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Abstract: The continued growth of the volume of global containerized transport necessitates that most
of the major ports in the world improve port productivity by investing in more interconnected terminals.
The development of the multiterminal system escalates the complexity of the container transport
process and increases the demand for container exchange between different terminals within a port,
known as interterminal transport (ITT). Trucks are still the primary modes of freight transportation to
transport containers among most terminals. A trucking company needs to consider proper truck
routing planning because, based on several studies, it played an essential role in coordinating ITT
flows. Furthermore, optimal truck routing in the context of ITT significantly affects port productivity
and efficiency. The study of deep reinforcement learning in truck routing optimization is still
limited. In this study, we propose deep reinforcement learning to provide truck routes of a given
container transport order by considering several significant factors such as order origin, destination,
time window, and due date. To assess its performance, we compared between the proposed method
and two approaches that are used to solve truck routing problems. The experiment results showed
that the proposed method obtains considerably better results compared to the other algorithms.

Keywords: interterminal truck routing; deep reinforcement learning

1. Introduction

Currently, shipping containers have become ubiquitous and widely adopted by the business world
as a standard method of efficient freight transportation. In August 2018, the United Nations Conference
on Trade and Development (UNCTAD) reported that global containerized trade from January 2017
to June 2018 reached 10.7 billion tons, a 6.4% increase from the previous year [1]. The immense
growth of global containerized trade has created many challenges for ports worldwide. Most of
the major ports, such as Shanghai, Rotterdam, Hong Kong, and Singapore, have expanded their ports
by developing more terminals to satisfy the demand and maintain customer satisfaction. The need for
developing new container terminals requires investments in more port equipment and facilities such as
berths, cranes, straddle carriers, terminal operators, and internal trucks. To provide acceptable service
levels for importers and exporters, these infrastructural facilities and services need to be addressed
and considered by port authority. Hu et al. [2] stated that a multiterminal system increases the complexity
of the container transport process. Figure 1 illustrates the process of unloading and loading containers
from/to a ship at a typical modern container terminal. The unloading and loading process can be divided
into different subprocesses. Ideally, when a vessel arrives at a terminal in a port, the export container
is loaded for deep-sea transport, and import containers are unloaded from the ship and directly
transported to the customer. Some containers can be stored temporarily at the stack, transferred to
different transportation modes, or exchanged between terminals. The movement of containers among
terminals is known as interterminal transport (ITT). Tierney et al. [3] defined ITT as any land and sea
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transportation that moves containers and cargoes between organizationally separated areas within a
seaport. This transportation includes container transport among container terminals, empty container
depots, logistics facilities (e.g., warehouses, container freight stations), dedicated transport terminals
(e.g., barge and rail terminals, dry ports), and administrative facilities (e.g., container screening
and custom clearance). ITT can be avoided by optimizing the schedule of container vessels that
transship containers to arrive at the same terminal and providing all the required logistics components
of a port in the same location. However, a high level of ITT is required for some ports, such as mid-
to large-sized ports. Owing to the limitations of port space, it is not always possible to build all
the dedicated transport terminals and their connections in one place. Therefore, ITT plays an essential
role in improving the link among terminals and can compensate for the differences in infrastructure
between terminals. Complex transportation formed by ITT must be handled efficiently by port
authorities; otherwise, it can become a significant cause of ITT-related costs, source of errors, and delays.
Developing an efficient ITT system can be beneficial to port authorities by minimizing transport delays,
transport time and expenses, handling times, and avoiding severe traffic congestion that influences
both the productivity and efficiency of the ITT operations.

Figure 1. Process of unloading and loading a ship, adopted from [4].

A port provides alternatives such as roads, rails, and barge services to transport containers
between its terminals and facilities. However, according to Islam [5], trucks are still a dominant
mode of cargo transportation in many ports and are projected to continue in the future. For example,
in the case of the Port of Rotterdam, trucks have the maximum market share, which reaches 60% of
the current modal split. The remaining percentage is divided between barge and rail transportation,
with barge transportation having more than twice the share of rail transportation. A similar example
was also observed in Europe, according to Nicodème et al. [6], during the period from 1995 to 2014;
the European hinterland market share for road transportation increased by approximately 3.6%,
representing the highest market share of 71.9%, and the demand for rail decreased by approximately
8%. From these statistical data, the truck still dominates the market. In the context of ITT, a truck
operation without a proper truck schedule and route planning cause unnecessary operational costs
and environmental issues. Heilig and Voß’s study [7] showed that optimizing vehicle routes combined
with scheduling approaches provides necessary decision support for terminal operators. It also
offers many opportunities to reduce operational costs, improve customer satisfaction, and reduce
environmental impact. In most studies, vehicle routing optimization had the objective of minimizing
the overall cost related to the use of trucks in the selected routes. Some researchers have attempted
to address truck routing optimization in the context of ITT to minimize the overall cost related to
the use of trucks. However, most of them used a mathematical model and metaheuristic approaches.
To the best of our knowledge, the use of the reinforcement learning-based approach remains limited.
Therefore, this study makes the following contributions:

(1) We propose a deep reinforcement learning approach to provide feasible truck routes that
minimize the overall cost related to the use of trucks by considering essential requirements such
as time windows.
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(2) The learning model produced after the deep reinforcement learning training process can be used
to provide feasible truck routes for ITT, which has similar characteristics, in terms of the number
of container terminals, within short computational times. These performance characteristics are
critical in the context of real-time, real-world applications.

(3) To evaluate the proposed method, we conduct computational experiments using artificially
generated data and compare it with two metaheuristic methods: simulated annealing
and tabu search.

