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Abstract: Prediction of the groundwater nitrate concentration is of utmost importance for pollution
control and water resource management. This research aims to model the spatial groundwater nitrate
concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of
support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network
(Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting
groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall,
piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K),
and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also
measured in 67 wells and used as a dependent variable for modeling. Data were divided into two
categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of
determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe
efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling
the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24,
NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74,
RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results
of groundwater nitrate concentration zoning in the study area showed that the northern parts of the
case study have the highest amount of nitrate, which is higher in these agricultural areas than in other
areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use
of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the
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indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and
penetrates groundwater and pollutes the aquifer.

Keywords: artificial intelligence; groundwater; nitrate concentration; hydrology; groundwater
contamination; environmental pollution; artificial neural network; deep learning; data science;
machine learning; big data; agricultural contamination; agricultural pollution; prediction;
hydrological model

1. Introduction

Groundwater is among the essential freshwater resources for urban consumption, industries,
and agriculture in the arid and semi-arid regions [1–3]. Increasing population, climate change,
and over-abstraction of groundwater for irrigation could have considerable impacts on groundwater.
The reasonable management of groundwater quantity and quality is a crucial issue that needs to
be reviewed. Hence, to determine the sustainable management of groundwater, the evaluation of
connected pressure at the different scales are vigorously essential [4,5]. Nitrate (NO3-) is the high
pollutant in groundwater [6,7]; furthermore, NO3-concentration growth continues, with amplification
of agricultural operations owing to the overuse of nitrogen fertilizers [8–10], manure management,
and crop cultivation practices that move into the farming field [11,12]. Accordingly, the consumption
of water polluted through nitrate can be connected to health problems, for example, cancers in adults
via drinking water and skin contact [13,14]. For this purpose, groundwater-pollution predicting
could assist managers of water resources and environmental protection in their probes to hamper
groundwater pollution and to enhance its quality [15–17].

Several different machine-learning methods such as random forest (RF), support vector machine
(SVM), artificial neural network (ANN) have been investigated to evaluate groundwater nitrate
concentration susceptibility predictions [18,19]. The results of most of these studies showed that
the best model to justify nitrate changes varied in each region. For instance, the BRT model in
Nolan et al. [20], SVM in Sajedi-Hosseini et al. [21], ensured the maximum likelihood-based linear
model in [22] performed better. In general, tree-based models showed high efficiency in various studies
in other parts of the world, and most studies in this field have been done using these models. The RF
model is strong to outliers and uncomplicated to exert in comparison to other data mining methods;
it has the peculiarity to characterize the significance of each explanatory variable in the prediction
outcome. Further, the RF model can access satisfaction results in comparison to the multivariate
statistics or other machine learning methods such as SVM and ANN (due to local minima and overfitting
problems) [22–26]. However, it does not compute regression coefficients or confidence intervals and
acts as a black box because the individual trees could not be inquired one by one [27]. Based on the
above issues, in the current research, other machine learning approaches such as Cubist regression
(CB), Bayesian artificial neural network (Bayesian ANN) to overcome the above techniques were used.
CB is a set of rules related to sets of multivariate methods [28] which do not recapture one final model
like RF. The fact is that a particular set of predictor variables will select an actual prediction model
depending on the rule that best fits the predictors [29]. Although Noi et al. [30] stated that Cubist
regression and random forest algorithms have a good performance in estimating daily air surface
temperature from dynamic combinations of MODIS LST data, Bayesian ANN notes to developing
standard networks with posterior inference to regard a probability distribution of weights instead of a
single set of weights [31]. Sahoo et al. [32] put forward Bayesian methods for water quality assessment
and presented that the quality of water was improved during dry seasons more than during wet
seasons owing to the dilution of pollutants [33–36].

