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Abstract: With the development of the next generation of information technology, an increasing amount
of attention is being paid to smart residential spaces, including smart cities, smart buildings, and smart
homes. Building indoor safety intelligence is an important research topic. However, current indoor safety
management methods cannot comprehensively analyse safety data, owing to a poor combination of safety
management and building information. Additionally, the judgement of danger depends significantly
on the experience of the safety management staff. In this study, digital twins (DTs) are introduced to
building indoor safety management. A framework for an indoor safety management system based
on DT is proposed which exploits the Internet of Things (IoT), building information modelling (BIM),
the Internet, and support vector machines (SVMs) to improve the level of intelligence for building
indoor safety management. A DT model (DTM) is developed using BIM integrated with operation
information collected by IoT sensors. The trained SVM model is used to automatically obtain the types
and levels of danger by processing the data in the DTM. The Internet is a medium for interactions
between people and systems. A building in the bobsleigh and sled stadium for the Beijing Winter
Olympics is considered as an example; the proposed system realises the functions of the scene display
of the operation status, danger warning and positioning, danger classification and level assessment,
and danger handling suggestions.

Keywords: digital twin; Internet of Things; support vector machines; building information modelling;
indoor safety management system

1. Introduction

With the rapid digital revolution in the 21st century, an increasing amount of information
technology has been applied to human residential space to improve its comfort, energy saving, and safety.
The concepts of smart cities [1], smart buildings [2], and smart homes [3] are being increasingly researched.
These studies are mainly focused on environmental, energy, and safety issues [4–7]. Safety is an important
research direction for realising smart living spaces with real-time monitoring, real-time interaction,
and automation [6]. To achieve these functions, many studies have been performed on the use of the
Internet of Things (IoT), the Internet, and machine learning in safety management [2,8,9]. However,
at present, safety systems are independent and cannot realise integrated information analysis or the
automatic auxiliary processing of danger. Additionally, the overall connection between the safety
system and the building information is poor. Furthermore, the safety management staff cannot
quickly formulate a targeted treatment strategy in the case of danger, because they cannot quickly and
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intuitively understand the indoor layout around the location with danger. Thus, the integration and
interaction of buildings and safety systems is necessary.

With the development of information technology, data have become an important factor in production.
The use of data for guiding the development of various industries has become an inevitable trend.
In this context, the digital twin (DT) is attracting increasing attention. The DT involves the creation of a
virtual object in the digital world that corresponds to a physical object. The performance improvement and
capacity expansion of physical entities can be realised through data fusion analysis, interactive feedback,
and iterative optimisation between physical and virtual objects. The implementation requires the
integration of multidisciplinary technologies. The DT fully exploits the information in the virtual object to
provide efficient, real-time, and intelligent services for the physical world [10,11]. Considerable research
has been performed on using DTs to realise the entire lifecycle service of industrial products [12,13].

DT can be realised through various technologies, such as the IoT [14], data/control models [15],
and machine learning [16]. The role of the DT is to provide feedback for real-world physical systems
to improve the performance of the systems. A DTM supported by appropriate algorithms can make
relevant conditions correspond to the performance in the real physical world, and then propose
improvements to the systems in the real world. Such methods have been applied for the evaluation of
the structural health of buildings [17] and the prediction of equipment failure [18].

Safety is an important component of the performance of a building. The current safety management
systems only focus on the collection of building indoor information, and cannot be fully integrated
with building information to give danger-handling suggestions. Combining the IoT and BIM to form a
DTM and then matching it with algorithms to improve the safety performance of the building is a
direction that can be considered. However, there has been little research on the application of DTs to
the indoor safety management of buildings.

The main difficulties of applying DTs in indoor safety management are as follows: (1) There is no
mature method for combining the building information with dynamic safety information. (2) At present,
safety management systems are independent, and the method for the integrated analysis of building
safety information is not mature. The method proposed in this paper realises the real-time collection
and integrated management of indoor safety data by combining BIM with the IoT. Additionally,
the scene management of indoor safety data is realised by using the three-dimensional (3D) visual
function of BIM. To investigate the method of the comprehensive analysis of complex safety data, the
feasibility of using a support vector machine (SVM) to analyse safety data for realising the automatic
classification and evaluation of danger is verified.

Herein, an indoor safety management system (ISMS) based on the DT method is proposed.
In the system, the IoT is used to collect indoor safety data. An SVM is used to automatically classify
and evaluate the danger level of indoor safety data, and it was validated. Additionally, this paper
proposes displaying the collected safety data and types and levels of danger on an intelligent safety
management platform integrated with BIM. This scene display method allows safety management
staff to intuitively and quickly understand accidents.

