearity under
the actual operating condition, there was some error on the 90◦ phase difference between i(t) and q(t).
Consequently, i(t) and q(t) constitute one ellipse depicted in Equation (4).

i(t) = R
√

PS·PLOcos(∆ϕ) = I1 + I2cos(∆ϕ) (1)

q(t) = R
√

PS·PLOsin(∆ϕ+ δ) = Q1 + Q2cos(∆ϕ+ δ−π/2) (2)

∆ϕ = 2π fd(t)t (3)

[i(t) − I1]
2

I2
2

+
[q(t) −Q1]

2

Q2
2

−
2[i(t) − I1][q(t) −Q1]sinδ

I2·Q2
= cos2δ (4)

where R is the BPs’ responsivity; δ refers to the random phase difference caused by the LO laser beam,
the transmitted laser beam, and other non-ideal factors; PS and PLO represent the average powers of
the returned optical signal and the LO laser beam at the input of the optical 2 × 4 90◦ hybrid, and fd(t)
denotes the laser Doppler frequency shift introduced by the moving vibration surface.

With the analog-to-digital conversion, a series of discrete in-phase/quadrature signals i(m)/q(m)
were obtained correspondingly, and fit an elliptical equation. Based on the method of the least-squares
estimator [33], by employing the coefficients of this elliptical equation, the initial i(t) and q(t) were
expressed. Following the least squares estimator, an algorithm of circle fitting [34] was applied in order
to make the in-phase and quadrature signals orthogonal completely. In Figure 2, the in-phase and
quadrature signals before and after the correction for nonorthogonality and nonlinearity are depicted.
The original outputs of BP1 and BP2 are displayed in Figure 2a and are close to the quadrature with
each other. By means of the correction algorithm of the least-squares estimator and the circle fitting,
the final in-phase and quadrature signals i1(t) and q1(t) are shown in Figure 2b, and they are orthogonal
and constitute a perfect unit circle whose coordinates are (0, 0).

i1(t) = cos(∆ϕ) = cos[2π fd(t)t] (5)

q1(t) = sin(∆ϕ) = sin[2π fd(t)t] (6)
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After the correction mentioned above, with i1(t) and q1(t), the discrimination algorithm abstracting
the laser Doppler frequency was carried out. The final output uOUT(t) of the signal processing is shown
as Equation (7).

uOUT(t) =
d[q1(t)]

dt ·[i1(t)] −
d[i1(t)]

dt ·[q1(t)]

[i1(t)]
2 + [q1(t)]

2 = 2π fd(t) (7)

Therefore, the minimum resolvable velocity or velocity resolution vmin(t) of the vibration surface
in the direction of the incident laser beam corresponds to the minimum resolvable Doppler frequency
shift fdmin(t) and is denoted as Equation (8). Thus, with the help of fdmin(t), the minimum resolvable
velocity vmin(t) can be achieved.

vmin(t) =
λ

2
fdmin(t) (8)

3. Calibration Experiments and Results

3.1. Calibration Tests of Detection Capability with Glass and PZT

In order to verify the detection capabilities of the designed homodyne LDV and compare the test
results with the theoretical vibration values of the detected surface, the calibration tests were conducted
under room temperature and normal conditions with the setup shown in Figure 3. The detected
vibrating target included a ring-shaped PZT (the yellow part) and a piece of same-size thin transparent
glass (the white part) stuck on its surface. The glass and the PZT were mounted at a fixed distance of 3 m
away from the homodyne LDV and exhibit a vibration totally depending on PZT response to its driving
signal output from the signal generator. Here, the driving signal was a repeated pulse-modulated
sine function with the sine function frequency of 4 kHz, the pulse modulation period of 1 s, and the
duty cycle of 50:50, respectively. Correspondingly, the vibration of the glass and the PZT is a simple
harmonic vibration, and the theoretical vibration displacement s(t) and velocity v(t) can be expressed
as Equations (9) and (10).

s(t) = σAsin(2π f t) (9)

v(t) = 2π fσAcos(2π f t) (10)

where σ is the strain coefficient of the PZT, and it is 5 nm/V; A and f are the amplitude and frequency of
the sine function part belonging to the driving signal which were equal to 0.5 mV and 4 kHz, respectively.
In this case, the theoretical maximum vibration velocity of the glass and the PZT was 62.8 nm/s.
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Figure 3. The calibration test setup for the detection capabilities of the LDV.