The rest of this study is organized as follows: In Section 2, we present a brief literature review of
interterminal transport in the port area, interterminal truck routing optimization, and reinforcement
learning (RL) for routing optimization. Section 3 presents the problem under analysis. Section 4 discusses
the proposed method, which utilizes RL to tackle the problem of empty truck trips. Section 5 presents
the experimental results of our method and compares it with other approaches. Finally, the conclusions
are drawn in Section 6 as well as future research ideas.

2. Literature Review

2.1. Interterminal Transport in Port Area

ITT plays an essential role in most large ports around the world with multiple terminals.
Efficient ITT operations significantly contribute to port competitiveness. Therefore, the design of
efficient ITT operations in the future will pose a considerable challenge for many large seaports.
Hu et al. [2] conducted a comprehensive literature review related to the planning of interterminal
transport in port areas and the hinterland. The research was motivated by two factors: the limited
research related to the integrated planning of ITT between seaport and inland terminals and the limited
studies that summarized the research findings and identified the directions for future research
regarding ITT. High-level overall planning is a challenge in major ports around the world because
they typically have multiple terminals and facilities, which are often operated by different operators.
Therefore, integrated planning is critical for providing effective services. The authors attempt to identify
three significant factors for an efficient ITT system: the objectives that should be achieved in ITT
system planning, the involvement of the actors, and the methodologies that can be used to support
the decision-making process.

Two planning problems should be tackled to achieve the objective in ITT system planning:
The strategical planning problem, and tactical and operational planning problem. In the strategical
planning problem, the proper design of the terminal layout and choosing the right ITT fleet can affect
the port ITT demand and cost. The increasing number of containers entering and leaving container
terminals needs to be handled and accommodated adequately. The new layout of the container
terminal that makes container transfer between landslide and seaside faster, cheaper, and more
efficient is required. Gharehgozli et al. [8] conducted an extensive literature review on the transition of
terminal layout designs from traditional to automated and future container terminals. The author’s
study is critical for terminal operators that are looking for technologies and methodologies that
can help them to improve their efficiency while at the same time will also increase their terminal
capacity and reduce the environmental impacts of their operations. Ottjes et al. [9] performed
a comparison of three-terminal configurations: compact configuration, dedicated configuration,
and combined configuration. Firstly, two configurations, compact and dedicated configurations,
are two extreme conditions where all terminals are connected with multiple modalities or a single
modality. The combined configuration represents the planned layout of the Rotterdam Maasvlakte
terminals. From their simulation, the results show that the number of ITT vehicles that is used
in the dedicated configuration is two times larger than in the compact configurations. Evers and De
Feijter [10] investigated the options between centralized and decentralized feeder ship service to
reduce the ship service time. The results of their study showed that the centralized service can reduce
the vessel average in-port time while using the same number of ITT vehicles. The utilization of more
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than one transport mode (intermodal transport) to transport the necessary container from one location
to another has contributed to additional advantages and limitations that will also contribute to ITT
system performance. Generally, road transport is commonly used because of its flexibility, but the study
of Gharehgozli [7] found that AGVs and MTSs result in higher operational cost savings due to reduced
labor costs. The other transport modes have a trade-off in terms of costing, handling, and waiting
time. Railway has a lower transport cost compared to road transport and a higher transport speed
compared to waterway transport. However, rail transport requires complicated and long handling
time, leading to high ITT costs [11]. In tactical and operational planning problems, proper planning
is intended to minimize the ITT timespan or ITT-related cost. Several operations that may affect ITT
timespan are transporting, handling, storing, etc. The potential cost relates to the ITT operation that
is vehicle fuel consumption cost, vehicle hiring cost, handling fee, storage cost, lateness delivery
cost, etc. Kostrzewski and Kostrzewski [12] conducted a thorough analysis of a specific intermodal
transport unit, that is, reach stacker. The value obtained from the author’s study is very critical for
the analysis, simulation, and numerical models of the intermodal freight terminals, which should
consider when minimizing the ITT timespan. Some research focuses on allocating a deep-sea vessel to
several different terminals in order to reduce the extra storage costs. This research is crucial because
when a deep-sea vessel visits a terminal, some containers should be discharged and loaded onto
another vessel in another terminal. At the same time, some export containers terminal in the other
terminal must be loaded onto this vessel. Without proper vessel allocation, containers will be stored
in the yard and wait for the ITT, and it will lead to the additional storage cost. Hendriks et al.’s [13]
study focused on the berth allocation problem to achieve two objectives, which are to balance the quay
crane workload over terminals and overtime and to minimize the amount of inter-terminal container
transport. Many researchers have also studied the routing of ITT vehicles. Caballini et al. [14] studied
the rail cycle in port and proposed a planning approach to minimize the queuing time in multiple
yards. Li et al. [15] aimed to reduce the travel time in port by considering the possible disturbance such
as terminal equipment failure and sudden closing of terminals. Hu et al. [16] and Hu et al. [17] focused
on integrating ITT within the port area by considering the transshipment operations and railway
timetable. The model proposed by the authors can help terminal operators to schedule the ITT fleet
and RMGs in terminals. The results of their research showed that more flexible ITT connections and a
flexible railway timetable can improve the transport performance of containers that are delivered to
the hinterland.

Heilig and Voß [18] presented an extensive overview of ITT-related research to reflect the current
state of ITT research. There are many factors that influence the productivity and efficiency of
ITT as well as its economic and environmental implications. ITT can be considered as a large
and complex freight transportation network connecting all terminals and other shared port facilities.
Therefore, it requires a higher level of coordination because its internal and external container flows
and handling activities must be coordinated by at least two separate parties. Extensive studies need to
be conducted to obtain a proper understanding of ITT operations and to reduce its operational costs
while strengthening long-term competitiveness. From the author’s study, most ITT-related research
works focus on modeling and evaluating different ITT configurations and concepts using optimization
and simulation approaches, or both, which are heavily dependent on data input in practical applications.
Innovative technologies, alternative ITT systems, and interdisciplinary research should be conducted
to solve the future challenges of ITT. An example of these innovative technologies is developing
an information system that provides real-time data exchange for decision support, collaboration
among stakeholders, information sharing, and improvement of the planning process. The study also
suggested future strategies for a more integrated decision support system that facilitates planning,
interaction, and collaboration among port stakeholders to improve ITT operations in the economic
and environmental aspects.