2. Literature Review

2.1. Artificial Intelligence of Things (AIoT)

With the development of information technology, IoT technologies are playing increasingly
important roles in various industries [19]. IoT technologies, including sensors, robots, network facilities,
and intelligent devices, are innovated and developed to satisfy the needs of various industries [20].
There have been many such innovations with regard to safety in the construction operation stage.
In [21], indoor positioning technology was combined with BIM, and an environment-aware beacon
deployment algorithm based on positioning and BIM information was designed to improve the indoor
positioning accuracy and reduce the work required to deploy sensor networks, which improves the
robustness of sensor networks in buildings in emergencies. In [22], BIM was combined with wireless
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sensor networks to integrate personal positioning information, Bluetooth-based evacuation/rescue
route optimisation information, and mobile navigation equipment information, yielding an intelligent,
two-way fire disaster-prevention system framework. Additionally, the mining of large amounts of
data collected by the IoT using artificial intelligence (AI) to integrate AI and the IoT for obtaining the
Artificial Intelligence of Things (AIoT), which enhances the intelligence level of the residential space, is
an important research topic. In [8], an SVM was used to mine data for realising the automatic and rapid
judgement of the indoor danger level on the basis of the collection of indoor environmental information
by the IoT. In [23], an intelligent disaster-prevention hard hat was developed according to the concept
of the AIoT to improve the safety of personnel in high-risk rescue sites and home environments. In [24],
machine learning algorithms were used to automatically classify the indoor environment based on the
indoor environment data collected by the Internet of Things.

2.2. Dynamic BIM

BIM technology has been widely used in building design, construction, and operation management.
It can not only provide an intuitive 3D visual model of buildings but also realise the information
storage and management of the entire lifecycle of buildings. BIM is widely used in the design and
construction stage of the construction industry. Therefore, buildings are completed with the formation
of BIM models. These models can be directly applied to solve the problems in the operation stage. It is
no longer necessary to build a new database or 3D model for the operation stage [25]. Therefore, BIM is
ideal for scene-based building safety management. In general, BIM can provide an information hub for
building safety management, but it is a static hub which cannot realise the real-time automatic updating
of building safety management information. For realising the real-time updating of information,
the combination of BIM and the IoT is a feasible solution. Studies have increasingly combined
the two to solve problems in the architecture, engineering, and construction (AEC) industry [26].
For example, in [27,28], a dynamic 3D visualisation method was presented for dealing with fire danger by
combining an indoor positioning system with BIM, which improved the emergency-handling capacity
of buildings. In [29], a visual and persuasive energy-saving system was constructed by combining the
IoT with BIM to improve the comfort degree of the indoor space and the energy-saving performance.
In [30], the construction level of prefabricated components was improved by combining long-range
radio (LoRa) technology with a cloud-based BIM model. In [31], machine-learning algorithms
were used to comprehensively analyse the data from BIM and the data collected by the IoT for
monitoring and predicting the operating status of construction equipment; this method realised the
early warning of equipment operation faults and proposed equipment replacement and maintenance
schemes predictably.

2.3. DTs

The concept of DTs was first used by National Aeronautics and Space Administration (NASA)
and the United States Air Force (USAF) to predict the residual life and health maintenance of
spacecraft [32]. The use of DTs introduces a new approach for synchronising the real physical world
with the virtual digital world. The development of emerging information technology allows DTs
to be applied in various industries, including aviation [33], energy [34], mining [35], shipping [36],
and transportation [37]. To promote the application of DTs in related fields, according to the 3D model of
DTs proposed by Professor Grieves a five-dimensional model of DT was proposed. Ten major potential
application fields for the model were discussed. Besides this, construction and safety were also considered
as potential application areas for digital twins [38]. As a technique for realising a cyber–physical
system [38,39], the DT method integrates multiple new information technologies such as the Internet,
the IoT, artificial intelligence, and digital modelling to achieve interaction between the real physical
world and the virtual digital world, which helps systems in various industries to achieve high-level
intelligence and automation [40]. In [41], the applications of BIM were reviewed to pave the way for
construction DT, and the areas for future research in the AEC industry were elaborated. At present,
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digital twins have been applied in the field of smart cities [42], building construction, maintenance,
and strengthening operations [43,44]. Furthermore, there have been studies using the combination of
the BIM model and the IoT to construct a digital twin model of the building [17,18].