According to the mentioned contents and studies, it can be said that optimal modeling and
mapping of nitrate concentration in groundwater is important and vital to make efficient decisions in
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groundwater management. The sensitivity of groundwater studies in arid and semi-arid regions is more
important and necessary due to the lack of access to sufficient surface water resources, and therefore,
maximum using pressure is on groundwater resources. In previous studies, researchers used different
machine learning structures such as decision trees and regression to model water pollution. In this
study, in addition to the well-known machine learning structures, including decision tree and regression,
we used the Bayesian framework for the first time to model and prediction of nitrate concentration
in groundwater. Therefore, in nitrate studies of such areas, the use of different and new models and
comparing the efficiency of these models to model and accurately map nitrate pollution is much more
important than other areas. In the present study, for the first time, four modeling techniques, including
Cubist, random forest (RF), support vector machine (SVM), and Bayesian artificial neural network
(Bayesian ANN) were used to efficiency comparison of nitrate modeling in the Marvdasht watershed,
Fars province, Iran. For this purpose, the data of nitrate concentration obtained from the Department
of Water Resources Management (IDWRM) at 67 wells, as well as data of 11 important variables in the
spatial distribution of nitrogen, including altitude, slope, plan curvature, profile curvature, rainfall,
Piezometric depth, distance from residential, distance from river, K, Na and topographic wetness index
(TWI) were used in June 2018.

2. Materials and Methods

2.1. Description of the Study Area

The Marvdasht watershed is one of the watersheds of Tashk-Bakhtegan and Maharloo lakes in
Fars province. The basin is formed between 29◦18′ to 30◦22′ east longitude and 52◦18′ to 53◦40′ north
latitude. The study area of the Marvdasht watershed is 3941 square kilometers at its widest and is the
most complex watershed study area of Tashk-Bakhtegan and Maharloo lakes. The average long-term
annual rainfall in the region is about 427 mm. Geologically the Marvdasht area of Kharameh has
wide alluvial plains with mild slope and low slope, with deep to semi-deep soil with high fertility,
and sediment thickness in this area sometimes reaches 200 m. The quality of water in these alluviums
is suitable for the cultivation of all kinds of crops, and for this reason, a large area of land has been
cultivated in rained and irrigated crops. The agricultural lands in the study area are devoted to the
cultivation of cereals, rice, forage crops, sugar beet, vegetables, pesticides, citrus fruits, legumes, cotton,
and oilseeds, of these, the largest area under cultivation is cereals (wheat and barley).

Groundwater-nitrate concentrations were provided by the Iranian Department of Water Resources
Management (IDWRM) at 67 wells during June 2018 (Figure 1). The highest nitrate value (56.74 mg/L)
was in the northern parts of the watershed in agricultural soils with weak slopes. In the southern part
of the basin, the concentration of nitrate was less than 6 mg/L, with the lowest level being 2.23 mg/L
(Table 1). Various influential geo-environmental variables on nitrate concentration were assembled
for the case study: elevation (m), slope (%), plan curvature, profile curvature, annual rainfall (mm),
piezometric depth (m), distance from residential (m), distance from the river (m), (Sodium) Na (mg/L),
(Potassium) K (mg/L), and TWI.

Table 1. Descriptive statistics of nitrate concentration.

Number of Wells Mean Minimum Maximum Standard Deviation

67 20.029 2.23 56.74 15.50

2.2. Methodology

The overview of the nitrate concentration modeling relevant to VIF, Cubist, SVM, RF, and BNN
has been summarized in a flowchart presented in Figure 2.
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2.3. Dataset Preparation

In this study, 11 possible influential factors connected to the innate and specific groundwater
vulnerability to NO3 were applied including elevation, slope, plan curvature, profile curvature, distance
from river, distance from residential, piezometric depth, rainfall, Na, K, and topographic wetness index
(TWI) (Figure 3).
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Figure 3. Groundwater vulnerability to NO3 factors: (a), elevation; (b), slope; (c), plan curvature;
(d), profile curvature; (e), rainfall; (f), piezometric depth; (g), distance from the river; (h), distance from
residential; (i), Sodium (Na); (j), Potassium (K); (k), TWI.

