
sensors

Article

UnetDVH-Linear: Linear Feature Segmentation by
Dilated Convolution with Vertical and
Horizontal Kernels

Jiacai Liao , Libo Cao *, Wei Li , Xiaole Luo and Xiexing Feng

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University,
Changsha 410006, China; ljc_hnu@hnu.edu.cn (J.L.); lw_hnu@hnu.edu.cn (W.L.); luoxiaole@hnu.edu.cn (X.L.);
jeremyfeng@hnu.edu.cn (X.F.)
* Correspondence: hdclb@163.com

Received: 3 September 2020; Accepted: 5 October 2020; Published: 11 October 2020
����������
�������

Abstract: Linear feature extraction is crucial for special objects in semantic segmentation networks,
such as slot marking and lanes. The objects with linear characteristics have global contextual
information dependency. It is very difficult to capture the complete information of these objects
in semantic segmentation tasks. To improve the linear feature extraction ability of the semantic
segmentation network, we propose introducing the dilated convolution with vertical and horizontal
kernels (DVH) into the task of feature extraction in semantic segmentation networks. Meanwhile,
we figure out the outcome if we put the different vertical and horizontal kernels on different places
in the semantic segmentation networks. Our networks are trained on the basis of the SS dataset,
the TuSimple lane dataset and the Massachusetts Roads dataset. These datasets consist of slot marking,
lanes, and road images. The research results show that our method improves the accuracy of the
slot marking segmentation of the SS dataset by 2%. Compared with other state-of-the-art methods,
our UnetDVH-Linear (v1) obtains better accuracy on the TuSimple Benchmark Lane Detection
Challenge with a value of 97.53%. To prove the generalization of our models, road segmentation
experiments were performed on aerial images. Without data argumentation, the segmentation
accuracy of our model on the Massachusetts roads dataset is 95.3%. Moreover, our models perform
better than other models when training with the same loss function and experimental settings.
The experiment result shows that the dilated convolution with vertical and horizontal kernels will
enhance the neural network on linear feature extraction.

Keywords: neutral networks; semantic segmentation; dilated convolution; linear features

1. Introduction

Linear features are essential in practical applications, such as parking slot detection [1,2],
lane segmentation [3–5] and road segmentation in aerial images [6–9]. The objects with strong
edge features can use some conventional operators to describe them. Researchers have extensively
explored linear feature extraction methods based on traditional algorithms and deep learning models.
The method proposed in this article is related to these methods.

Traditional methods encourage researchers to propose various morphological operators to extract
target edges with linear features. Edge detectors are commonly used to preprocess the image for
linear feature extraction, such as Canny [10] and Sobel [11]. The morphological operators can use
the structuring element to extract image regions with a similar shape, and thus grey-level hit-or-miss
transform [12,13] and top-hat [14] transform can utilize the linear structuring element to extract linear
features, but it is difficult to determine the perfect value for thresholding. Both edge detectors [10,11]

Sensors 2020, 20, 5759; doi:10.3390/s20205759 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8422-9264
https://orcid.org/0000-0002-1075-8056
http://dx.doi.org/10.3390/s20205759
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/20/5759?type=check_update&version=2

Sensors 2020, 20, 5759 2 of 23

and morphological operators [12–14] have the advantage of a larger receiving field in the horizontal
and vertical directions. We utilized and enhanced this advantage to design a new convolution block.
More advanced feature extractors like HOG and Haar features [15], can not only extract linear structure
features but also combine edge information with pixel information of local regions. These advanced
feature extractors have the problem of being unable to learn high-dimensional features. The designed
convolution block will perform the same operations as these advanced feature extractors, but it can
learn high-dimensional feature information. Multiple different feature operators can also be used
in combination to describe the symmetry and posture information of objects. A more direct way to
detect straight lines is to use Hough transforms [16], and Radon-and-Hough-transform [17,18]-based
algorithms were proposed to detect straight lines, circles, and ellipses. However, these spatial
transformation methods require us to input hyperparameters such as the length and the interval
of the detected line. The designed convolution block only needs to set the parameters of kernels,
which are simpler than the methods based on Hough transforms [16–18]. The traditional linear feature
detection method is based on our priori knowledge and observation results, which is simple and
effective for special applications.

With the widespread usage of deep learning [19], we gradually ignored the role of a priori feature,
because deep neural networks can learn far more feature information than the artificially designed
feature filters. A deep convolutional neural network is composed of thousands of convolution kernels,
and each of them performs as a feature descriptor, and the convolutions can learn appropriate feature
representations for the problem end-to-end instead of using hand-crafted features that require domain
expertise. A 3× 3 convolution kernel is at the same size as the traditional feature extractor of the
Sobel filter. Sobel [11] filters are similar to manually designed deep convolution kernels, which specify
the internal values of its kernels. Like other deep learning methods, the designed convolution block
will automatically learn the internal parameters of the convolution kernels, which is more flexible
than the Sobel filter. Convolution kernels with functions like pooling [20], dilated convolution [21],
and upsampling have appeared. Different convolutions in the neural network learn the parameters
through training methods. It is the biggest difference from the feature extraction filter designed by
customary methods.

There are two main problems in this research. First, many traditional methods based on geometric
shapes [10,11] and structuring elements [12,13,15] are utilized to extract linear features, but they are
relatively inefficient. Second, linear features require a larger receptive field, but the current networks
do not give full consideration to this.

The main features of our model are that the high-fusion layers behind the Unet [22] can fuse
multi-scale upsampling and skip connection channel features. We add a dilated convolution block
with horizontal and vertical kernels before the upsampling layer, which can not only increase the
receptive field but also enhance the extraction of linear features. We propose a method of mixing the
DVH and the v9h9 for linear feature extraction. Putting the DVH into the encoder layer can minimize
the damage to the information learned from the lower layers, and the v9h9 can only be placed behind
the encoder layers.