2.4. Research Gaps and Novelty

Although there are many information-technology applications in the field of indoor safety [45],
few studies have been performed on the application of DT technology in the field of indoor safety.
Moreover, because of the independence of the safety systems in the building, it is impossible to
conduct a comprehensive automatic analysis of various dangers. Additionally, the geolocation of the
danger remains at the level of text or two-dimensional drawings, because the safety system cannot be
combined with the 3D layout of the building; thus, the building environment in which the danger
is located cannot be directly displayed. To solve these problems, in the present study BIM, the IoT,
and the Internet were used to build a DT model for indoor safety. The model was employed to conduct
meaningful investigations as follows: (1) According to the indoor safety data collected by the IoT,
the comprehensive data management of different types of dangers was realised. (2) The feasibility
of automatic danger classification and level evaluation using SVM was proven. (3) According to the
comprehensive data analysis of safety, this study proposes a method for automatically generating
danger-handling suggestions to guide safety management staff in dealing with indoor dangers. (4) The
3D scene management of indoor safety is realised to help the safety managers quickly understand the
indoor layout around the location with danger. This innovative method, which integrates technologies
such as the IoT, the Internet, machine learning, and BIM, improves the management level of indoor
safety and is of great significance for future research.

3. Materials and Methods

3.1. Concept of ISMS Integrating with DT Model

Tosolvetheaforementionedproblems, theconceptof indoorsafetymanagementbasedonDTsisproposed.
Here, the exchange of data—including building layout information, indoor environment information,
indoor personnel information, and building operation information—between physical buildings and
virtual buildings through perception and simulation is realised.This information characterises the
safety situation of real physical buildings synchronously in the virtual digital world. In the virtual
digital world, algorithms are used to analyse and process data for realising functions such as the
visual data management of physical buildings, visualised building danger alarm and positioning,
danger classification and level assessment, and danger response suggestions, which help safety
management staff deal with danger in real physical buildings. In this concept, the improvement of the
real-world safety situation is realised with the help of the DTM in the virtual digital world. The concept
is illustrated in Figure 1.

3.2. Methodology and System Framework

According to the proposed concept, a systematic framework for the development of an ISMS
based on the DT method is proposed, as shown in Figure 2. In this framework, the BIM model is
developed by engineers during the construction process. The operation information of the building is
collected by the IoT, and the sensors in the IoT are included in the BIM model. The light-weighted BIM
model is carried on the webpage so that the 3D visualisation of the building model and sensor model
is realised on the webpage. Additionally, the operating data of the building collected by the sensor are
transmitted to the webpage to realise data visualisation. Then, data-processing methods such as machine
learning are used to analyse the data on the webpage. Finally, visual safety status monitoring, danger alarm
and positioning, danger classification and level assessment, and danger response suggestions are
realised on the web platform to assist the safety management staff in taking danger-handling measures.
The safety management staff access the network using computers, smartphones, tablets, and other
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devices to obtain information and decision-making suggestions, which are helpful for dealing with
dangerous events in the real world.
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3.3. Establishment of DTM for Indoor Safety

3.3.1. Information Needed to Characterise DTM

In the management system framework, a DTM corresponding to a real physical building must
be built in the virtual digital world through modelling by engineers, the IoT, Internet, etc. In order
to achieve the scene monitoring of the safety status and danger positioning with the scene, the 3D
geometric information of buildings must be depicted. The information on the building materials,
material manufacturers, and other aspects does not need to be depicted. Additionally, the DTM
must contain information generated during building operation, including the indoor temperature,
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oxygen concentration, carbon-monoxide concentration, smoke concentration, opening and closing
statuses of doors and windows, number of indoor personnel, and time.

3.3.2. Processing of BIM Model

To realise the flexible access of the system using different terminals, including personal computers,
tablets, and smartphones, a B/S structure was used for the proposed system. The BIM model must be
uploaded so that users can access it on the webpage via the Internet and browse the indoor layouts
of buildings. The BIM model of a building contains many types of professional information, such as
geometric information, structural information, equipment information, and material information.
The objective of this study was to use a BIM model for building layout information. It does not
need structural, electrical, or other such information; therefore, this information was excluded, and only the
building geometric information was retained in the BIM model. Additionally, the model was exported into
an IFC file. Then, the file was read in a JavaScript environment to realise a light-weighted BIM model
for improving the loading and running speeds of the BIM model on the webpage. The lightweight BIM
model was loaded on the webpage through WebGL technology, which realised the 3D visualisation of
the building layout and provided a 3D scene for the safety monitoring and danger positioning. The 3D
visual effect of the building layout on the webpage is shown in Figure 3.
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3.3.3. Construction of IoT Structure