Figure 4 is a time-frequency diagram of the homodyne LDV output. The 4 kHz signal represents
the vibration frequency of the glass and the PZT, while its lasting time is consistent with that of the
driving signal which is 0.5 s. For a selected small segment (0 to 2.6 ms) of the signal in Figure 4,
the corresponding time-domain waveform is displayed in Figure 5, and its longitudinal coordinate
denotes the normalized Doppler frequency shift. Consequently, the minimum distinguishable Doppler
frequency shift of the homodyne LDV is about 0.08 Hz and its corresponding minimum detectable
velocity vmin reaches 62 nm/s according to Equation (8). Compared with the theoretical vibration
velocity of 62.8 nm/s, the measuring uncertainty is about 1.28%. The velocity resolution of the designed
LDV is inherently frequency sensitive, and depends both on the accuracy of the Doppler frequency shift
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measurement and the noise and/or drift during this measurement. Therefore, not only the background
noise or SNR of the LDV but also the surrounding around the LDV influences the measurement
accuracy. In order to further improve the measurement accuracy and other detection performance of
this LDV, it is necessary to place the LDV on the vibration-isolating platform and reduce the effect
of air turbulence as much as possible besides optimizing the structure and the parameters of the
LDV. Furthermore, it can be observed that there are frequency disturbances of 1 kHz and 500 Hz in
Figure 4, and the time-domain waveform is fluctuating a little with the time in Figure 5, which mostly
results from the following two major aspects, namely the surrounding noises, disturbances, and other
unexpected vibration except for the undergoing detected vibration, and the amplitude instability
from the homodyne LDV, such as the drift of laser intensity and the voltage amplitude fluctuation
of photoreceivers.
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The LDV is a vibration or velocity-sensitive system. Each corrupt that can be effectively converted
to the velocity or vibration will cause frequency interference to the final output correspondingly.
Thus, besides the phase control by using the correction algorithms mentioned before, it is also critical
to address the issue of keeping good amplitude stability for the high sensitivity.

When the working frequencies of the calibrated PZT are far away from its resonance frequency,
based on Equations (9) and (10), it is obvious that the PZT vibration displacement is directly linear to
the voltage of the given driving signal, and has no relationship with the frequency of the driving signal.
However, the vibration velocity of the PZT was not only affected by the voltage but also influenced
by the frequency of the driving signal. Therefore, on the critical state of the vibration detection,
the minimum detectable capabilities of this designed homodyne LDV were obtained. Its minimum
detectable displacement can be up to 2.468 pm at 4 kHz. Meanwhile, when the driving signal frequency
is lower than the resonance point of the PZT, the minimum detectable velocity will scale with the
frequencies of the driving signals. Depending on the minimum detectable velocity vmin at 4 kHz,
the velocity resolutions at other frequency bands can be calculated one by one.

With the help of the glass and the PZT, it was meaningful to evaluate the homodyne LDV
performances (frequency response, local noise, minimum detectable capabilities, and others) for the
remote voice acquirement and the NDT of composite materials. Considering these two applications,
the LDV spectrum range was studied from 0 to 10 kHz. When the system minimum detectable velocity
vmin reaches 62 nm/s, by using its corresponding amplitude spectrum (Figure 6), there was an obvious
peak that can be observed at 4 kHz, and the SNR was approximately 17 dB.
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In contrast with the heterodyne LDV [35], it is meaningful that the homodyne LDV has removed the
disturbance in the frequency of 4 and 8 kHz significantly resulting from the in-phase and quadrature
demodulation circuit centering at the frequency of 55 MHz. In terms of the frequency response,
the homodyne LDV was consistent with that of the driving signal to the PZT. Its frequency error was no
more than±1 Hz. In addition, the homodyne detection mode achieved the same background noise level
after 3 kHz as that of the heterodyne detection mode with a reliable, simple, and cost-effective structure.

3.2. Calibration Tests of Detection Capability with the Hydrostatic Air-Water Surface under the Anechoic Tank

One profound application of the LDV is the acousto-optic communication which is capable of
receiving the acoustic signal without any mechanical contact. As for the acousto-optic communication
under the actual water situation, the minimum detectable sound pressure level (SPL) of the LDV is the
critical factor that determines the fundamental detection limit of the whole LDV-based sensing system.