The content and expected contributions of this research are listed as follows:

• A new method is proposed based on spatial convolution kernels for linear feature segmentation.
It utilizes the dilated convolution [21] with a vertical and horizontal convolution block (DVH) in
semantic segmentation networks. This method is more efficient than the traditional vertical and
horizontal convolution kernels. Traditional vertical and horizontal convolution that use the size of
9 × 1 and 1 × 9 (v9h9) kernels can be replaced by the proposed dilated convolutions with vertical
and horizontal convolution (DVH) kernels of the size 3× 1 and 1× 3. The latter becomes more
stable and is able to obtain better results on different datasets. In addition, the DVH block can
be inserted into other backbone semantic segmentation networks to improve the linear feature
segmentation capabilities of the segmentation networks;

Sensors 2020, 20, 5759 3 of 23

• We have designed a series of experiments to observe how the positions of the DVH and v9h9
blocks impact the semantic segmentation networks for linear feature extraction. Adding spatial
convolution kernels to neural networks for feature extraction is of great significance for future
research.

This paper is organized as follows: Section 2 gives an overview of the research works related to
linear feature extraction. Section 3 introduces the details of the proposed method, including VH-stage,
different types of horizontal and vertical convolutions, and training loss functions. In Section 4,
we evaluate our models on different public datasets and discuss the experimental results. We visualize
the feature map and explain how the proposed DVH module plays a role in the linear feature extraction
process. Section 5 presents the conclusions of our study.

2. Related Works

Deep networks based on the Fully Convolutional Network (FCN) [23,24] have become the defacto
of image semantic segmentation in recent years. The semantic segmentation network classifies each
pixel in the image and shares a calculation method with the traditional feature extraction operators,
which convolves the pixel with the surrounding areas. Many new models are applied to accomplish
the segmentation task based on this idea. A traditional deep semantic segmentation network consists
of two modules, downsampling and upsampling, such as the encoder–decoder framework. The input
image will go through an encoder first, then connect to the decoder through a central node. U-net [22]
proposed combining the high-resolution features of the encoder with the outputs of the decoder.
In addition to VGG [25], other efficient classification models can be used to implement the feature
extraction in the encoding module, such as ResNet [26] and DenseNet [27]. However, these backbone
feature extraction networks mostly stack local convolutional operations, and thus are hardly able
to well cope with complex scenes with a variety of different categories due to the limited effective
fields-of-view. Dilated convolutions with larger dilation rates have wider receptive fields without
additional cost or overly downsampling the feature maps [21,28,29]. Dilated convolutions and
multi-scale context aggregations [30–32] are also tightly coupled. However, dilated convolution
has limitations. The input feature map is in a square window, and this will increase the receptive field
while absorbing some irrelevant information from irrelevant regions [32,33] for some features with
long-distance edges (lanes, slot markers, etc.). The proposed method makes use of dilated convolutions
with a strip shape.

Concerning linear features, the convolution networks need a larger receptive field. The kernel
sizes we often use in convolutions are 3× 3, 5× 5, and 9× 9. To enhance the linear feature-learning
ability of convolutions in the horizontal and vertical directions, VH-HFCN [2] proposed using 1 × 9
and 9 × 1 kernels (v9h9) in traditional convolutions, while SPnet [34] uses 1 × 3 and 3 × 1 convolution
kernel in the pooling layers. The designed block has a structure similar to VH-HFCN [2] and SPnet [34].
It is demonstrated that vertical convolution kernels with the size of 9× 1 and horizontal convolution
kernels with the size of 1× 9 between encoder and decoder will improve the parking slot marking
segmentation performance [2]. Our proposed method designs a block similar to the v9h9 block for
linear feature extraction. The v9h9 module obtains global context information by increasing the kernel
size of traditional convolutions. The authors of [21] developed a dilated convolution module that
aggregates multi-scale contextual information without losing resolution or analyzing rescale images.
This is a more efficient method to support the exponential expansion of the receptive field without any
loss of resolution. Guided by dilated convolution [21,35] and the VH-stage, we designed the DVH block
to improve the semantic segmentation network for linear feature extraction. HFCN [36] comes up with
a further structured layer based on FCCN [37], and each unpooling layer follows a combination layer.
This method can fuse upsampling features of different receptive fields in high-fusion layers. In addition
to increasing the receiving range of the feature extraction network, we also added high-fusion layers
behind the Unet to fuse multi-scale upsampling features.

Sensors 2020, 20, 5759 4 of 23

3. Proposed Method

3.1. An Overview of the Method

Our semantic segmentation network structure is shown in Figure 1. We marked two points in
this traditional network structure diagram to indicate where we may want to change. In the research
work, we selected three different datasets related to linear feature segmentation. The SS dataset [1]
contains a lot of parking slot markers and the TuSimple lane dataset [38] consists of road lanes.
The Massachusetts Roads dataset contains a large number of aerial images with marked roads [39].
These datasets contain typical segmentation targets with distinct linear features. The backbone network
of Unet [22] is commonly used in different tasks of semantic segmentation networks. The research
in [1] found that the pixels of the slot marking segment made significant location errors. That’s because
the width of the slot marking is only six pixels, but the upsampling rate should be 8×. We utilized the
Unet whose upsampling rate 16× to minimize the location error, and a highly fused convolutional
network is added behind the Unet final upsampling layers. There are five upsampling blocks in the
upsampling part that reserve feature information within different scales. We have the up-conv block
proposed by Yang et al. [36], named HF layers, which can fuse multi-scale upsampling information.
The proposed VH-stage in [1] solves the problem that short kernels are not enough to cover full linear
features, while long kernels may reduce the efficiency of the network, even reducing the segmentation
performance. The longer the convolution kernels, the better the segmentation results for linear feature
segmentation. The block v9h9 means horizontal kernels are within a size of 1 × 9 and vertical
kernels within a size of 9 × 1. VH-HFCN [2] put the v9h9 block behind the encoder layers. We fully
explored how the VH-stage’s position will influence the semantic segmentation networks in this paper.
We designed a more useful block to learn long-range information based on dilated convolution, and we
call it the DVH block. The basic convolution kernel parameters and composition of all basic blocks
used in our models are shown in Figure 1.