For the collection of operating data, this paper proposes an IoT system which comprises a perception layer,
a transport layer, a service layer, and an application layer, as shown in Figure 4. This study uses Low-Power
Wide-Area Network (LPWAN) to build an IoT system. LPWAN is a form of IoT with a lower power
consumption and wider transmission range than the traditional IoT. In this study, LoRa technology was
used in the LPWAN, which is essentially a spread spectrum modulation technology. Spread spectrum
modulation technology has been widely used in the military and aviation fields, and LoRa technology
is a low-cost wireless communication solution for manufacturing and other civil fields. In China,
LoRa works in the 470/510-MHz ISM bands and can achieve long-distance coverage, with bit rates
ranging from 0.37 to 46.9 kbps [30].

The perception layer includes sensors that are used to measure the operating conditions. The
network layer is constructed using LoRa wireless communication technology in an LPWAN, which
is used for data transmission. The service layer uses Structured Query Language (SQL) to build a
database on the web and uses an SVM algorithm for data analysis and processing to realise safety
status monitoring and danger alarms, danger categorisation and classification, and other functions, as
well as assisting in the intelligent management of safety. With the help of these functions, the safety
management staff can take action to handle danger; thus, the intelligent management of indoor safety
in the application layer is realised.
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(1) Perception layer.
For the perception layer, indoor environment information acquisition terminals based on the

LoRa transmission protocol were developed. The terminal consists of various sensor modules, a
LoRa module, a microcontroller unit control module, and a power module. Its structure is shown in
Figure 5. According to the needs of indoor information collection, five types of sensing terminals were
developed for sensing the oxygen concentration, carbon-monoxide concentration, smoke concentration,
temperature, and opening and closing statuses of doors and windows. The sensor terminals can realise
the real-time measurement of the indoor operating information of the building and wirelessly transmit
this information to the LoRa gateway. The sensor parameters selected in this study are presented in
Table 1. The terminal that senses the opening and closing of the doors and windows employs changes
in potential. The structure of the sensing terminal is shown in Figure 5. Some of the developed sensor
terminals are shown in Figure 6. In addition to using and developing LoRa-based sensing terminals, the
perception layer employs cameras to obtain indoor images, along with image-recognition technology
to automatically determine the number of people in the images, as shown in Figure 7. Additionally, to
realise the visualisation and information storage of the corresponding position of the sensor terminal in
the BIM model, family library models of different sensor terminals were established to realise terminal
visualisation in the BIM model.
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Table 1. Sensor parameters.

Sensor Range Accuracy

Carbon-monoxide concentration sensor 0–2000 ppm 10 ppm
Oxygen-concentration sensor 0%–30% 0.1%

Temperature sensor 0–70 ◦C ±0.2 K (at 25 ◦C)
Smoke-concentration sensor 100–5000 ppm ±7%
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(2) Transport layer.
A wireless transmission network based on LoRa technology was constructed. The LoRa wireless

network had a star network structure. LoRa technology has the advantage of a high capacity, allowing it
to realise the connection of a large number of data-collection terminals with the LoRa gateway.
The sensing terminal transmits the indoor safety information obtained by the built-in sensor to the
LoRa gateway through the LoRa module. The LoRa gateway then uploads the information to the cloud
server through the 4G network, and the local server accesses the cloud server through the Internet
to obtain the indoor safety information. A schematic of the network deployment based on LoRa
technology is shown in Figure 8.
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(3) Application layer.
The application layer mainly includes the following functional modules: (1) safety status

monitoring with a scene, (2) danger classification and level assessment, (3) danger alarm and
positioning with a scene, and (4) danger handling suggestions. Each module is described below.

(1) Safety status monitoring with a scene.
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This module uploads the data collected by the sensing terminal to the webpage and associates it
with the sensor. The model is associated with the camera, whereby the actual situation at the corresponding
position in the building can be viewed. The perspective of the camera is fixed, while the layout of the
building can be viewed from different directions through the roaming function of the BIM model on
the web. When the safety management staff view different rooms from a 3D perspective, the rooms can
be monitored by the cameras installed inside. Thus, virtual reality, a fixed perspective, and a mobile
perspective are combined in a complementary manner. Additionally, when the model is associated
with the sensing terminals, not only can the position of the terminals be observed, but also the collected
data can be viewed. The data can be updated with the information collected by the sensing terminal to
monitor the environmental data of the building. The interface rendering is shown in Figure 9.
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(2) Danger classification and level assessment.
At present, the evaluation of the level and types of dangers mainly depends on the evaluation

of safety management staff; thus, it is highly dependent on people and inefficient. This paper
proposes a method where an SVM is used to analyse the collected building operating data for
realising automatic danger assessment. The assessment includes the classification of danger types
and the determination of danger levels. This study focused on three types of dangers—illegal invasion,
overcrowding, and fire—which were divided into three levels: safe, potentially dangerous, and dangerous.