The DEM map was obtained with a pixel size of 12.5 m from the ALOSPALSAR sensor, the slope
map, plan curvature, profile curvature in the GIS software environment were prepared based on DEM.
Slope is one of the effective factors in determining the penetration of pollution into the saturation
zone. Plan curvature examines the maximum slope in a vertical side. It has illustrated the convergence
and divergence of water flow in the ground surface that positive and negative values represent the
divergence and convergence of water flow in the study area, respectively. Profile curvature is an equal
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condition to the maximum slope in a specific direction and calculated as the slope perpendicular to the
slope gradient and has negative and positive values. As opposed to, negative and positive values in
profile curvature display convexity (increasing flow velocity) and concavity (reducing flow velocity),
respectively [37].

Groundwater movement is due to the current spatial distribution of piezometric levels that have
varied severely over a period of years [38]. This variation was related to the overexploitation of
groundwater resources for drinking, industrial, and agricultural uses [39]. Increases in piezometric levels
cause relevant impacts of anthropogenic factors related to groundwater and ground deformations [40].
The piezometric level demonstrates whether the NO3-can promptly arrive at the groundwater-surface.
The shallower water depth could high the probability of NO3-contamination [41].

Rainfall is a climate factor and can be assumed as the aquifer inputs that impact on groundwater
contamination through water budget [42]. The rainfall flows to groundwater recharge, which engenders
the leaching of soil NO3- [43]. The rainfall map of the constituency was prepared from the statistics
of seven synoptic stations around the constituency with a statistical period of 27 years and based on
the inverse distance weighted interpolation (IDW) interpolation method. Sodium and Potassium are
different dissolved inorganic constituents that are naturally available in the water. There are permissible
limits in most of the groundwater. The increasing sodium and potassium in the groundwater are
presumably relevant to the influence of leaching of soaps and sites close to agriculture areas that utilize
fertilizer and agricultural activities [44]. The Sodium and Potassium map was prepared based on the
obtained amount of these elements in 62 studied wells using IDW interpolation method. The river is
one of the factors of water exchange between the river and groundwater aquifers, and most water
exchanges take place in the areas adjacent to the river. Distance from residential is a factor that draws
potential nitrate pollution from the transfer of waste and wastewater. The map of the distance from
the river and the distance from residential based on the Euclidean extension was obtained in GIS
software. SAGA-GIS software was applied to map TWI. The TWI was estimated with the help of the
following method:

TWI = In
( as

tanB

)
(1)

where, as refers to the catchment area, and tanB represent slope angle [45].

2.4. VIF

The tolerance and variance inflation factors (VIF) are two indices that are applied generally for
examining the multicollinearity of variables. Multicollinearity is a statistical evaluation tool indicating
that one can be linearly predicted concerning the others with a non-trivial degree of accuracy [46].
It can be exerted to remove extremely correlated agents from the modeling process and to elude any
terminated bias in models’ results. These indices are determined, as shown in Equations (2) and (3):

Tolerance = 1−R2 J (2)

VIF =
1

Tolerance
(3)

where R2J demonstrates the determination of the regression coefficient in influential factors j on whole
the other influential factors. A tolerance of >0.10 and variance inflation factors (VIF) > 5 illustrate a
multicollinearity problem [47,48].

2.5. Machine Learning Methods

2.5.1. Cubist

Cubist regression is a rule-based method that was created relevant to the incorporation of the
Quinlan opinion. CB is presently a more commonly applied regression and classification method
because it was carried in R by Kuhn et al. [49] in 2013. Conceptually, the Cubist regression method is
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the tree that expands, and the endpoint leaf entails a linear regression model for modeling. The Cubist
model produces a set of “if-after-after” rules in which each rule has a connected multivariate linear
model. The mentioned method is applied to compute the forecasted amount while the set of covariates
persuades the rule conditions. CB a set of rules related to sets of multivariate methods that do not
recapture one ultimate method, such as RF. The facts that a particular set of predictor factors will select
a real prediction method depend on the rule that properly matches the predictors [27]. The Cubist
type adds boosting with training consultants (commonly higher than one), which is related to the
“boosting” algorithm by consecutively advancing groups of trees with modified weights [50].

2.5.2. Support Vector Machine (SVM)

Support vector machine is a classification of discrimination monitoring or statistical theory-based
model which was introduced by Vapnik [51] in the mid-1990s. SVM was developed to dissolve
complicated classification and regression issues. SVM is a method for estimating a function that
is estimated to a real number based on training data from an input object. In regression problems,
input vectors are mapped to a multidimensional space; a hyperplane is then created that separates the
input vectors as far apart as possible. A kernel function is used to solve the problem of performing
operations in large dimensions. In fact, using the kernel function, the problem of multidimensional
and nonlinear calculating is solved [52,53].