There are three differences between the proposed method and the VH-HFCN method: First, in the
VH-Stage, VH-HFCN uses traditional convolution kernels with sizes of 9 × 1 and 1 × 9, while we
use dilated convolutions; the kernel size is 1 × 3 and 3 × 1. Second, the model we designed also
tried to use both horizontal and vertical convolution in and behind encoder layers. Third, VH-HFCN
finally uses addition operations to fuse feature information from the encoder and the corresponding
decoder layers. We kept the origin structure of Unet that concatenated the encoder feature maps and
the corresponding decoder feature maps. In this way, we can retain the information learned from the
low layers independently and do not damage the information learned from the lower layers.

3.2. VH-Stage

An extra VH-stage is added behind the encoder layers to learn linear features in [1]. By adding
this extra VH-stage, which is composed of special design kernels, the segmentation performance can
be improved. The v9h9 block is designed for long-range information extraction, and its core idea
is to increase the receptive fields of the convolution kernels. However, the experimental result has
verified that the maximum limit kernel size for VH-stage is 9 [2]. Inspired by VH-stage and dilated
convolutions, we create a DVH block for linear feature segmentation. As mentioned in the inception
model [40], the 1× n and n× 1 filters can make the model easier to train. Further, 1× n and n× 1
filters in dilated convolutions will increase the receptive fields of backbone networks, and this will
help the model to explore more complex features with more convolution layers.

Sensors 2020, 20, 5759 5 of 23

Figure 1. An overview of the proposed structure of segmentation network. An extra HF modile, which
was proposed in [36], is added behind each upsampling layer of the Unet. In addition, we changed the
Unet basic structure in 1© and 2©, and putt our spatial horizontal and vertical convolution blocks at
these places. The green rectangle represents the convolutional layers we added. The conv1x1 represents
the convolution with a kernel size of 1×1. It will not change the input feature map size. There are two
different blocks in the VH-stage: v9h9 block and DVH block. We only use one of them in the VH-stage;
the v9h9 block contains the vertical and horizontal convolution with a kernel size of 9 × 1 and 1 × 9,
respectively. The DVH block consists of the vertical and horizontal convolution with a kernel size of
3 × 1 and 1 × 3, respectively. The dilatation rate is 2. The Up-conv contains an upsample layer, and the
scaling factor is a multiple of 2.

The receptive field of the network can be recursively calculated by the following formula

rn = rn−1 + (kn − 1)× dn ×
n−1

∏
i=1

si (1)

where rn represents the receptive field of the nth feature map. dn represents the dilated factor of the nth
feature map. si is the stride in ith convolution layer, and kn denotes the kernel size of nth convolution.
The DVH block will use the dilated convolution with a kernel size of 1 × 3 to extract horizontal
linear features. Similarly, dilated convolution kernels with a kernel size of 3× 1 help extract vertical
linear features. To keep the feature map size unchanged before going through max pooling layers,

Sensors 2020, 20, 5759 6 of 23

the vertical and horizontal dilated convolution kernels with padding size should be (2, 0) and (0, 2),
respectively. The dilated rate is 2 for both vertical and horizontal convolution. Thus, the receptive field
of our DVH block is 7× 7. Figure 2 depicts our proposed DVH. Let x ∈ RC×H×W be an input tensor,
where C denotes the number of channels. We first feed x into a horizontal convolution layer, then go
into a vertical convolution layer. fv(x) ∈ RC×H is vertical convolution, fh(x) ∈ RC×H is horizontal
convolution. An output z ∈ RC×H×W is computed as

z = fv(σ((fh(x))) (2)

where σ is the ReLU function. It should be noted that there is one pathway to combine the features
extracted by vertical and horizontal convolution layers.

Figure 2. The vertical convolution is a dilated convolution with kernel size of (3, 1), the dilated factor
l is (2, 0); the horizontal convolution is a dilated convolution with kernel size of (1, 3), the dilated
factor is (0, 2). The blue grid represents the feature values activated by the vertical convolution kernel.
The red grid represents the feature values activated by the horizontal convolution kernel, and the green
grid represents the feature values activated by both horizontal and vertical convolution kernels.

3.3. The Position of the DVH Block

A VH-stage with a v9h9 block is put behind the encoder layers in VH-HFCN [1]. This extra
stage hardly destroys the feature information learned in encoder layers. Our proposed method tries
to put the DVH block in and behind encoder layers. We add a branch in each encoder layer to
avoid destroying feature information in lower layers, because the branch structure ensures that the
learned information transmitted from the upper layer will independently pass through two different
channels. One channel is a traditional convolution layer, and the other is a layer with horizontal and
vertical convolution kernels. Besides this, horizontal and vertical convolution layers will not affect
the feature extraction of another channel. Finally, the output feature maps from two independent
channels will be concatenated together, and this ensures that the final output of each coding layer
retains the convolution features of two separate channels. Therefore, the added branch will ensure that
the information in the traditional convolutional layer will not be used to extract linear features within
each coding layer.

• Putting the DVH block in the encode layers at 1© is shown in Figure 1. The feature extraction and
the outputs of the network we designed can be expressed by the following formula

E (x) = E ncoder [Cov (x), DVH (x)]

D (x) = D ecoder [Cov (x), DVH (x), E (x)]

H (x) = H f usion (D (x))

Fout = Fnet [H (x), D (x)]

(3)

In the above equations, x is the input of our proposed networks, Cov(x) represents the traditional
convolution block, while DVH(x) represents the DVH block. Encoder and Decoder represent the
encoder and decoder layers in the backbone network. H f usion means the high-fusion layer behind

Sensors 2020, 20, 5759 7 of 23

the up-sampling operation. E(x), D(x) and H(x) are the output of the corresponding network
layer. Fout represents the final output, while Fnet represents the whole neural networks.

• Putting the DVH block after the encoder layer at 2© as shown in Figure 1, the feature extraction
and output of the network we designed can be expressed by the following formula

E (x) = E ncoder [Cov (x)]

D (x) = D ecoder [Cov (x), DVH[E (x)], E (x)]

H (x) = H f usion [D (x)]

Fout = Fnet [H (x), D (x)]

(4)

• Putting the DVH block in and behind the encode layer at 1© and 2© is shown in Figure 1. The
feature extraction process and output of the network can be expressed by the following formula

E (x) = E ncoder [Cov (x), DVH (x)]

D (x) = D ecoder [Cov (x), DVH[E (x)], E (x)]

H (x) = H f usion [D (x)]

Fout = Fnet [H (x), D (x)]

(5)

We can conclude from Equations (3)–(5) that the location of the DVH block will affect the feature
extraction and information exchange in the networks.