(3) Danger alarm and positioning with a scene.
To achieve the warning function for the danger victims and manufacturers, this function module

is responsible for sending out alarm signals on the webpage and transmitting the signal to the alarm
device in the corresponding room to sound an alarm when the room is in danger. When the BIM
model of the terminal corresponding to the real position is established, a unique number is assigned
to the terminal. The 3D layout of the room and the corresponding video surveillance screen can be
automatically searched according to the terminal number in the room when the room is in danger to
identify and locate the danger.

(4) Danger-handling suggestions.
According to the different types and levels of danger, this module provides specific suggestions

for danger response, as shown in Table 2.

Table 2. Suggestions for handling different danger types and levels.

Levels

Suggestion Types
Illegal Invasion Overcrowding Fire

Safe No suggestion. No suggestion. No suggestion.

Potentially
dangerous

There is a risk of illegal invasion in a certain
room, please pay attention to observe the room
situation and eliminate potential danger in time.

The number of people in a room has
reached x (x is the number of people),

and there is a risk of overcrowding.
Please pay attention to the gathering

of people.

There is a fire risk in a room. Please
pay attention to the situation of the

room and eliminate the potential
danger in time.

Dangerous
A certain room has been invaded, and a certain

door and/or window
opened abnormally.Please deal with it in time.

The number of people in a certain room
has reached x, and the crowd is too
dense. Please guide and evacuate.

Fire has broken out in a room. Please
rescue immediately.
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The system sends the danger-handling suggestions (together with the 3D scene of the location of
the danger) to the safety management staff through the webpage to guide the staff in taking correct
measures for dealing with the danger.

3.4. SVM for Intelligent Classification and Level Assessment of Danger

The relationship between danger parameters is complex and cannot be easily characterised with a
reliable mathematical expression. For example, in the early stage of fire development, smoke is relatively
thick, but the temperature is not high and the danger is relatively small; however, with the development
of the fire, the smoke gradually decreases and the temperature increases. Moreover, many factors affect
the fire parameters; thus, it is difficult to establish a reliable mathematical relationship between the
types of danger, the level of danger, and the parameters.

Machine-learning methods can find complex correlations between independent variables and
dependent variables through large amounts of calculations based on a series of samples, leading to
reliable classification and regression. Therefore, the use of machine-learning methods to achieve the
classification and rating of dangers is one of the methods that can be considered. In this study, to realise
the automatic classification and level evaluation of dangers, an SVM was employed to mine the safety
data collected by the IoT, and a mature SVM model was trained. Using this model, the automatic
classification and level assessment of indoor dangers were realised. For each danger type, an SVM
model was used to determine whether it has occurred. The danger level was evaluated using a danger
coefficient predicted by an SVM model. A larger danger coefficient corresponded to a higher level
of danger.

The specific steps for the intelligent classification and level assessment of dangers are shown in
Figure 10.

(1) Data collection for influencing factors.
The data used in this study for the factors influencing the danger level were from the BIM

model and the operating data collected by the IoT. Information regarding the room area, room space
relationship, number, and locations of doors and windows was mainly collected from the BIM model.
The operating data, including information regarding the opening and closing statuses of doors and
windows, temperature, carbon-monoxide concentration, oxygen concentration, smoke concentration,
and number of personnel, were mainly collected by the IoT.

(2) Data processing.
The data were divided into numerical data and logical data. The logical data were quantised

into numerical data. Numerical data “0” and “1” were used to represent the logical data as “false”
and “true”, respectively. The time data were transformed into corresponding numerical data using
Equation (1).