2.5.3. Random Forest (RF)

Random forest (RF) is a popular supervised machine learning method for modeling various
phenomena [18,54,55] and is effective for data prediction and explanation purposes. RF can calculate
an unbiased error evaluated by bootstrapping [56]. The dataset exerted for RF is separated into two
parts that the first part is related to training and contains 70 percent of the dataset randomly selected
with a replacement, and a validation subdataset containing the remaining 30 percent. RF demonstrates
averaging multiple decision trees, trained on various portions of the same training data set, to reduce
the prediction variance [57]. The trees in RF expand to the largest range feasible without pruning,
and they are combined by averaging trees. For calculating variable importance and assessing an
unbiased calculate of the test set error was applied out-of-bag (OOB) samples. There is no need for
cross-validation of OOB samples [18].

2.5.4. Bayesian Artificial Neural Network (Bayesian ANN)

A Bayesian neural network is a neural network with a former distribution on its weights [29].
In other words, it notes developing standard networks with posterior inference to consider a probability
distribution of weights instead of a single set of weights. In the Bayesian framework, uncertainty
relevant to the relationship between inputs and outputs is originally attended through an assumed
former distribution of parameters (weights and biases). This former distribution is renovated to
posterior distribution using a likelihood function subsequent Bayes’ theorem while data are observed.
This posterior distribution is entitled to the objective function of a network in the Bayesian learning
approach [58].

2.6. Validation and Accuracy Assessment

The four models, namely the best-fit goodness or coefficient of determination (R2), minimal absolute
error (RMSE and MAE), and model efficiency (NSE) measurements, were accurately evaluated to
specify the most impressive approach. The coefficient of determination (R2) indicates the coefficient of
variance explanation or dependent variable variation by a set of independent variables. The value of this
coefficient fluctuates between zero and one. The closer the value of this coefficient is to one, it indicates
that the independent variables have been able to predict a large amount of variance or the behavior of
the dependent variable, and the closer this value is to zero, the less explanation this variable [59,60].
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Nash–Sutcliffe efficiency (NSE): The Nash–Sutcliffe efficiency (NSE) is a normalized statistic that
characterizes the relative extent of the residual variance (“noise”) contrasted to the calculated data
variance (“information”) [61]. NSE demonstrates how well the plot of observed versus simulated data
fits the 1:1 line. NSE ranges between −∞ and 1.0 that NSE = 1 is the optimal value.

RMSE is one of the extensively applied error-index statistics [62]. It is commonly admitted that
when the lower the RMSE, the model efficiency is improved. It qualifies what is regarded as a low
RMSE based on the observation’s standard deviation [63]. Furthermore, mean absolute error (MAE)
is another error-index that is frequently used in model evaluation. The value of 0 demonstrates a
complete fit. RMSE and MAE values of less than half the standard deviation of the calculated data can
be regarded low and that either is suitable for model assessment.

MAE =

∑n
i=1

(
No −Np

)
n

. (4)

RMSE =

√
1
n
(No −Np)

2. (5)

R2 =

∑n
i=1 (No −No) ∗ (Np −Np)

(
∑n

i=1 (No −No)
2
)

0.5
∗ (

∑n
i=1 (No −Np)

2)
0.5

(6)

NSE = 1−

∑n
i=1 (No −Np)

2∑n
i=1 (No −No)

2 . (7)

where No is the observed value of dependent variables, Np is the estimated value of dependent variables,
and No is the observed mean value of dependent variables.