Duinkerken et al. [19] proposed a rule-based simulation model to evaluate three different
transportation systems: multi trailer systems (MTSs), automated guided vehicles (AGVs),
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and automated lift vehicles (ALVs) in Rotterdam’s Maasvlakte port area. The simulation experiments
provide essential insights into three different characteristics of these transportation systems, including
an evaluation of the performance and nonperformance of ITT, utilization of transport vehicles with
and without advanced planning, and cost analysis to support investment decisions. Tierney et al. [3]
presented an integer programming model to minimize container delivery delay by considering
significant ITT aspects, including multiple vehicle types, loading/unloading times, traffic congestion,
and arbitrary terminal configurations. The proposed model helps in analyzing ITT requirements
for new and expanding seaports. The authors used a real example from Maasvlakte and the port
of Hamburg to show the benefits of the proposed time-space mathematical model for supporting
decisions not only to configure the transport vehicles but also to optimize vehicle routes and container
flows in the ITT networks.

2.2. Interterminal Truck Routing Optimization

The main tasks of ITT operations are the efficient collection and delivery of containers at the desired
terminals. ITT is a critical factor for performance-associated supply chains and impacts the overall
reputation of the ports. From an operational perspective, several aspects need to be considered to
improve ITT operations. These include the selection of transport modes (e.g., trucks, barges, and trains),
coordination of parties involved in ITT operations, and management of external factors influencing
the performance of ITT operations (e.g., traffic congestion, equipment breakdown, and truck delays).
Additionally, Heilig and Voß [18] found that vehicle routing plays an essential role in coordinating IT
flows to reduce operational costs and environmental impact as well as improve customer satisfaction.
However, studies on vehicle routing in the ITT context are still limited. Stahlbock and Voβ [20] presented
a comprehensive survey on arising routing problems in the container terminal domain. For horizontal
transport at the landside, specifically for transporting containers using a truck, route optimization
is proposed because it is considered flexible and fast. Furthermore, online optimization is necessary
because the situation changed dynamically in the real world. Jin and Kim [21] studied truck routing
in Busan port using delivery time windows. They proposed a mathematical model to maximize
the profits of a multitrucking company by considering the truck usage cost and delay penalty.
Heilig et al. [22] extended ITT truck routing optimization by considering the environmental aspect,
thus minimizing truck emissions. The proposed multi-objective model aimed to reduce fixed vehicle
hiring costs, vehicle traveling costs, lateness delivery penalties, and emission costs. Heilig et al. [23]
presented the interterminal truck routing problem (ITTRP) as a novel vehicle routing problem.
It incorporated two greedy heuristics and two-hybrid simulated annealing (SA) algorithms to improve
the port actor’s coordination by minimizing truck drayage costs. Their research also introduced the use
of a cloud-based centralized communication system and a mobile application to optimize truck routing
online. The truck routing optimization considered the fixed vehicle costs, variable vehicle operating
costs, and penalty cost for late delivery.

2.3. Reinforcement Learning for Route Optimization

To the best of our knowledge, the use of the reinforcement learning-based approach to tackle
the vehicle routing problem (VRP) in the context of ITT is still limited. Mukai et al. [24] adopted
and improved the native Q-learning, one of the reinforcement learning (RL) algorithms, to optimize
the route of on-demand bus systems. In the on-demand bus system, the travel routes for the buses were
not determined in advance. The buses pick up customers door-to-door when required. By improving
the updated process of the Q values, the results showed the effectiveness of the proposed method
in addressing the problem. Similar to Mukai et al. [24], Jeon et al. [25] also implemented the Q-learning
algorithm to identify routes with the shortest travel time for AGVs in port terminals. They determined
the shortest-time routes inclusive of the expected waiting times instead of the simple shortest distance
routes, which are usually used in practice. The waiting time must be estimated accurately to determine
the total travel time. The estimation of the waiting time was achieved using the Q-learning technique
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and constructing the shortest time routing matrix for each given set of positions of the quay cranes.
The results showed that the travel time can be reduced by 17.3% using the learning-based routes
instead of the shortest distance routes. Kalakanti et al. [26] proposed a reinforcement learning solver
for the vehicle routing problem (RL SolVer Pro). They considered the optimal route learning problem
as a Markov decision process (MDP). The two-phase solver was used with geometric clustering to
overcome the RL curse of dimensionality. Their simulation results showed that the proposed method
obtained better, or similar results compared to the two best-known heuristics, namely, Clarke–Wright
savings and sweep heuristics. Ye et al. [27] proposed a novel deep reinforcement learning-based
neural combinatorial optimization strategy to develop vehicle routing plans for city-size transportation
networks. The authors transformed the online routing problem to a vehicle tour generation problem
and developed a structural graph embedded pointer network to produce the tours iteratively. To assess
the proposed strategy, the authors conducted comprehensive case studies on a real-world transportation
network and dynamic traffic conditions in Cologne, Germany. The simulation results showed that
the proposed approach can significantly outperform conventional strategies with limited computation
time in both static and dynamic logistic systems.