We replaced the DVH block with the v9h9 block and found out how the DVH block will influence
the results of the final output. We also combined different positions of v9h9 and DVH to explore the
effect of different convolution kernels at different positions on the final segmentation result, because the
altered positions and blocks of VH-stage affect the feature extraction process of the entire network.

3.4. Loss Function

The inputs of our models are images and ground truths. We use the BCELoss [41] and Dice
loss [42,43] as our loss function. The BCELoss is designed for binary classification. The BCELoss with
sigmoid function can be defined as follows

Lbce = −
1
N

N

∑
i=1

yi · log (p (yi)) + (1− yi) · log (1− p (yi)) (6)

where Lbce represents the binary cross-entropy loss function with a sigmoid activate layer, y is the label
(1 for positive points and 0 for negative points); p(y) represents the predicted probability of the point,
and it is positive for all N points. The dice loss is proposed to solve the problem that the training of the
network will become stuck in local minima and will be biased towards the background, because almost
90% of the pixels in nature of the ground truth images are background, while the remaining pixels are
foreground (vessels). The differentiable approximation of dice loss is defined as

Ldice = 1− 2 ∑x∈Ω pl(x)gl(x)
∑x∈Ω p2

l (x) + ∑x∈Ω g2
l (x)

(7)

where pl(x) provides the probability of the pixel x that belongs to class l. gl(x) is a vector of the
ground truth label, one for true class and zero for other classes. In this case, the loss function in our
training process can be defined as

L = Lbce + Ldice (8)

Sensors 2020, 20, 5759 8 of 23

3.5. Datasets and Experimental Settings

3.5.1. Datasets

Our models currently have no real application, but can provide preprocessing results for other
real application tasks. For example, the results of lane segmentation can be used for lane classification
and 3D lane detection tasks [38,44], while the segmentation results of parking slots can be used for
parking slot detection and automatic parking localization [1,45]. All our experiments are implemented
on public datasets. We firstly experimented on datasets with typical linear features, such as lanes
and parking slots. To further explore the segmentation performance of the model on geometric
shapes, we conducted experiments on the road segmentation dataset. The public datasets we used are
the following:

• The SS dataset [1]: The SS dataset is composed of Around View Monitor (AVM) images and
corresponding annotation images that are collected from various parking conditions outdoors and
indoors. This dataset contains 6763 camera images with 320× 160 pixels. The number of training
images and test images is 4057 and 2706, respectively, among which there are four categories:
free space, marker, vehicle, and other objects. Each image has a corresponding ground truth
image that is composed of four-color annotations to distinguish different classes. In particular,
the indoor samples are difficult to discern because the reflected light seems similar to slot markers,
hence degrading the detection of slot markers;

• The TuSimple lane dataset (http://benchmark.tusimple.ai/): This dataset released approximately
7000 one-second-long video clips of 20 frames each, and the last frame of each clip contains
labeled lanes. This dataset contains complex weather, different daytimes, and different traffic
conditions with 6408 1280 × 720 images, separated into 3626 for training, and 2782 for testing.
The types of annotations are polylines for lane markings. All the annotations information is saved
in a JSON file to guide researchers in how to use the data in the clips directory. The annotations
and testing are focussed on the current and left/right lanes. There will be, at most, five lane
markings in ‘lanes‘. The extra lane is used when changing lanes since it is confused to tell which
lane is the current lane. The polylines from the recording car are organized by gaps at the same
distance (’h_sample’ in each label data), and 410 images are extracted from the training set used
as a validation set during training;

• The Massachusetts Roads Dataset [39] (https://www.cs.toronto.edu/~vmnih/data/):
The Massachusetts Roads Dataset consists of 1171 aerial images. On the road data, each image is
1500 × 1500 pixels in size. The dataset is randomly split into a training set of 1108 images, a test
set of 49 images, and a validation set of 14 images. The dataset covers a wide variety of urban,
suburban, and rural regions with an area of over 2600 km2. With the test set alone covering over
110 k2, this is by far the largest and the most challenging aerial image labeling dataset.

The training and test set are allocated according to the division of the original dataset. Reference [1]
provided detailed information on the division of the SS dataset. Similar to other research work [38,46],
the original training set and test set for the TuSimple dataset remain unchanged. The width and height
of the Unet input image must be an integer multiple of 16. We need to normalize images of different
sizes before training. We processed the TuSimple data set, and the size of the input image is 256 × 160.
The input size of the SS dataset is 320 × 160. The input size of the Massachusetts Roads Dataset is
640 × 640. Examples of images and masks in different datasets are shown in Figure 3.

http://benchmark.tusimple.ai/
https://www.cs.toronto.edu/~vmnih/data/

Sensors 2020, 20, 5759 9 of 23

Figure 3. Example of the training dataset: a1 and a2 are the image and mask of TuSimple lane dataset,
respectively; b1 is an image of the SS dataset, and b2 is a mask of b1 which only contain parking slot
makers; c1 and c2 are the image and mask of the Massachusetts Roads Dataset, respectively.

The SS dataset contains different types of road marking, including parking slots, some basic
steering signs, and zebra crossings as well. The TuSimple lane dataset contains various road lanes
with dashed and solid lines. These two datasets contain straight lines with different categories, width,
colors, and viewing angles. Unlike the first two datasets, the Massachusetts Roads Dataset collect
aerial images for road segmentation. These three different datasets can evaluate our model more
comprehensively under various scenes.

3.5.2. Experimental Settings

We implemented our experiments based on Python code and Pytorch framework [47] in Ubuntu
16.04, and PyTorch is a deep learning framework written in Python language. The hardware
configuration is as follows: NVIDIA RTX2080 graphics card, 10 GB GPU memory, i9-7900X
@3.60GHz×10 processors, and 32 GB RAM.

Data augmentation is a common technique that has been proven beneficial for the training
of machine learning models, thus avoiding overfitting. To enhance the generalization of the
models, we expanded the SS dataset for training and testing by randomly flipping, rotating, scaling,
and mirroring 10 times.