3. Results

3.1. Exploratory Data Analysis and Data Statistic Analysis

A total of eleven potential exploratory variables for groundwater nitrate concentrations were
examined in this study (Figure 4). The first variable, the altitude of this Marvdasht watershed,
varies from 1541 to 3098 m above mean sea level, but most of the altitude in this area is between
1550 and 1700 m. Approximately 12.5 percent of this study area is located at an altitude of 1600 m.
Topographical elevation has a significant impact on nitrate concentrations in groundwater. The lowest
elevation with flat topography has a relatively high concentration of nitrate compared to a high
elevation with a steep topography [64]. The slope ranges from 1 to 20 percent in this watershed,
where 5 percent of the slope has a larger pixel area. Generally, flat slopes and flat land are mostly
associated with nitrate in groundwater, but steep slopes at high altitudes have a major impact on
nitrogen loss due to the large surface runoff, resulting in minute nitrate leaching into groundwater [65].
Low land and low slopes are closely linked to agricultural land, which is why this type of topography
causes nitrate concentrations in groundwater.

Residential areas are a significant source of nitrate concentrations in groundwater, such as
inorganic and organic fertilizers, concentrated animal feed operations (CAFOs), sewage, sewer leakage,
and septic systems [66]. In this study, the main sources of groundwater nitrate from the residential
area are below 2000 m of the buffer. Nitrate leakage from the flood plain is the main source of mineral
contamination in the natural aquifer, where the process is accelerated by agricultural drainage [67,68].

The distance to the river varies from 0 to 8958. 4 m, but the main part is located between 0 to
6000m. The Marvdasht watershed, potassium (K), and nitrate both contaminate the groundwater
and there is a positive relationship between the two minerals because they are used as fertilizers [69].
This area, below 0.3 K concentrations, has the highest concentration area. Sodium (Na) is also related
to mineral contamination in groundwater and is closely associated with nitrates from irrigation and
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precipitation leaching through soils [70]. Sodium in groundwater below 0.5–1.0 mg/L is generally
available here.

Aquifer nitrate concentrations are mostly observed at shallow Piezometric depth or water table
depth, and the average Piezometric depth in this study area varies from 0 to 125 m [71]. The plan
curvature and the profile curvature mainly from −0.5 to 0.5 in this watershed, but a high percentage
of the areas do not have a curvature or a flat area. Rainfall is a climate factor of groundwater
nitrate concentration; high average rainfall dilutes nitrate in soil and further increases the process of
leaching [11].

The average annual rainfall ranges from about 300 to 500 mm, and the high percentage of the
study area is over 500 mm. The hydrological status of the topography is measured by the TWI,
which determined the pattern of mineral contamination in groundwater. Most of the area of this
watershed belongs to low to medium humidity in the topography. The response is the nitrate
concentration that is spatially predicted by the eleven predictors, and the nitrate (NO3) data observed
ranges from 1 to 58 mg/L but most of the NO3 data ranges from 1 to 20 mg/L.

The results of the statistical characteristics of the independent variables and the dependent variable
in the two stages of training and testing are shown in Table 2.
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Table 2. The results of the statistical characteristics in the two stages of training and testing.

Variables
Train Data Test Data

Mean SD Min Max Mean SD Min Max

Altitude (m) 1616.13 33.28 1568.00 1694.00 1615.15 26.36 1567.00 1663.00
K (mg/lit) 0.03 0.04 0.01 0.11 0.02 0.03 0.01 0.10

Na (mg/lit) 0.44 0.29 0.10 1.30 0.39 0.25 0.10 1.10
Plan curvature −0.03 0.30 −1.13 0.64 −0.02 0.35 −0.85 0.82

Profile curvature 0.05 0.31 −0.58 1.09 −0.06 0.31 −0.73 0.56
Pizometric depth (m) 55.04 33.95 12.58 171.04 57.72 29.31 6.84 110.34

Rainfall (mm) 381.97 81.26 254.10 503.02 383.03 73.45 267.03 498.84
Distance from residential (m) 1025.03 710.90 30.00 3777.74 956.73 675.58 42.43 3606.24

Distance from river (m) 1568.35 1399.89 0.00 5193.12 1559.50 1555.95 84.85 5730.08
Slope (%) 6.36 4.27 1.32 21.29 6.91 4.92 1.32 18.49

TWI 6.90 2.40 3.84 15.64 6.95 1.30 4.75 9.69
NO3 (mg/lit) 20.99 16.62 2.23 56.74 18.23 12.23 4.82 49.83
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3.2. Correlation Analysis