In this study, we employ Deep Q-Network (DQN), because our case study has a large state-action
space (approximately 576,000 combinations of all states and actions). The use of a tabular RL
fashion such as Q-Learning to store the value function or policy for a large state-action space is
considered inefficient [28]. The utilization of the deep neural network in deep Q-networks as a function
approximation aims to make generalizations from examples of a function to construct an approximate
of the entire function [29]. The details of the proposed DQN design are discussed in Section 4.

3. Problem Description

The ITTRP used in this study is similar to the one presented by Heilig et al. [23]. A homogeneous
vehicle pickup and delivery problem is created using time windows by considering the maximum
availability of the truck working hours, penalties for delayed orders, time windows of locations, and due
dates of transport orders. The proposed ITTRP version does not consider external trucks, and the site
used in our experiment covers only five container terminals. As defined, ITTRP is the process of
moving containers between facilities (e.g., container terminals, empty container depots, value-added
logistics) within a port. Therefore, we have sets of locations, trucks, and customers represented

by L, T, C, respectively, where each customer has a set of requesting orders Rk
∈

{
jk1, jk2, . . . , jk

|Rk |

}
,

where k is the index of the customer. The set of all requesting orders is O = ∪k∈ C Rk. Furthermore,
each order, jki , k ∈ C, i ∈ Rk, has a given origin o

(
jki
)
∈ L and destination d

(
jki
)
∈ L. The subsets

of the origin and destination are denoted as Ls and Ld, respectively. Each order must be served
by considering the service times at the pickup (i.e., origin) and delivery (i.e., destination) locations,
which are denoted as, S( jki , o( jki ) )

and S( jki , d( jki ) )
, respectively. An associated order penalty pn jki

is applied
if the transport order cannot be completed before a given due date dd jki

. Additionally, each truck t ∈ T
has an initial position, ipt, a maximum number of working hours, mxt, a prefixed cost for using a truck,
cst, and variable costs per hour, hrt. The objective of this problem is to minimize the costs related to
the use of trucks, which can be illustrated by the following objective function:

minimize
(∑

t∈ T
xt.cst +

∑
t∈ T

tmt.hrt +
∑

o∈ O
yo.pno

)
(1)

where xt is equal to 1 if truck t is hired, 0 otherwise; y0 is equal to 1 if the order o is performed after its
due date and 0 otherwise. The service time required by a truck t for performing all its assigned transport
orders is denoted as tmt. A solution for the ITTRP must satisfy the following feasibility restrictions:

(1) Each transport order must be performed.
(2) Each transport order must be performed by a single truck.
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(3) Each transport order jki is ideally performed before its due date, taking into account the service
time at the destination locations. The penalty cost pno, o ∈ O, will be charged if the truck cannot
complete a transport order within its due date.

(4) Each route begins at the starting position of the truck. In our case, the initial position of all trucks
is at a terminal one, and the next starting point of each truck is the destination location of the latest
order served by the truck. The time and cost required for moving trucks from the initial location
to the order origin (for first-time order assignments) are not considered in the objective function.

(5) Pickup and delivery operations are considered as pairing constraints in the transport order.
(6) The pickup vertices are visited before the corresponding delivery vertices (precedence constraints).
(7) Each location l ∈ Ls

∈ Ld has a given availability time window; hence, the trucks can only
arrive at the origin and destination based on their given time windows. When the trucks arrive
in advance, they must wait until the location operation time starts and the location is ready for
pickup or delivery activities.

Moreover, we consider the following assumptions:

(1) The truck speed and distance between two terminals to calculate the travel time as well as service
time and time windows are known in advance.

(2) The fee for performing transport orders, fixed costs, and variable costs is known in advance.

4. Proposed Method

4.1. Reinforcement Learning

RL is a machine learning technique that allows an agent to learn by performing trial-and-error-based
interactions with the environment. RL is different from the other machine learning techniques:
supervised learning and unsupervised learning. In supervised learning, there is a mapping between
the input and output, while in unsupervised learning, unlabeled input data are utilized to discover
unknown relationships or structure within them. Unlike supervised and unsupervised learning, RL is
defined by characterizing a learning problem, not by characterizing the learning method. RL uses
rewards which are obtained when interacting with the environment, as a signal for positive and negative
behavior. The goal of supervised learning is to find similarities and differences between data points,
whereas the goal of RL is to find the best action for maximizing the total cumulative reward of the agent.
Figure 2 shows the agent–environment interaction. An RL agent takes action in discrete time steps from
a set of available actions and receives a reward for choosing the best action or penalty for the bad action.
A reward is a numerical measure of the goodness of an action that depends on the state transition.
After performing an action, the agent proceeds to the next state. The agent interacts continuously
with the environment to learn the best action for a particular state by collecting rewards and penalties
over time.

Figure 2. Agent–environment interaction in RL.

The RL problem is defined in the form of a Markov decision process (MDP), a classical formulation
of sequential decision making, in which both immediate and future rewards are considered. An MDP
is described by a tuple M = (S, A,P(st+1, r

∣∣∣s, a), R,γ) , where:
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• s ∈ S is a set of all possible states describing the current situation or condition of the environment.
• a ∈ A is a finite action space—a set of all available actions of the agent.
• P(st+1, r

∣∣∣s, a) denotes the probability of transitioning to st+1 and receiving a reward,

r, given s ∈ Sa ∈ A as follows: P(st+1, r
∣∣∣s, a) = Pr{St+1 = st+1, Rt = r

∣∣∣ S = s, A = a
}

• R ∈ R is the expected reward received from the environment after the agent performs action a,
at state s.

• γ ∈ [0, 1] is a discount factor representing the discounted future returns.