Time = hour/24 + minute/1440 + second/3600/24. (1)

Owing to the different dimensions of the influencing parameters, the value ranges of the
transformed numerical data differed significantly. The dispersion standardisation method was used to
normalise all the transformed numerical data. The transformation equation was as follows:

x =
(x−min)

(max−min)
. (2)

(3) Selection of training and test sets.
Because the number of samples with danger was significantly smaller than the number of samples

without danger, the use of these data for training directly influenced the training effect of the SVM,
owing to data skew. Therefore, it was necessary to pre-process the sample. The under-sampling of
samples without danger was used to reduce the difference between the numbers of samples with and
without danger [46]. Then, the samples without danger from under-sampling and all the samples with



Sensors 2020, 20, 5771 11 of 20

danger were randomly scrambled [47]. A total of 80% of these samples were randomly selected for
model training, and the remaining 20% were used for model testing [48].
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(4) Model training.
The key to model training is to select the proper parameters and kernel functions. In this study,

the radial basis function (RBF) was selected as the kernel function because its accuracy and calculation
performance are better than those of other kernel functions [49,50]. K-fold cross-validation was used to
determine the kernel-function parameter and penalty coefficient.

(5) Test and effect evaluation.
Classification of danger types: The test set selected in step 3 was used to test the prediction effect

of SVM. Through a comparison between the prediction results and the actual danger of classification,
the prediction accuracy was calculated (using Equations (3)–(5)). A higher accuracy corresponded to
the better prediction effect of the model.

In the prediction of the danger classification, the calculation of the classification accuracy,
precision, and recall rate with the help of a confusion matrix is a common method for evaluating the
classification effect. Higher values of these indicators correspond to a better classification effect [51].
The confusion matrix is shown in Figure 11, and the accuracy, precision, and recall are calculated using
Equations (3)–(5).

Accuracy =
TP + TN

TP + FN + FP + TN
, (3)



Sensors 2020, 20, 5771 12 of 20

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
. (5)
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Prediction of danger level: In this study, according to the danger level of the experiment, the danger
coefficient α was evaluated artificially and recorded. A larger danger factor corresponds to a higher
danger level. When there is no danger, α ≤ 1; when there is potential danger, 1 < α ≤ 2; when there
is danger, α > 2. The predicted coefficient is classified into the corresponding grade and compared
with the actual coefficient. Consistency between the two indicates that the prediction is correct.
The prediction accuracy was used to evaluate the prediction effect of the SVM model. A higher accuracy
rate corresponded to a better prediction effect. Additionally, in regression prediction, the squared
correlation coefficient R2 is an important indicator for evaluating the prediction effect. An R2 value
closer to 1 corresponds to a better prediction effect. R2 is calculated using Equation (6).

R2 =

∑
i
(yi − fi)

2

∑
i
(yi − y)2 , (6)

where yi represents the true value, fi represents the predicted value, and y represents the average of all
the true values.

When the accuracy of the classification and level division is low, step 4 and step 5 should
be repeated. The parameters are adjusted until the accuracy is increased.

4. Case Study

4.1. Case Background and Scenario Simulation

A case study of a building in the bobsleigh and sled stadium for the 2022 Winter Olympic Games
in Beijing is examined. The building is built on a hillside, with a total of three floors above the ground.
The internal layout of the building is complex because of the complex function of the building;
it serves as the starting site for the competition. There is expected to be a large flow of people and
important competition supplies, such as bobsleigh sleds, which have very high safety requirements.
During the design and construction stages of the stadium, a BIM model that are very consistent with
the actual building was established, which contained information regarding the geometry, materials,
and equipment of the building, as shown in Figure 12.
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4.2. Implementation Process and Effect of Experiment

4.2.1. Processing of BIM Model

In this study, the information in the BIM model that was not related to the building layout was
removed from the model. The new BIM primitives for all types of terminals installed in the rooms
were added to the BIM, at positions identical to their positions in the real world. Then, the model with
terminal primitives was transformed into a lightweight model, which was implemented online using
webGL technology.

4.2.2. Terminal Layout

A terminal layout method based on LoRa technology is proposed herein. Taking the second
floor of the building as an example, a smoke-concentration terminal was installed at the centre of the
ceiling of each room. In principle, a temperature terminal, an oxygen-concentration terminal, and a
carbon-monoxide concentration terminal are installed in the central position of the wall in each room.
If the room is large, two temperature terminals, oxygen-concentration terminals, and carbon-monoxide
concentration terminals are installed in the room. Gate magnetic terminals for sensing the opening
and closing of doors and windows are installed on each door and window of each room. The layout of
some of the indoor terminals on the second floor is shown in Figure 13.
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invasion, overcrowding, and fire. The simulation method was as follows. 