The Spearman correlation matrix shown in Figure 5 shows the monotonic relationship between
aquifer nitrate concentration potential variables. The correlation matrix shows that the four have a
strong relationship, i.e., altitude is strongly correlated with precipitation, K is positively correlated
with Na, and precipitation is positively correlated with K. On the other hand, the curvature of the
plane is negatively correlated with the curvature of the profile. TWI is moderately correlated with
altitude and precipitation. Piezometric depth is moderately negatively related to K but positively
related to precipitation. The other contamination of the aquifer, Na, is moderately positively correlated
with the distance from the river. The rest of the interrelationships have a low to a medium positive
relationship, and some have a negative relationship.
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Figure 5. Correlation analyses parameters based on Spearman.

3.3. Multi-Collinearity Analysis

Sometimes more than two variables are involved in a linear relationship, and the data
have a problem that can be reliably linked to the difficulty of estimating the model parameter,
called multicollinearity [72]. Tolerance (TOL) and inflation factor variance (VIF) are two key indicators
for the evaluation of multicollinearity between variables. If the TOL value is more than 0.2 and the VIF
value is greater than 10, there is no multicollinearity, but if the independent variable does not comply
with the above-mentioned rules, there is a multicollinearity between them [73]. The TOL and VIF
values in this study are calculated and shown in Table 3, showing that there is no multicollinearity
between any of the variables considered in this groundwater nitrate susceptibility assessment.

Table 3. Analyses of variables multi-collinearity.

Row Variables VIF Tolerance

1 Altitude 3.72 0.27
2 Slope 1.12 0.89
3 Plan curvature 1.95 0.51
4 Profile curvature 2.01 0.49
5 Rainfall 4.44 0.22
6 Piezometric depth 1.39 0.72
7 Distance from residential 1.18 0.84
8 Distance from river 1.22 0.82
9 K 2.58 0.39
10 Na 2.24 0.45
11 TWI 1.25 0.67
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3.4. Validation of the Models

This section describes the model performance associated with the model results in both the training
and validation phases of the model. The expected result of the groundwater nitrate concentration was
evaluated based on well nitrate data. In the training phase, 70 percent of the data was used to train the
predictive model and 30 percent of the data was used to test the predictive model. The coefficient of
determination (R2), root mean square error (RMSE) and mean absolute error (MAE) and Nash–Sutcliffe
efficiency (NSE) measurements for four models in the training and testing phase have been summarized
in Table 4. All the evolution results indicate that the Cubist, RF, SVM, and Bayesian ANN machine
learning models have a good performance and a sufficient data span for the training and testing
process. The assessment result of the models found the best performance by the Cubist model because
it has the highest R2 (0.96) and NSE (0.95) and the lowest absolute error (RMSE, 3.52 and MAE, 2.52).
Based on R2, RMSE, MAE, and NSE, Cubist models RF, SVM, and Bayesian ANN have improved their
performance in groundwater nitrate modeling potential. Furthermore, in the case of the test phase
(using the validation dataset), the prioritization result also showed the best performance similar to
the training phase. However, the RF model (R2, 0.89; RMSE, 4.24; MAE, 3.55; NSE, 0.87) is capable of
showing the best results compared to the Cubist and the other three models. Subsequently, the Cubist,
Bayesian ANN, and SVM models have a good test performance. Predictive groundwater nitrate
concentrations and actual nitrate concentrations from 21 wells (30 percent well) were compared based
on the scatter plot in Figure 6 and continuous profile chart Figure 7. All models listed have more or
less the same scenario, with nitrate data validation points.

Table 4. The predictive capability of head gully erosion models using train and test dataset.

Models Stage
Parameters

R2 RMSE MAE NSE

Cubist
Training 0.96 3.52 2.52 0.95

Validation 0.87 5.18 4.06 0.81

SVM
Training 0.94 4.24 2.73 0.94

Validation 0.74 6.07 5.07 0.74

RF
Training 0.96 3.66 2.72 0.95

Validation 0.89 4.24 3.55 0.87

Bayesian ANN Training 0.88 5.89 4.56 0.88
Validation 0.79 5.91 4.67 0.75
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Figure 7. Result of Bayesian ANN, SVM, cubist, and RF models for groundwater nitrate concentration
in the validation stage.