The proposed models are trained for 30 epochs with Adam [48] optimization at the initial learning
rate of 0.001, and moments are regulated by two decaying factors β1 and β2. Authors suggest that
these parameters be initialized to standard values β1 = 0.9 and β2 = 0.999. These values were applied
to our experiments. The learning rate of each parameter group decay by gamma once the number of
epoch reaches one of the milestones. The multiplicative factor of the learning rate decay gamma is 0.1.
The index of last_epoch = −1 and the list of epoch indices milestones=[15,25]. When last_epoch = −1,

Sensors 2020, 20, 5759 10 of 23

the last epoch training learning rate was set as the initial learning rate. When the training epoch is equal
to the value in the list of milestones, the learning rate will be updated once by the following formula

lr = linitial × (gamma)bisect_right(milestones,epoch) (9)

where l_r represents the current learning rate, l_initial represents the initial learning rate. bisect_right
is the function that returns epoch position in the list of the milestone, and all models are trained one
by one.

3.5.3. Experimental Models

We put the DVH module in 1© and 2©, as shown in Figure 1. We also tried to insert v9h9 and DVH
into one model at the position of 1© and 2©. We did not use any block in the position of this model if
the position had a sign of × in Table 1. All design models were trained independently and shared
the same training parameters and experimental settings. To compare the effect of the DVH module
and the traditional dilated convolution with normal kernel shapes on the final segmentation results,
we also designed a basic comparison model, named UNet-D. It uses a 3×3 dilated convolution kernel
in position 2©; the dilated rate is 2. The other parts of its neural network structure are the same as in
Figure 1.

Table 1. Through putting different blocks at 1© and 2© in Figure 1, we can explore how the VH-stage
may be applied in the networks by designed different models.

Models 1© 2©

VH-HFCN [2] × v9h9
Unet-D (ours) × Dilated convolution [kernel size is (3,3), dilted factor is (2,2), stride=1]

UnetDVH-Linear (v1) (ours) × DVH
UnetDVH-Linear (v2) (ours) DVH ×
UnetDVH-Linear (v3) (ours) DVH DVH
UnetDVH-Linear (v4) (ours) × v9h9
UnetDVH-Linear (v5) (ours) v9h9 ×
UnetDVH-Linear (v6) (ours) v9h9 v9h9
UnetDVH-Linear (v7) (ours) v9h9 DVH
UnetDVH-Linear (v8) (ours) DVH v9h9

3.6. Metrics

The same metrics as in the binary segmentation tasks in references [6–9,38,46,49–51] are
applied here. Pixel Accuracy (PA), Mean Pixel Accuracy (MPA), Recall, Precision, and F1 score are used
to evaluate our models’ segmentation performance, and can be calculated by the following formula

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

MPA =
∑C

i=1 Pi

c
, (i = 0, 1, , , c)

F1 = 2 · Precision · Recall
Precision + Recall

(10)

The semantic segmentation network is a classification network for every pixel: TP is true positive,
FP represents false positive, FN stands for false negative, TN means true negative, Pi equals to the ith
class pixel accuracy and c is the whole class. Precision and recall are employed as two metrics for a

Sensors 2020, 20, 5759 11 of 23

more fair and reasonable comparison, which is defined as F1. For example, in the lane segmentation
task, TP means the number of lane pixels that are correctly predicted as lanes. TN means the number
of the background pixels which are correctly predicted as the background. FP represents the number
of background pixels that are wrongly predicted as lanes. FN denotes the number of lane pixels that
are wrongly predicted as the background.

Among these metrics, we pay much more attention to the pixel accuracy and F1 score. These values
aim to verify whether or not the VH-stage is useful enough to extract vertical and horizontal linear
features. All metrics of different models are obtained under the best threshold.

3.7. Results

In this study, we compared experimental results with the state-of-art methods that have been
proposed to solve the segmentation results on the SS dataset and the TuSimple dataset. Next,
we compared our methods with other segmentation models under the same training conditions,
and some of them were proposed recently. Through these two experiments, the influence of the loss
function and experimental parameter settings on the comparison results can be excluded, and the
effectiveness of our method can be strictly verified.

3.7.1. Comparison with State-of-the-Art Methods

We implemented segmentation networks on the TuSimple dataset and Massachusetts Roads
Dataset. The SS dataset was released last year, and there are few experimental results on this dataset.
The multi-category segmentation results on the SS dataset in [1] and the segmentation accuracy of slot
marking was 74.31%. Our method aiming at binary-category segmentation, and the accuracy of slot
markers segmentation is 86.40%.

Many researchers proposed all kinds of methods to improve the lane segmentation accuracy
based on the TuSimple lane dataset. Together with the accuracy, false-positive and false-negative lane
boundaries are evaluated on the TuSimple lane test dataset. Given that our detected lane boundaries
are over 1 pixel in width, we average the x coordinates of the detected pixels for a given row to obtain
a single value. The false-positive and false-negative lane boundaries can be calculated as follows

FPlane =
Fpred
Npred

FNlane =
Mpred
Ngt

(11)

where Fpred represents the wrongly predicted lanes, Npred denotes the number of predicted lanes,
Mpred means the number of missed ground-truth lanes and Ngt indicates the number of all
ground-truth lanes.

We calculated the average of inference time on 256 × 160 images for all open source lane
segmentation models on an NVIDIA RTX 2080 graphics card. As shown in Table 2, the method
proposed by Zou et al. [46] obtains the lowest FNlane, but the average inference time of this method is
longer. The LaneNet [3] has a faster inference speed and a lower FNlane. Our method does not have
the lowest average inference time, while it has made progress in metric values of accuracy (97.53%)
and FPlane. Compared with other open-source models, the average inference time shows that our
method has achieved a compromise between accuracy and inference speed. The proposed model can
be modernized to reduce computational cost. For example, depthwise separable convolutions can be
used to replace the traditional convolutions, and lightweight networks can be used to replace the Unet
as the backbone.

Sensors 2020, 20, 5759 12 of 23

Table 2. TuSimple lane marking challenge leaderboard (test set) as of 14 March 2018 [46].