(1) Illegal intrusion: The illegal-intrusion behaviour was simulated by entering the simulation 

room through a door or window from 20:00 p.m. to 7:00 the next day. When the people opened the 
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4.2.3. Danger Simulation and Data Acquisition

A stairwell was used as an example to simulate three types of danger: illegal intrusion, overcrowding,
and fire. The room area was approximately 26 m2, and the room contained a door and a window.
The eight parameters of the independent variables in the SVM used for category judgement were the time,
opening and closing of the door and window, number of people, carbon-monoxide concentration,
oxygen concentration, and smoke concentration. An SVM model was used for predictive training for
each danger type. Each SVM model judged whether a danger occurred, so that each type of danger
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was considered separately when the danger occurred. After the danger-type judgement was complete,
these judgements were used as new independent variables to train a new SVM for evaluating the
danger level of indoor safety together with the previous parameters, as shown in Figure 14.
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judgement were the time, opening and closing of the door and window, number of people, carbon-

monoxide concentration, oxygen concentration, and smoke concentration. An SVM model was used 

for predictive training for each danger type. Each SVM model judged whether a danger occurred, so 

that each type of danger was considered separately when the danger occurred. After the danger-type 

judgement was complete, these judgements were used as new independent variables to train a new 

SVM for evaluating the danger level of indoor safety together with the previous parameters, as shown 

in Figure 14. 
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A room in the building was taken as an example to simulate the three danger types: illegal invasion,
overcrowding, and fire. The simulation method was as follows.

(1) Illegal intrusion: The illegal-intrusion behaviour was simulated by entering the simulation
room through a door or window from 20:00 p.m. to 7:00 the next day. When the people opened the
door or window, the operating data collected by the IoT was marked as “illegal intrusion.” At this time,
the danger coefficient of the situation was evaluated by safety management staff.

(2) Overcrowding: Many people entered the room together to simulate the overcrowding
situation. Video data were collected during the simulation. The number of people in the video was
automatically determined via image recognition. The experimenter judged whether there was a danger
of overcrowding according to the area of the room and the number of people and recorded the judgement.
At this time, the danger coefficient of the situation was scored by the safety management staff.

(3) Fire: A fire was set in the room during the experiment. The operating data were collected
during the simulation and were marked as “fire.” At this time, the danger coefficient of the situation
was scored by the safety management staff.

(4) Normal: The operating data collected at other times (without a danger simulation) were
marked as “normal.” The danger coefficient of the situation was scored at this time.

The simulation experiment lasted 15 d. Different combustion materials were used to simulate fire
10 times, illegal invasion 13 times, and overcrowding 9 times. The data from the sensors were set to
update data every 20 s. A total of 64,800 groups of operating data were collected, including 566 datasets
with fire danger, 567 datasets with illegal invasion danger, and 241 datasets with overcrowding danger;
the rest were normal data.

4.2.4. Division Effect of Danger Types and Levels

Because the number of samples with danger was far smaller than the number of samples without
danger, the training effect of the SVM was affected by data skew. Therefore, the sample information
was pre-processed. The training effect was improved by under-sampling the samples without danger.
All the samples with danger were combined with 1300 randomly selected samples without danger.
A total of 2674 sets of samples were collected. The sample numbers for the different danger types are
presented in Table 3. The data collected and quantified are presented in Table 4.
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Table 3. Number of samples for different danger types.

Items

Number Category
Fire Illegal

Invasion
Overcrowding Normal Total

Samples collected 566 567 241 63,426 64,800
Samples used for SVM training and

testing 566 567 241 1300 2674

Table 4. Types of influencing factors and quantitative results.

Characteristic
Variable Data Type Maximum Minimum Average Mean-Squared

Error

Numerical time Numerical 0.99 0 0.24 0.40
Temperature

(◦C) Numerical 215 25 46.76 45.67

Number of
personnel Numerical 23 0 3.33 4.57

Oxygen
concentration

(%)
Numerical 23 20 21.52 1.11

Carbon-monoxide
concentration

(ppm)
Numerical 325 0 53.51 89.0

Smoke
concentration

(ppm)
Numerical 4957 0 462 1078

Opening and
closing of doors Logical 0-Closing, 1-Opening

Opening and
closing of
windows

Logical 0-Closing, 1-Opening

The dangers considered in this study were illegal invasion, overcrowding, and fire. An SVM model
was trained for each type of danger. Then, using the method described in Section 3.2, the samples
were scrambled; 80% were randomly selected for model training, and the remaining 20% were used
for model testing. The test confusion matrices for different danger types are shown in Figure 15.
The indices used for evaluating the classification effect are presented in Table 5. The results indicate
that the SVM had a reliable effect on the classification of the danger types.Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 
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Table 5. Evaluation indices for danger classification using the SVM.