For specifying the minimum detectable SPL of the designed homodyne LDV, the minimum
detectable SPL calibration tests were performed under the anechoic tank at the National Defense
Underwater Acoustics Calibration Laboratory. The experiment setup was similar to that mentioned in
the previous report [28]. The homodyne LDV was located on the in-air platform, and the distance
between the transmitted telescope of the LDV and the water surface was 3 m (Figure 7). The underwater
acoustic transmitter was just directly below the detection point of the LDV, and it was 1.5 m away from
the water surface. Using one function generator, the underwater acoustic transmitter was set to emit a
2 ms acoustic pulse of sinusoidal signals repeating every 0.5 s. During the test, the underwater acoustic
signal was observed using a ceramic-based reference hydrophone TC4019, 1.23 m away from the
acoustic transmitter. The output voltage uOC of the reference hydrophone TC4019 was the calibrating
signal, and it demonstrated the minimum detectable capability of the LDV. For the tested sinusoidal
signal, the frequencies were chosen from 6 to 200 kHz. In this way, not only can the surrounding
disturbance distributing in the low-frequency band be prevented effectively, but it can also meet the
TC4019 frequency bandwidth limitation of 200 kHz.

Through a series of calibration tests, the demodulated output signals were obtained with the
help of the homodyne LDV. As the amplitudes of the function generator reduced, the output signal
amplitudes of the LDV decreased at the same time. When the output signal of the LDV became
just indistinguishable from the background noise, the minimum detectable SPL and the amplitude
spectrum could be acquired based on the TC4019 output voltage uOC. Under the hydrostatic surfaces,
the corresponding minimum detectable SPLs of the homodyne LDV at different frequency bands were
compared. After that, when the transmitted acoustic pulse of the sinusoidal signal was at 10 kHz,
the LDV reached its detection limit that the minimum detectable SPL was as low as 0.12 Pa. At this time,
the uOC was about 20 mV measured by an oscilloscope. Figure 8 shows the Fourier transforms of the
LDV output when the detected acoustic pulse was at 10 kHz. It was clear that the SNR was almost 21 dB
when the LDV reached the level of the minimum detectable SPL which was a preferable frequency
band for the realization of the acousto-optic communication. In view of the FM communication,
the designed homodyne LDV was still featured with good extendibility because the LDV had a wide
frequency bandwidth and a large dynamic range.
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4. Differences between Background Noise of the LDV with Glass and that with the Air–Water Surface

Only with different kinds of detected surfaces, the glass and the air–water surface, were there
some differences in the same homodyne LDV response performances.

When the detected surface was the glass whose vibration was caused by the PZT and its
corresponding driving signals, the noise distribution shown in Figure 6 was in line with the same
conclusion from Figure 4, and it mainly occupied the frequency range under 1.5 kHz. Subjected to the
characteristic of the photoreceivers and the inevitable and undesirable vibrations in the measurement
environment, this spectral distribution in this frequency range was mainly affected by the 1/f noise.
However, the local noise spectral distribution above 3 kHz was flat and was maintained at –96 dB which
is an effective guarantee for small-amplitude vibration testing in this frequency range. In this case, it is
a good choice for the NDT of composite materials. In addition, as for the remote voice acquirement, it is
necessary to suppress or remove the fixed disturbance of 500 Hz and 1 kHz within the audio range so as
not to affect the voice signal measurement. In the case of the acousto-optic communication, the detected
hydrostatic air-water surface remarkably leads to performance deterioration in the background noise
of the LDV. The local noise spectral distribution appears at −84 dB from 2 to 200 kHz, and besides,
the noise below 2 kHz badly affects the detection of the underwater sound in the low-frequency band.