Rank Methods Name on Board
Using
Extra
Data

Accurcay
(%) FPlane FNlane

Average
Inference

Times
(ms)

2 Zou et al. [49] UNet ConvLSTM True 97.3 0.0416 0.0186 47.61
3 Unpublished leonardoli - 96.9 0.0442 0.0197 -
4 Pan et al. [50] SCNN True 96.5 0.0617 0.0180 18.63
5 Hsu et al. [51] N/A False 96.5 0.0851 0.0269 -
6 Ghafoorian et al. [46] TomTom EL-GAN False 96.4 0.0412 0.0336 -
7 Neven et al. [3] LaneNet False 96.4 0.0780 0.0244 5.04
8 Unpublished li - 96.1 0.2033 0.0387 -
9 Pizzati et al. [38]. Cascade-LD False 95.24 0.1197 0.0620 5.71
1 Ours (v1) N/A False 97.53 0.0279 0.0339 12.51

3.7.2. An Comparison with Different Models

We compared the segmentation results of the proposed models with FCN, Unet, HFCN,
VH-HFCN on the SS dataset, and the TuSimple lane dataset. FCN was a VGG-based segmentation
model, and the fully connected layers were transformed into convolution layers in the basic VGG-16
model. FCN-based models, such as HFCN and VH-HFCN, use pre-training VGG-16 as the basic
feature extraction layers. We use the same loss function and experimental settings to train those
models to verify if our designed models are effective under the same conditions. The SS dataset
contains four classes: slot marking, vehicle, free space, and other objects. The model we designed aims
for linear feature extraction, and thus the metric that relates to slot marking will reflect our model
performance directly. We list the pixel accuracy of slot marking and the metrics (MPA, F1) that reflect
the performance of the model shown in Table 3.

Table 3. Quantitative results of Parking slots segmentation performance on SS dataset (%).

Methods Precision Recall MPA F1

Unet [22] 84.29 86.37 92.29 85.31
FCN [23] 85.03 86.02 92.33 85.52

HFCN [36] 83.07 86.29 91.76 84.65
VH-HFCN [2] 81.79 86.94 91.07 84.29

UnetDVH-Linear
(v1) 84.68 88.19 94.16 86.40

As can be seen from Table 3, the UnetDVH-Linear (v1) performs well for slot marking
segmentation on the SS dataset. The recall of slot marking segmentation is 88.19%. This result
is 2% more than the VH-HFCN network that uses the v9h9 block in the VH-stage. Other metrics
that reflect the model on the whole classes (background and slot marking) are MPA and F1 score.
Our model gets higher results, and the MPA and F1 of the UnetDVH-Linear (v1) model on the SS
dataset is 94.16% and 86.14%, respectively.

According to Table 4, we can conclude that the UnetDVH-Linear (v1) model performs well for
road lane segmentation on the TuSimple lane dataset. The precision of lane segmentation is 66.31%.
This result is 1% more than the VH-HFCN. Compared with other models, our model obtained the best
results on the TuSimple lane dataset with the metric value of MPA (82.87%), Recall (78.33%), and F1
(71.82%).

Sensors 2020, 20, 5759 13 of 23

Table 4. Quantitative results of segmentation performance on the TuSimple lane dataset (%).

Methods Precision Recall MPA F1

Unet [22] 65.41 77.73 82.40 71.03
FCN [23] 65.88 75.38 82.61 70.31

HFCN [36] 65.08 77.09 82.23 70.58
VH-HFCN [2] 65.57 76.52 82.47 70.61

UnetDVH-Linear (v1) 66.31 78.33 82.87 71.82

The experimental verification on the SS test dataset and the TuSimple lane test dataset shows that
the DVH block we designed and the network model structure we proposed in this research are more
efficient than the traditional linear feature extraction method, such as VH_HFCN [2].

3.7.3. Experiments with Different VH-Stage

We compared the placement of DVH block and v9h9 block in positions 1© and 2© to observe the
impact of VH-stage on the semantic segmentation network. This is shown in Figure 1. According to
Table 5, the UnetDVH-Linear (v1) put the DVH block behind the encoder perform best on metrics
value of recall (88.19%) and MPA (94.16%) for slot marking segmentation. In addition, we find that
putting the DVH block behind the encoder is more efficient than putting the DVH block inside of the
encoder. Compared with UnetDVH-Linear (v1), there is no noticeable effect on the final segmentation
result when we put the DVH block inside or behind the encoder (v2, v3). It is clear that the position of
the v9h9 (v6) block in and behind the encoder significantly influences slot marking segmentation and
has a higher metric value of F1 score (86.69%) and precision (85.58%).

Table 5. Compared with different position of VH-stage for DVH block and v9h9 block on SS dataset (%).

Methods Precision Recall MPA F1

Unet [22] 84.29 86.37 92.29 85.31
FCN [23] 85.03 86.02 92.33 85.52

HFCN [36] 83.07 86.29 91.76 84.65
VH-HFCN [2] 81.79 86.94 91.07 84.29

Unet-D 85.38 87.62 92.84 86.48
UnetDVH-Linear (v1) 84.68 88.19 94.16 86.40
UnetDVH-Linear (v2) 84.81 87.43 92.57 86.10
UnetDVH-Linear (v3) 85.42 87.32 92.87 86.36
UnetDVH-Linear (v4) 85.22 88.12 92.79 86.64
UnetDVH-Linear (v5) 84.90 87.78 92.62 86.31
UnetDVH-Linear (v6) 85.80 87.59 93.07 86.69

Compared with Unet, FCN, HFCN, and VH-HFCN, it is clear that the F1 score of the slot
marking and lane segmentation of the models we proposed has increased 1.5%. On the SS dataset
and the TuSimple dataset, the UNet-D model that using traditional dilated convolution with regular
kernel shapes improves the effect of linear feature target segmentation, but the model using dilated
convolution with horizontal and vertical kernels has a better segmentation effect for linear targets.

According to Table 6, we can find out that the UnetDVH-Linear (v4) we designed to put the
v9h9 block behind the encoder performs the best F1 score (71.95%) for road lane segmentation on the
TuSimple lane test dataset. We find that the DVH block and the v9h9 block behind the encoder work
well with linear feature extraction (v1, v4). This finding is consistent with the experimental results of
our first step in Tables 3 and 4. Regardless of the v9h9 block or the DVH block, VH-stage will be more
effective when we put it behind the encoder layers. On the TuSimple lane dataset, all of the models we
designed have achieved an improvement in accuracy for lane segmentation, this further verifies the
importance of VH-Stage for different linear feature segmentation.