Figure 8 illustrates a two-dimensional graphical presentation of observed and simulated
groundwater nitrate concentrations for the Cubist, RF, SVM, and Bayesian ANN models, called the
Taylor diagram. This diagram is one of the graphical presentations used to assess the accuracy of
the forecast based on a number of statistical indicators [74]. Statistical indicators such as correlation
coefficients, standard deviations, and root mean square error for predictive groundwater nitrate
concentrations have been measured. In this study, the Taylor diagram provides a spectacular overview
of the relationship between the predicted and observed groundwater nitrates in the Marvdasht
watershed. And all predictive models have slightly similar performance in nitrate prediction (Figure 8).
However, the proposed Cubist model indicates that the concentrations of nitrate in groundwater are
most closely coordinated.
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3.5. Spatial Groundwater Nitrate Susceptibility

Groundwater nitrate concentration susceptibility maps were produced using four machine
learning methods. In all models, the nitrate susceptibility maps were shown with the same symbol in
Figure 9. Cubist groundwater susceptibility map ranges from 5.34 to 51.35 mg/L, SVM ranges from
0.55 to 52.66 mg/L, RF ranges from 4.65 to 49.64, and Bayesian ANN model susceptibility maps range
from 8.51 to 62.84 mg/L. The northwestern part of the study area is a high concentration of groundwater
nitrate, the main findings of all susceptibility maps. The southern portion of this watershed has a low
nitrate concentration area. The cubist model showed that high groundwater nitrate contamination
was higher than the other maps, and the SVM model demonstrated that low groundwater nitrate
contamination was higher than the other models.
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3.6. Importance Value

The assessment of the significant variable result based on the mean decrease of the Gini-coefficient
using the RF model is shown in Table 5. Moreover, the important result shows the all the determine
factors generally contribute to nitrate contamination in groundwater and groundwater nitrate
susceptibility. However, altitude, rainfall, and K are the most important factors, followed by distance
to a river, distance from residential TWI, and Na, respectively. The importance value of the above
result also showed the strongest relationship between altitude, distance to the river, distance from
residential, rainfall, K, Na, and piezometric depth, and the groundwater nitrate contamination.
However, these association results indicated that the majority of nitrate contamination occurred in
high elevations and rainfall near rivers and residential and low piezometric depth regions. On the
other hand, the curvature of the plan, the curvature of the profile, the TWI, and the slope are of low
importance for nitrate contamination of groundwater. If we see a partial dependence plot, high altitudes
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and severe rainfall are the main cause of excess nitrate concentrations in groundwater. High soil
contamination of K and Na minerals may be concentrated on nitrates in groundwater (Figure 10).

Table 5. Importance value.

Row Variables Importance Value

1 Altitude 2.35
2 Slope 0.91
3 Plan curvature 0.74
4 Profile curvature 0.67
5 Rainfall 3.15
6 Piezometric depth 1.09
7 Distance from residential 0.86
8 Distance from river 0.98
9 K 6.09