RL consists of two essential components: the agent and the environment. In our case study,
the agent is a truck which interacts with the environment by choosing an order from a given set of
transport orders at a particular time. As illustrated in Figure 2, the state of the environment at time
step t is denoted as st. Subsequently, the agent examines st and executes a corresponding action at.
The environment then changes its state st to st+1 and gives the agent a numerical reward rt+1. The goal
of the agent is to find the optimal policy π, S xA, which maximizes the expected return from each
state st+1. The expected return Rt at time t is defined as follows:

Rt = E[
∝∑

k=0

γkrt+k] (2)

where γ is the discount factor that determines the tradeoff between immediate and future rewards.
The expected return in the Q-learning algorithm after an agent executes an action is defined as follows:

Qπ(s, a) = E[Rt
∣∣∣st = s, a] (3)

where Qπ(s, a) is the discounted future reward when an agent performs action a, in state s. The maximum
action value for state s and action a, achievable by any policy, is defined as follows:

Q∗(s, a) = maxπQπ(s, a) (4)

The detailed design of each state, action, and reward is discussed in the next subsection.

4.1.1. State Representation

In the ITTRP problem, an agent (a truck) observes the current state, s, from the environment
at time t. A truck must consider the available transport orders and the truck’s current position at
a particular time when picking an order. Moreover, the available transport orders can have one or
more transport order characteristics. These define two factors: the distance between the current truck
position and transport order origin and the time gap between the current time and the transport order
due date.

There are three categories of transport order characteristics: transport orders that have an order
origin similar to the truck current position (OC1), transport orders that have the nearest due date
(OC2), and transport orders that have the farthest due date (OC3). The characteristics of the last two
transport orders are determined by calculating the gap between the current time and the end time
window of the available transport orders. If the difference is more than two hours, then the transport
order has the farthest due date; otherwise, the transport order has the nearest due date characteristics.
Figure 3 illustrates an example of a state at time step t = 0, which shows that the truck is currently located
at container terminal 3, and there are three available transport orders with three order characteristics.
Based on the aforementioned condition, the state at time step t = 0 is declared as s0 = {0, 1, 3, 1, 1, 1}.
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Figure 3. Example of state at time step t = 0.

A set of states, S, in our case study, consists of six elements. At time step t, S =
{
s1, s2, s3, s4, s5, s6

}
t
, where:

• s1 represents the current time in minutes. The value has a range of 0–1440 because it represents a
24 h range in minutes.

• s2 represents the available transport orders. The value is one if there is at least one transport order
available, otherwise, it is zero.

• s3 represents the position of the truck. In our case, we consider five terminal locations. The value
of this element has a range of one to five.

• s4 indicates the presence of transport orders that have an order origin similar to the truck’s current
position. The value is zero or one.

• s5 indicates the presence of transport orders that have the nearest due date. The value is zero
or one.

• s6 indicates the presence of transport orders that have the farthest due date. The value is zero
or one.

4.1.2. Actions

An agent can choose a possible action at each time step t. In our case, a set of actions,A, consists of
five elements,A =

{
a1, a2, a3, a4, a5

}
t

where:

• a1: represents idle
• a2: choose random order
• a3: choose order with OC1 characteristics
• a4: choose order with OC2 characteristics
• a5: choose order with OC3 characteristics

The goal of the agent is to learn a policy π that maximizes the cumulative reward. By definition,
policy π is a function that defines the probability of an action a to get chosen in state s: S→ p(A = a|S).
In our case, policy π is a function from states to actions and is represented as a deep neural network.
Given the current state values, the agent can determine the best action value through the policy.

4.1.3. Reward Function

The reward function design is vital to induce an agent to achieve the goal, which is to maximize
the cumulative reward. A reward provides feedback to the agent after performing a chosen action.
The ultimate goal of the agent is to find an optimal truck route that has a minimum total cost of using
the truck, which includes total travel cost, total empty truck trip cost, and penalty cost. In this study,
we propose four reward cases at each time step:
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(1) R(t) = 0.01, if choose action a1 where there is no available transport order.
(2) R(t) = 0, if performing an improper action such as:

a. TCOi ≥ ATC
b. Choose action a1 when there is at least one transport order.
c. Choose action a2 when there is no available transport order.
d. Choose action a3 when order with OC1 characteristics is not available.
e. Choose action a4 when order with OC2 characteristics is not available.
f. Choose action a5 when order with OC3 characteristics is not available.

(3) R(t) = 1, if

a. TCo ≤ ATC, where TCo is the total cost of performing the current transport order, and ATC
is the average of the total cost of performing all previous transport orders calculated using
the following equation ATC = 1

n
∑i

n = 0 TCon .

(4) R(t) = 25, if the terminal condition is reached and STCepsi ≤ ASTC, where STCepsi is the sum of
the total cost of performing all transport orders at episode i, and ASTC is the average of STC of
all episodes.

The first reward case is taken from choosing an idle action when there is no available transport
order at the current time. In this case, the reward value is set at a small amount such as 0.01 to prevent
the agent from considering it as the best action when it has to be performed many times and makes
its reward accumulation exceed the reward accumulation of taking the expected action. The reward
function design should also cover how to make an agent avoid undesirable behavior. The reward of
taking improper action categorized in the second case was zero. For instance, the agent will obtain a
zero reward when taking an idle action while there are available transport orders. The zero rewards
for this case give a signal to the agent; taking an idle action is not expected when there are available
transport orders. The third and fourth reward cases describe the immediate and delayed rewards,
respectively. An agent obtains an immediate reward for every decision in selecting and serving
a transport order that produces a total cost less than the average of the total cost of performing
all previous transport orders. We formulated the truck routing optimization as an episodic task.
The RL training process executes many episodes. The total cost of each episode must be calculated
and evaluated to determine if there is a learning improvement of the agent. The simulation process
terminates in a specific state. In our case, it ends when all transport orders have been served. The total
cost sequence of the served transport orders is calculated at each episode and compared with the total
cost of the previous episode. If the current episode’s total cost is less than the previous one, the agent
receives a delayed reward.