Sensors 2020, 20, 5759 14 of 23

Table 6. Compared with different position of VH-stage for DVH block and v9h9 block on the TuSimple
lane test dataset (%).

Methods Precision Recall MPA F1

Unet [22] 65.41 77.73 82.40 71.03
FCN [23] 65.88 75.38 82.61 70.31

HFCN [36] 65.08 77.09 82.23 70.58
VH-HFCN [2] 65.57 76.52 82.47 70.61

Unet-D 66.07 77.65 82.75 71.39
UnetDVH-Linear (v1) 66.31 78.33 82.87 71.82
UnetDVH-Linear (v2) 66.79 76.41 83.08 71.27
UnetDVH-Linear (v3) 66.90 76.71 83.14 71.48
UnetDVH-Linear (v4) 66.40 78.51 82.91 71.95
UnetDVH-Linear (v5) 66.14 77.70 82.78 71.46
UnetDVH-Linear (v6) 66.45 77.20 82.92 71.42

3.7.4. An Comparison with the v9h9 and the DVH Block

The results of the second step in Tables 4 and 5 indicated that putting the v9h9 block behind
the coding layer in UnetDVH-Linear (v4) obtains a better result in the TuSimple lane dataset.
To further compare the difference between the v9h9 and the DVH block on the linear feature
segmentation, we carried out the exchange of v9h9 and DVH module location experiments in models
of UnetDVH-Linear (v7) and UnetDVH-Linear (v8).

The experimental results in Tables 7 and 8 indicated that the DVH block is more stable than
the v9h9 block in encoder layers. The UnetDVH-Linear (v8) obtains the best metric of recall for
slot marking and lane segmentation on the SS dataset (88.03%) and the TuSimple dataset (78.08%).
These results are nearly 2% higher than other state-of-the-art methods, such as HFCN and VH-HFCN.
The comparative experiments in Tables 7 and 8 shown that when mixing the DVH and v9h9 blocks,
placing the DVH block in the encoder layers and placing v9h9 behind the encoder layers can obtain
better linear feature extraction results.

Table 7. Compared the DVH and v9h9 block on the SS test dataset (%).

Methods Precision Recall MPA F1

Unet [22] 84.29 86.37 92.29 83.79
FCN [23] 85.03 86.02 92.33 85.36

HFCN [36] 83.07 86.29 91.76 86.04
VH-HFCN [2] 81.79 86.94 91.07 84.12

UnetDVH-Linear (v3) 85.42 87.32 92.87 86.36
UnetDVH-Linear (v6) 85.80 87.59 93.07 86.69
UnetDVH-Linear (v7) 85.08 87.75 92.71 86.40
UnetDVH-Linear (v8) 84.83 88.03 92.59 86.40

Table 8. Compared with different position of VH-stage for DVH block and v9h9 block on the TuSimple
lane test dataset (%).

Methods Precision Recall MPA F1

Unet [22] 65.41 77.73 82.40 71.03
FCN [23] 65.88 75.38 82.61 70.31

HFCN [36] 65.08 77.09 82.23 70.58
VH-HFCN [2] 65.57 76.52 82.47 70.61

UnetDVH-Linear (v3) 66.90 76.00 83.14 71.48
UnetDVH-Linear (v6) 66.45 77.20 82.92 71.42
UnetDVH-Linear (v7) 66.61 76.70 83.00 71.30
UnetDVH-Linear (v8) 66.20 78.08 82.81 71.65

Sensors 2020, 20, 5759 15 of 23

3.7.5. Experiments on the Massachusetts Roads Dataset

The SS and TuSimple datasets are collected in street scenes. To verify the segmentation effect of
the model on linear features in other scenes, we conducted road segmentation experiments in the aerial
images and compared them with other methods. As shown in Table 9, without data augmentation,
our method achieved the best accuracy (95.3%), recall (77.60%), precision (77.24%), and F1 (77.42%) for
road extraction in the aerial image on Massachusetts Roads Dataset. As shown in Table 10, when using
the same loss function and training method, the model we designed improves the precision and F1 of
the road segmentation with 1%. On the Massachusetts Roads Dataset, compared with the benchmark
models (Unet, HFCN), the UNet-D model that uses dilated convolution with a regular kernel shape
does not improve the accuracy of road segmentation. Its precision decreased (57.61%), and the recall
increased (72.12%), but the F1 score (64.05%) is not improved.

Table 9. Performance of road extraction in Massachusetts Roads Dataset by our method and other
approaches (%).

Methods Data Augmentation Accuracy Precision Recall F1

Jan et al. [7] False 82.5 40.5 32.2 35.9
Jan et al. [6] False 89.9 47.1 67.9 55.6

Zhong et al. [8] False 90.4 43.5 68.6 53.2
Wei et al. [9] False 92.4 60.6 72.9 66.2

UnetDVH-Linear (v1) False 95.3 77.24 77.60 77.42

Table 10. Performance of road extraction in Massachusetts Roads Dataset by our method and other
models with the same training settings (%).

Methods Data Augmentation Precision Recall F1

Unet [22] False 65.40 63.91 64.64
HFCN [36] False 73.00 65.32 68.94

VH-HFCN [2] False 75.85 77.07 76.45
Unet-D False 57.61 72.12 64.05

UnetDVH-Linear (v1) False 77.24 77.60 77.42

4. Visualization of Results and Discussion

4.1. Feature Maps Visualization

To observe and explain the impact of the horizontal and vertical convolutions we designed
on linear feature extraction, we visualized the input and output feature maps of horizontal and
vertical convolutions on the TuSimple lane test dataset. We also visualized the final layer of the
convolutional feature map to compare it with the output feature map of the network. Feature maps of
each convolution layer will be resized to the same size as the input image, and then these feature maps
will be used to generate an average feature map. To be able to more intuitively view the distribution of
the values of the average feature map, we use the average feature map to generate a heat map. Finally,
the heat map merged with the original input image with a weight of 0.4. Figure 4 shows the feature
maps, heat maps, and final fusion images.