10 Na 1.84
11 TWI 1.01
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4. Discussion

Determination of groundwater nitrate concentration causative factors (GNCfs), generation of
groundwater nitrate concentration susceptibility (GNCSMs), and selection of the best-fit model are the
early stages of groundwater nitrate concentration hazard, and the current research has been successful.
The final maps of groundwater nitrate contamination susceptibility show the less diversity of the four
modern machine learning models. The comparison between the susceptibility map and the nitrate
distribution shows a clear link between the level of nitrate concentrations observed and the level of
susceptibility observed. The highest area is the limited probability of nitrate concentration (Figure 8),
despite the moderate to high susceptibility in the Marvdasht watershed. When we talk about the
groundwater susceptibility model, different statistical and empirical models for predicting groundwater
mineral concentrations have been reviewed over the last decades [75–77]. However, these susceptibility
models have some limitations and assumptions, and recently data mining with machine learning
approaches has been effectively popularized due to their ability to analyze the multifarious relationship
between predictors and response [34,78]. Alongside this, a number of different machine learning
models, along with a different statistical model, have been successfully applied [79,80]. This work was
carried out through four data mining and machine learning approaches to a comparative discussion of
the GNCSM. In addition, several researchers used R2, RMSE, MAE, and NSE to assess the predictive
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capability of these models [81]. Each modeling approach was evaluated, taking into account both the
nitrate concentration training and the nitrate concentration test or the validation subgroups, using the
reliability measures referred to above. Based on the results of the R2, NSE, MAE, and RMSE training
data sets, the Cubist model had the best performance, followed by the RF, RF, SVM, and Bayesian ANN
models, but the RF model had the best reliability during the test phase (Table 4), Rahmati et al. [34] also
showed that the RF model is better than the two models KNN and SVM in predicting the concentration
of nitrate in groundwater. In addition, Ouedraogo et al. [82] in nitrate concentration modeling using
RF and MLR showed that the RF has a better performance than MLR. The RF model is a combination of
a set of decision trees to which a subset of data is injected. Each of the algorithms performs a learning
operation that predicts a result when predicting, that is, when a new set of data is given to the algorithm
for prediction, each of which is learned. Finally, the RF algorithm can use voting to select the decision
tree that received the most votes and use it as the final output to perform the modeling operation,
therefore, this model can provide good performance in simulating various phenomena [18,54].

According to the results of importance value altitude, rainfall, K and Na had the highest importance
in groundwater nitrate concentration mapping. Similarly, Honarbakhsh et al. [83] showed that the
conditioning factors such as Mg2+, Na+, K+, and total hardness affect the groundwater quality index
(GWQI) in this study region. Important variables of groundwater nitrate concentrate susceptibility
mapping are significantly affected by the methods used and the characteristics of the study area [34].
According to the important parameters result and the partial dependence plot (Figure 9) for the
importance variable, there was a direct relation between altitude, rainfall, K and Na with nitrate (NO3)
concentration in groundwater that means increasing the degree above factors may increase the nitrate
in groundwater. However, the results of the study will help the planners for the management of
groundwater for a different purpose.

According to the results, the concentration of nitrate is higher in the northern regions of the
basin, which is higher in these agricultural areas than in other areas. The most important cause of
nitrate pollution in these areas is activities such as rice, summer, and cereals in these areas and the
use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to
the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed
and penetrates groundwater and pollutes the aquifer. Tian et al. [84] and Nejatijahromi et al. [85]
also showed that the use of chemical fertilizers is one of the sources of groundwater pollution based
on nitrate.

5. Conclusions

Nitrate is one of the pollutants of groundwater resources. In recent years, owing to agricultural
development and human activities, their average amount in groundwater is increasing. The solution
of natural sediments containing nitrate in water, plant decomposition, animal waste, municipal
waste, and domestic and industrial wastewater, and the use of nitrogen fertilizers are among
the sources of nitrate entering surface and groundwater. In this study, the potential of machine
learning models including SVM, cubist, RF, and Bayesian-ANN in predicting pollution of nitrate
concentration in groundwater by agriculture activities of the Marvdasht plain of Fars Province,
was investigated. The results of ML models showed these models are capable of predicting nitrate
pollution in groundwater. RF model with NSE = 0.87 is capable of showing the best results compared
to the other three models. The assessment of the significant variable result based on the mean decrease
of the Gini-coefficient using the RF model showed altitude, rainfall, and K are the most important
factors in nitrate pollution modeling. The results of nitrate contamination zoning showed that the
northern parts of the watershed, which include the upstream areas of the watershed, have more nitrate
contamination compared to the southern parts of the watershed. Unfortunately, in recent years, due to
the lack of awareness and mismanagement of wastewater, most farmers in the upward Marvdasht
watershed irrigate their meadows through sewage collected during the solitary hours, especially
at night, which this, along with the use of chemical fertilizers, makes groundwater resources more
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polluted. Due to the fact that downstream farmers use groundwater for drinking and agriculture,
water pollution puts their health at risk. Regular monitoring of groundwater over a period of time and
informing farmers in the area about the use of unconventional water and chemical fertilizers could
help manage and prevent excessive pollution of these water resources.
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