In the calibration experiments, the minimum detectable capabilities were both obtained when
the output signals of the LDV were indistinguishable from the background noise. When the LDV
reached its detection limits with the detected vibrating surface of the glass and the PZT, the driving
signal to PZT was 0.5 mV. At this time, the background noise of the LDV is −96 dB and the SNR was
17 dB. Therefore, the signal was −79 dB. For the LDV-based acousto-optic communication, the detected
vibrating surface was the hydrostatic air–water interface, and the output voltage uOC of the TC4019
was the calibrating signal demonstrating the minimum detectable capability of the LDV. When the
LDV reached its detection limits, the uOC was 20 mV. Meanwhile, the background noise of the LDV was
−84 dB, and the SNR is 21 dB. Therefore, the signal was −63 dB. For the same LDV and nearly the same
experimental conditions (such as the detection distance, the reflection coefficients of the glass and the
water surface, the lab environment, and so on), the different levels of background noise of this designed
homodyne LDV were mainly affected by the structural features of these two kinds of detected vibrating
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surfaces, and the total difference can be equivalently expressed as 16 dB in the power spectrum. Due to
the mismatch of the acoustic impedance between the air and the water, the air–water interface is
the underwater sound pressure releasing surface, and vibrates at the same frequency as the incident
acoustic fields when the sound wave travels to the water surface. However, the air–water interface’s
vibration response to the sound was less than that of the glass. In addition, the hydrostatic air–water
surface is the structure of liquid whose rigidity is weak and, therefore, induces much more speckle
noise than that of glass. Consequently, the vibration response performance to the acoustic signal in
the LDV-based acousto-optic communication with the detected air–water surface differs from that in
LDV-based voice signal detection with the detected glass or the similar solid media. The SPL of the
underwater sound source needs to be stronger in order to compensate the worsened background noise
caused by the hydrostatic air-water interface. The amplitude relationship between the driving signal to
the PZT and the output voltage uOC of the TC4019 consists with the variation of the background noise
of these two kinds of vibrating surfaces. Furthermore, it is obvious that the SNR of the LDV-based
sensing system will rapidly deteriorate under the real water surface conditions suffering from the
water motion and the wind disturbance.

In respect to the frequency response range, whatever the glass or the air–water surface,
the homodyne LDV was capable of providing a wide frequency bandwidth and has a good consistency
with that of the incident soundwave. The frequency error is no more than ±1 Hz, and the time
delay is about 49 ns under the ideal condition. In addition, assuming the sampling frequency of
DAC is 2.56 times the detected laser Doppler frequency shift fd(t) based on the traditional sampling
theory-Nyquist sampling theorem, the detectable maximum vibration velocity of the designed LDV
can be up to 7.57 m/s. Therefore, this homodyne LDV can satisfy the requirement for vibration
measurement in most cases.

5. Conclusions

Aiming for the acousto-optic sensing, the voice signal detection and the future NDT for the
composite material, an all-fiber homodyne LDV is demonstrated. Referring to the least-squares
method, with the signal processing involving the correction of the quadrature imbalance and other
nonlinearity, the orthogonal state between the in-phase and quadrature signals can be realized. In the
calibration experiment, with the laser power of 5 mW, the telescope aperture of 50 mm, the detection
distance of 3 m, and a piece of thin glass pasted on the ring-shaped PZT whose driving signal is
0.5 mV at 4 kHz, the designed homodyne LDV shows good performance with extreme accuracy and
sensitivity. The measured vibration velocity and vibration displacement can reach 62 nm/s and 2.468 pm
respectively. Thus, the vibration values of the glass and the PZT obtained from the experiments differ
from the theoretically calculated ones within 1.28%. Compared with the heterodyne detection mode,
there was no disturbance at the frequency of 4 and 8 kHz, and the background noise and the SNR
from 3 to 10 kHz are able to be at the same level as that of heterodyne LDV. For the NDT of composite
material, it is necessary to develop the multi-point LDV to meet the engineering requirements in terms
of efficiency, real-time, and rapidness. There is no doubt that the performance of the multi-point
LDV relies on the single point LDV. The detection sensitivity of the single point LDV is overarching
consideration to build one practical multi-point LDV so that the weak signal can be picked up from
the surroundings.

For the detection or communication with the underwater sound source, the requirements are more
specific and demanding than those of the normal industrial applications, and the minimum detectable
SPL is also the fundamental factor. Besides, the tiny vibration caused by the underwater sound is mixed
with the obvious fluctuation of the water surface (up to the level of m/s) which means the high-speed
data acquisition must be applied. For the purpose of these, the proposed LDV is both with a good
minimum detectable SPL of 0.12 Pa and a large frequency response bandwidth of 25 MS/s per channel.
However, when the LDV is used for the acousto-optic communication under the hydrostatic air-water
interface, the background noise of the same LDV is approximately 16 dB worse than that obtained
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with the transparent glass and the PZT, which is mainly caused by the characteristics of the detected
air–water interface.

To summarize, for the unidirectional vibration measurements, such as the LDV-based voice signal
detection and LDV-based NDT of composite materials, this homodyne LDV has more promising
potential to offer a good choice when concerning pointing a low-power laser beam at the remote target
and obtaining the vibration information in a cost-effective, compact, precise, and high-sensitivity way.
In our following research, the control of the amplitude stability or the approach to eliminating its
influence will be further studied. Meanwhile, a series of associated acousto-optic practical applications
and the diagnostics for the composite material relying on this homodyne LDV will be drawn.
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