Index
Category

Fire Illegal Invasion Overcrowding

Accuracy 100% 97.57% 99.25%
Precision 100% 98.15% 97.07%

Recall 100% 99.25% 99.38%

In this study, according to the danger level of the experiment, the danger coefficient α was
evaluated by the safety management staff. A larger danger coefficient indicated a higher danger level.
The coefficient was set as follows: no danger, α ≤ 1; potential danger, 1 < α ≤ 2; danger, α > 2.
The aforementioned 2674 groups of safety data were used as independent variables, and the recorded
danger coefficient was used as the dependent variable. Additionally, whether different types of
similar dangers occurred according to the SVMs above was an independent variable. The number “1”
indicated that the corresponding danger had occurred, and “0” indicated that the corresponding
danger did not occur, as shown in Table 6. Thus, the number of independent variables was increased
from 8 to 11.

Table 6. Numerical types and quantitative results indicating whether danger occurred.

Characteristic Variable Data Type Numerical Value and Its Meaning

Whether illegal invasion occurs Logical 0-No, 1-Yes
Whether fire occurs Logical 0-No, 1-Yes

Whether overcrowding occurs Logical 0-No, 1-Yes

The SVM was trained for danger coefficient prediction. A total of 80% and 20% of the samples
were used for model training and testing, respectively. The predicted results for the safety coefficient in
the test are presented in Figure 16. Here, the horizontal axis indicates the actual value, and the vertical
axis indicates the predicted value. The points on the red diagonal line correspond to the predicted
and actual values. The point in the shaded part corresponds to the correct prediction result of the
danger level. For 535 groups of predicted data, the accuracy rate was 96.2%, and the R2 reached >0.89,
indicating that the prediction effect of the model was good.Sensors 2020, 20, x FOR PEER REVIEW 17 of 20 
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4.2.5. Effects of Danger Alarm and Position with Scene and Handling Suggestions

The trained SVM model was used to evaluate the real-time building operation status. The danger
type and danger level of each room were automatically determined. Then, the assessment information
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was combined with the BIM model to display the location of the danger in three dimensions.
This allowed the safety management staff to intuitively understand the scene of the dangerous location.
The danger can be handled quickly and accurately because safety management staff understand the
surroundings of the danger owing to the 3D indoor layout. Additionally, an alarm device in the
room issued an alarm, together with an alarm on the website. The alarm device was connected to
the system via LoRa technology to realise simultaneous alarms in the virtual digital world and the
physical real world, as shown in Figure 17.
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5. Discussion and Conclusions

A framework for an ISMS based on the DT method is proposed. The framework uses BIM, the IoT,
and the Internet to construct a DTM for building indoor safety. BIM provides building information
related to safety, information hubs, and 3D geometric models. The IoT sensors collect real-time indoor
operation information and monitor the operation of indoor safety status, realising state mapping from
the real physical world to the virtual digital world. An SVM performs an automatic classification and
level assessment of indoor danger through the mining of safety data. The Internet provides a platform
for data storage and user interaction. The method was applied to a room in a building of the bobsleigh
and sled stadium for the 2022 Beijing Winter Olympic Games. The SVM was beneficial for the danger
classification and level assessment, and the overall system achieved good experimental results.

The main contributions of this study are as follows.
(1) A set of methods for applying the concept of DT in the field of indoor safety was proposed.

The feasibility of DTs for solving the problem of building safety was confirmed.
(2) The integration of building operating data and 3D indoor scenes was realised. The intuitiveness

of the indoor safety management was improved.
(3) The feasibility of using AIoT to define the types and levels of indoor danger, which can improve

the automation level and speed of the response to indoor danger, was proven.
(4) According to the classification and level of indoor danger, automatic auxiliary processing

suggestions were realised. The scene data management mode was added, which relaxes the requirements
regarding the quality of the safety management staff.

The proposed framework provides a good indoor safety management method which can improve
the intelligence level of indoor safety management. In the future, the function of this framework
will be expanded to make the suggestions for danger assistant treatment more targeted. Additionally,
besides the dangers in this research, other dangers indoor environment can be taken into account
based on this framework, such as the leakage of some harmful gases in the environment. Moreover,
DTs will be applied to other aspects of building operation management to improve the intelligence level.
For example, with reference to the framework in this article, DTMs of building structure and equipment
can be established so as to improve the management of structural safety and equipment safety. This is
also a direction that can be considered in the future.
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