4.2. Deep Q-Network

Deep reinforcement learning (Deep RL) is a combination of deep learning (DL) and RL to deal
with high dimensional state and action spaces [29]. In 2015, Mnih et al. [30] proposed a novel structure
named the DQN that combines RL and a convolutional neural network (CNN), which proved successful
in making an autonomous agent play competently in a series of 49 Atari games. The application
of CNN in a DQN is intended to directly interpret the graphical representation of the input state,
s, from the environment. In this study, we employ a DQN because the state-action space, in our case,
is considerably large.

The tabular fashion of Q-learning is challenging to converge in a high-dimensional environment
because it must visit all possible state-action pairs infinitely [31]. The use of DNN in DQN acts
as a policy approximation function. As illustrated in Figure 4, in the model-free RL, Q(st, at;θt) is
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represented as an approximator with parameter θt that needs to approach the optimal action value,
that is:

Q∗(st, at) ≈ Q(st, at;θt) (5)

where parameter θt is learned iteratively by minimizing the following loss function:

L(θt) = E(r + γ maxat+1Q(st+1, at+1;θt) −Q(st, at;θt))
2 (6)

where r + γ maxat+1Q(st+1, at+1;θt) is the target value, st+1 and at+1 represent the state and action at
time step t+1, respectively. The target value must be replaced with weight θt+1, which is updated at
every N step from the estimation network to address the instability issue in the DQN. This leads to
the following loss function equation:

L(θt+1) = E(r + γ maxat+1Q(st+1, at+1;θt+1) −Q(st, at;θt))
2θt+1 ← θ f or every N steps (7)

Figure 4. Deep Q-Network structure.

Moreover, the generated samples (st, at, rt, st+1) are stored in an experience replay memory.
These samples are then retrieved randomly from the experience replay and fed into the training process.

5. Experimental Results

In this section, simulation experiments are conducted to evaluate the performance of the proposed
method. The algorithm was implemented in Python and run on a PC equipped with an Intel® Xeon®

CPU E3-1230 v5 of 3.40 GHz and 16 GB memory. We train the DQN for 750 episodes and using 250 files
in which each file contains 285 transport order data, as illustrated in Table 1. The number of files used
in the training process represents the different variation characteristics of the transport order data,
which might occur in the real container terminal. This kind of data variation will make the agent of
our DQN learn to find the optimal policy from a different situation. The whole DQN training process
took roughly eleven days. The training process of the first file consumed the longest training time,
which approximately ran for 119 h, while the training process of the remaining files only needed
40 min on average. This phenomenon occurs because, in the first 750 episodes of the first file, the DQN
still forming the learning model from scratch while the next remaining training process took advantage
of the trained model from the previous training process.
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Table 1. Example of transport order data.

Origin Destination Start-Time Window End-Time Window

T1 T2 60 480
T4 T5 30 360
T3 T1 120 860

First, we present the data that were used in this study, such as an example of the transport order
data, container movement data, container processing time, as well as the costs and fee of transporting
a container. Subsequently, we present the configuration of the proposed method and the other two
metaheuristic algorithms. Finally, we present the performance of our proposed method compared to
the two different metaheuristic algorithms by showing the results of the three performance parameters,
namely, total cost, empty truck trip cost, and computational time.

5.1. Data

In this study, we use the transport order data as shown in Table 1, which contains four crucial
factors: the order origin, destination, start time window, and end time window of the order. These data
are artificially generated by considering the following values range:

(1) order origin (o): {T1, T2, T3, T4, T5}
(2) order destination (d): {T1, T2, T3, T4, T5}, where d , o
(3) start time window (in minutes): {0, . . . , 1320}
(4) end time window (in minutes): {120, . . . , 1440}

The generated data are made to mimic the real seaport, in our case, the Busan New Port (BNP),
as shown in Figure 5, which has five container terminals and operates for 24 h (1440 min).

Figure 5. Busan New Port Container Terminal Layout [32].

We use the information on the container movement rate between the terminals of BNP,
as shown in Table 2, which was published by Park and Lee [32]. By considering this information,
the generated data obtains characteristics from the real container terminal in terms of movement rates
between terminals.
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Table 2. Container movement rate between terminals [32].

From/To PNIT PNC HJNC HPNT BNCT

PNIT - 7.6% 4.7% 26.1% 2.5%
PNC 7.6% - 15.1% 8.7% 14.9%

HJNC 4.7% 15.1% - 11.4% 5.1%
HPNT 26.1% 8.7% 11.4% - 3.8%
BNCT 2.5% 14.9% 5.1% 3.8% -

The other crucial transport-related information is the container processing time, which includes
the terminal to terminal travel time, the time required for traffic lights, the gate passing time,
and the waiting time for loading/unloading, as shown in Table 3. We also obtain this container
processing time from the research paper by Park and Lee [32]. The container processing time is critical
because the state in our proposed RL involves the time variable.

Table 3. Estimated container processing time per move [32].

Terminal to
Terminal Time

(min)

The Time
Required for
Traffic Lights

(min)

Gate Passing Time
(min)

Waiting Time for
Loading/Unloading

(min)

The Time
Required Per
Move (min)

PNIT–PNC 2.85 0 0 30 33
PNIT–HJNC 11.35 8 1 30 50
PNIT–HPNT 4.92 4 1 30 40
PNIT–BNCT 11.3 8 1 30 41
PNC–HJNC 5.1 2 1 30 38
PNC–HPNT 10.75 10 1 30 52
PNC–BNCT 5.50 11 1 30 48

HJNC–HPNT 11.62 12 1 30 55
HJNC–BNCT 13.8 13 1 30 58
HPNT–BNCT 4.5 1 1 30 37

Standard costs and fees are required to calculate the truck-related costs in transporting a container.
We use the standard published by Jin and Kim [21], which included the truck transport cost, idle cost,
delay cost, and revenue per container, as shown in Table 4.

Table 4. Costs and fee [21].

Unit Value

Truck transportation cost $/time period 4
The operation cost of an idle truck $/12 time period 0.001

Delay cost $/container/time period 5
Revenue per container $/container 25

One-time period in Table 4 corresponds to a 15 min time unit. For example, a truck transportation
cost of $4/time-period means that the transportation cost is $4 for every 15 min. Both container
processing time, and cost and fee are critical for the RL learning environment for the agent to experience
the near-real condition of the container terminal.

The variation of the transport order data is essential to evaluate the performance of the proposed
algorithm. In this experiment, we use three categories of datasets in terms of the number of transport
orders, which are: datasets which are less than 100 orders, between 100 and 200 orders, and more than
200 orders, as shown in Table 5.
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Table 5. Datasets for experiment.

Dataset ID (DID) Dataset Category Number of Order

DC1-35
1

35

DC1-89 89

DC2-116
2

116

DC2-173 173

DC3-285 3 285

5.2. Algorithm Configuration

5.2.1. DQN Configuration

DL in this experiment was developed using KERAS library version 2.3. The DL model has six
inputs, two hidden layers with nine neurons for each layer, and five outputs. The input is set to six
because, in our case, the input of our DQN should accommodate all elements of the state, which is
composed of six elements, while the output of our DQN is the number of possible actions. The number
of hidden neurons was determined based on [33], which stated that the number of hidden neurons
should comply with the following rule-of-thumb:

(1) The number of hidden neurons should be between the size of the input layer and the size of
the output layer.

(2) The number of hidden neurons should be 2/3 the size of the input layer, plus the size of
the output layer.

(3) The number of hidden neurons should be less than twice the size of the input layer.

All hidden layers use a rectified linear activation function, whereas the output layer uses a linear
activation function.

The DQN was trained using the configuration present in Table 6, using 500 variations of transport
data, and each variation running for 1000 episodes.

Table 6. Hyperparameters for the training.

Hyperparameter Value

Num. of episodes 750
Batch-size 32

Replay memory 100,000
Discount factor γ 0.99
Learning rate α 0.001
Epsilon decay ε 0.05

5.2.2. Simulated Annealing Configuration

The SA algorithm is a probabilistic method proposed by Kirkpatrick et al. [34], which emulates
the physical process in which a metal is heated at a very high temperature and slowly cooled until it
reaches a frozen state. The initial temperature (Tinitial) of the SA was set to 100 degrees, the cooling rate

(α) was calculated using the following equation
(

T f inal
Tinitial

)( 1
num. o f iterations – 1 )

, and the stopping criterion was

when the temperature (Tfinal) reached 0.0001 degrees. The highest value of Tinitial and the lowest value
Tfinal was chosen to give the SA algorithm adequate time for leaving local optima as states in the [35]
study. The Boltzmann probability P(Snew) = e(−∆S/T) is used to accept the new solution. If this
probability is higher than a random value between 0 and 1, then the new solution Snew is accepted.
The number of iterations for the SA algorithm was set based on the study of [36], which states that
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if the candidate size is more than 200, then the number of iterations should be set to 100,000. In our
case study, the candidate size is 285, and then 100,000 iterations were determined for the number
of iterations.

5.2.3. Tabu Search Configuration

Tabu search (TS) is a metaheuristic method that guides a local heuristic search procedure to
explore the solution space to escape the trap of the local optimal. The basic form of TS was proposed
by Glover [37]. The TS algorithm is considered a highly efficient search algorithm. The memory
mechanism and tabu criteria in the TS algorithm can avoid circuitous search conditions. The aspiration
criteria used in TS can also ensure a diversification search and obtain the global optimum. In our
experiment, the length of the tabu list is seven. The number of iterations for the TS algorithm is
100,000 iterations.

The neighborhood search method is used for both SA and TS; we use two transformation rules for
generating neighbors as proposed by Tan [38]. The first transformation rule is to exchange routes within a
vehicle, and the second is to exchange routes between two vehicles. The new solution from the process
of generating neighbors is evaluated to meet the main objective function, which is the minimization of
the total cost that includes total travel cost, total empty truck trip cost, and penalty cost.

5.3. Results

Figure 6 shows the DQN performance on finding the optimal truck route. The x-axis represents
the episodes, and the y-axis represents the cumulative rewards per episode. From the 750 episodes,
the rewards show a significant increasing trend. The DQN can quickly adapt to the environment
within the first 100 episodes.

Figure 6. DQN performance on finding the optimal truck route.

In this study, the optimal truck route is defined by evaluating the required total cost. Figure 7 shows
the decreasing trend in the total cost per episode. The x-axis represents the episodes, and the y-axis
represents the truck route’s total cost per episode. The movement of the total cost is consistent with
the reward trend. It decreases when the reward increases.
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Figure 7. The truck route’s total cost per episode.

Each experiment was tested 30 times, and the average values of the three performance parameters
(total cost, empty truck trip cost, and computational time) were obtained. Table 7 lists the abbreviations
of the parameters used in this study.

Table 7. Parameter abbreviations.

Parameters Abbreviation

Average Computational Time (in seconds) Avg CT
Best Computational Time (in seconds) Best CT

Average Total Cost (in $) Avg TC
Minimum Total Cost (in $) Min TC

Average Empty Truck Trip Cost (in $) Avg ETTC
Minimum Empty Truck Trip Cost (in $) Min ETTC

As shown in Table 8, the DQN exhibits better performance than SA because it gives the best results
on all three datasets: DC1-35, DC1-89, and DC1-173, in terms of TC and ETTC. The SA algorithm
gets the best results for the DC2-116 and DC3-285 datasets under the same performance parameters.
In terms of CT, SA tends to have a linear CT when the number of data points increases. Unlike the DQN,
the CT for DC2-116 shows nonlinearity. Based on our evaluation, this condition occurs when the test
dataset used in the testing has similar characteristics to the dataset used for training; therefore, the DQN
only requires a short time to produce results.

Table 8. Performance comparison between DQN and SA.

DQN SA

DID Min TC Avg
TC Min ETTC Avg

ETTC Min CT Avg
CT Min TC Avg

TC Min ETTC Avg
ETTC

Best
CT Avg CT

DC1-35 291.6 310.77 84.13 103.3 32.67 56.59 316.66 341.58 109.2 128.01 23.68 51.42
DC1-89 790.66 828.03 263.2 299.53 108.41 148.4 860.26 905.4 332.79 346.44 101.92 134.86

DC2-116 1054.66 1096.02 367.99 409.35 25.05 54.57 1011.06 1052.59 324.39 365.92 118.93 157.14
DC2-173 1619.73 1660.12 594.26 633.18 91.53 146.05 1722.93 1819.7 684.13 706.85 167.43 223.91
DC3-285 2720 2787.11 1032 1099.11 189.73 315.13 2707 2746.62 1019.06 1058.62 245.87 386.54

Table 9 shows that the TS exhibits considerable performance in terms of TC and ETTC for
the DC1-35, DC2-116, and DC3-285 datasets. The DQN obtains the best results for the DC1-89
and DC2-173 datasets in the same performance parameters. In terms of CT, the TS has a similar CT
characteristic with SA on average, whereas DQN tends to have a faster CT than TS. The performance gap
presented in Table 10 shows the level of improvement among the algorithms. Based on the performance



Sensors 2020, 20, 5794 17 of 19

gap table, we can conclude that the DQN yields up to 9%, 22.9%, and 80% better results for TC,
ETTC, and CT, respectively. Although the DQN does not entirely show better results across all datasets,
we observe that it achieves a comparable solution quality.

Table 9. Performance comparison between DQN and TS.

DQN TS

DID Min TC Avg
TC Min ETTC Avg

ETTC Min CT Avg
CT Min TC Avg

TC Min ETTC Avg
ETTC

Best
CT Avg CT

DC1-35 291.6 310.77 84.13 103.3 32.67 56.59 305.2 306.29 97.73 98.82 24.14 53.44
DC1-89 790.66 828.03 263.2 299.53 108.41 148.4 845.86 849.59 318.39 322.12 104.6 138.28

DC2-116 1054.66 1096.02 367.99 409.35 25.05 54.57 975.73 984.23 289.06 297.56 125.34 158.36
DC2-173 1619.73 1660.12 594.26 633.18 91.53 146.05 1687.59 1693.17 662.13 667.65 185.53 231.18
DC3-285 2720 2787.11 1032 1099.11 189.73 315.13 2649.46 2667.45 961.46 979.45 249.68 390.58

Table 10. Performance gap between DQN, SA, and TS.

GAP (%)

DQN vs. SA DQN vs. TS

DID Min TC Avg
TC Min ETTC Avg

ETTC Min CT Avg
CT Min TC Avg

TC Min ETTC Avg
ETTC

Best
CT

Avg
CT

DC1-35 7.91 9.01 22.95 19.3 −27.51 −9.13 4.45 −1.44 13.91 −4.33 −26.1 −5.56
DC1-89 8.09 8.54 20.91 13.54 −5.98 −9.12 6.52 2.53 17.33 7.01 −3.51 −6.81

DC2-116 −4.13 −3.96 −11.84 −10.6 78.93 65.27 −7.48 −10.19 −21.44 −27.3 80.01 65.54
DC2-173 5.98 8.76 13.13 10.42 45.33 34.77 4.02 1.95 10.25 5.16 50.66 36.82
DC3-285 −0.47 −1.45 −1.25 −3.68 22.83 18.47 −2.59 −4.29 −6.83 −10.88 24.01 19.31

6. Conclusions

Many major ports around the globe are affected by the increasing volume of global containerized
transport. This condition necessitates port authorities to improve port performance by optimizing
productivity and efficiency. ITT plays an essential role in large ports with multiple terminals.
Without proper planning, ITT can be one of the sources of significant inefficiency that will negatively
influence the overall port performance. The study of route optimization related to ITT is still limited.
Moreover, the use of the reinforcement learning approach for route optimization is scarce. In this study,
we proposed a DQN to provide a near-optimal interterminal truck route and to meet the main objective
of ITT, which is to minimize the total costs related to the use of trucks. We designed a custom-specific
state and action so that the agent of the RL can learn the best decision in producing a truck route
with minimum total costs. We conducted computational experiments to verify the performance of
the proposed method. We chose the simulated annealing and tabu search algorithms as the baseline
for comparison. In general, the proposed DQN can provide a feasible solution within a short
computational time. Compared to the two-baseline algorithms, the DQN exhibited a considerable
quality of performance and solution. The proposed method can be applied to solve the real-world case
by considering the following requirements:

(1) the real-world case should have similar characteristics as our case study, which consists of five
container terminal, 24 h of the operational working hour, and only for homogeneous vehicles.

(2) the transport order data must have four essential elements: order origin, destination, start time
window, and end time window.

Those requirements can also be the limitations of our proposed method. The method we proposed
requires some modifications if it is to be applied to other cases that have different characteristics.
Therefore, techniques that can solve the general problems of ITT are still open for future research.
Some challenging issues still need to be addressed in future research. One of them is the development
of a stable DQN that requires less training data and training time but can provide a feasible solution
for the general case of ITT.
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