Sensors 2020, 20, 5759 16 of 23

Figure 4. Feature map visualization examples. The first row is the feature map associated with the
input and output layers of horizontal and vertical convolutions. For comparison with the final feature
map of the output layer, we also show the feature map of the last convolutional layer in the first row.
H and W represent the height and width of the input image, respectively. C represents the channel
of the convolution layer. In the second row, we use all the feature maps of each convolutional layer
to generate an average feature map so that the average value of all channels can be observed. Row 3:
The heat map which converts from the average feature map. Row 4: The images generated by merging
the heat maps with the input image. In the colormap bar, the color from left to right represents the
value from small to large in the average feature map.

The values in the feature map will be mapped to different colors in the heat map. In the heat map,
the redder the color, the greater the value of the corresponding position in the feature map. In this
way, how the designed convolution affects linear feature extraction can be observed indirectly from
the heat maps.

As shown in Figure 4, the distribution of the input feature map values are almost the same as
the feature value after the horizontal and vertical convolutions, but there are also slight differences.
Behind the horizontal and vertical convolution kernels, the distribution of the larger values is more
concentrated on the road area. The distribution of larger feature map values in the edge of the road
area will reduce. This is similar to the heat map of our final output convolutional layer, with larger
distribution values in the middle of the road area in feature maps.

We visualized the output layers of different models on the TuSimple lane test dataset to compare
feature maps with different models. As shown in Figure 5, the first row is the input image. From the
second row to the sixth row are feature maps, heat maps, merge images, predict images, and labels.
The false positive prediction result of the UnetDVH-Linear in Figure 5 is a missing labeling lane.
The results demonstrate that our model can capture more details in challenging segmented scenes.

Sensors 2020, 20, 5759 17 of 23

Figure 5. Feature map visualization example of the output layer with different models. There is a
missing labeling lane in the label image.

4.2. Segmentation Results

Our test results on the SS dataset and the TuSimple lane dataset are shown in Figures 6 and 7.
On the SS dataset, there is no noticeable difference in the overall segmentation effect. However,
the models we designed can capture thin lines, and maintain the smooth edges of linear features.
In the second row of Figure 6, we find that the designed model extracts the linear features with
missing labeling.

Figure 6. Example of segmentation results on the SS dataset. The first column is input images, and
the second column is segmentation masks of the images. Every row represents the segmentation
results for the original images of each row with different models. The third column to the sixth
column is comparative experimental models. The last column is the model that performs best in our
designed model.

Sensors 2020, 20, 5759 18 of 23

Figure 7. Example of segmentation results on the TuSimple lane dataset. The first column is the input
images. The second column is the segmentation masks of the images. The third column to the sixth
column is comparative experimental models. The last column is the model that performs best in our
designed models.

On the TuSimple lane dataset, the experimental results of our designed model and other models
are more obvious in Figure 7. The results indicated that the designed model performs better in
maintaining smooth and continuous in the lanes segmentation, and the first row can observe these
results. Compared to other models, the model we designed can obtain complete segmentation
information. In row 4, a lane on the left side of the original label image missed its segmentation
annotation label, but our model still obtains this lane segmentation result. All experiment models
have lost a segmentation road lane in row 3, but from the example of row 4 and row 5, we can see that
the model we designed retains the most complete segmentation information of all lanes, while other
comparative models either lose or do not have complete segmentation.

The segmentation results in the aerial image on the Massachusetts Roads Dataset are shown in
Figure 8. In the high-resolution aerial image, our models still perform well.

Figure 8. Example of segmentation results on the Massachusetts Road Dataset. The first column is the
input images. The second column is the segmentation masks of the images. The third to sixth columns
is the segmentation results of different models. The last column is the model that performs best in our
designed models.

The intuitive results of these experiments on three different datasets show that the model we
designed improved the completeness and continuity of linear feature segmentation. Thus, we obtain
higher pixel accuracy of linear feature segmentation when compared to other models.

Sensors 2020, 20, 5759 19 of 23

4.3. Discussion

This paper aims to enhance linear feature extraction by adding priori knowledge to neutral
networks. We selected parking slots, lanes, and road as experimental objects to observe the effectiveness
of the designed models. In a series of comparative experiments, we first compared the effect of the
designed model with state-of-the-art models for linear feature extraction. The results in Table 2 suggest
that the UnetDVHLinear (v1) have the best accuracy for slot marking and lane segmentation on
different datasets. Analyzing the structure of the UnetDVH-Linear (v1) network, we can conclude that
this result is related to HF layers and the DVH block. The HFCN and VH-HFCN models have HF layers,
and the VH-HFCN model has a VH-stage too. Compared with these models, the neural networks that
we designed to add the DVH block for linear feature extraction can be verified. The designed networks
take the advantages of the Unet, HF layers, and the VH-stage, and thus can achieve better performance.

Secondly, we changed the position of the VH-stage to compare the effect of the DVH block with
the v9h9 block for linear feature extraction. The experimental results in Tables 5 and 6 show that
placing the VH-stage behind the encoder layers (v1,v4) will obtain better results because even if we
place the VH-stage in the encoder layers (v2,v5) with a branch, the VH-stage will still destroy feature
information learned in the encoder. Thus, the position of the VH-stage will have a big effect on
linear extraction.

Finally, we tried to mix the v9h9 block and the DVH block in a different position. When we put the
DVH block in the encoder layer and put the v9h9 behind the encoder in a model of UnetDVH-Linear
(v8), it obtains excellent results both on the SS dataset and the TuSimple dataset. Moreover, in these
group experiments, we find that the DVH block will cause less damage to feature information learned
in encoder layers compared with the v9h9 block in encoder layer. From all experimental results,
we can figure out that the DVH block is more stable than the v9h9 block in linear feature extraction on
different datasets, the v9h9 block in encoder only performs well in the position of 2© for slot marking
segmentation, and the DVH block works well both in the position of 1© and 2©. These results also
relate to the type of the test dataset; all slot markings in the SS dataset are solid lines, but the lanes in
the TuSimple dataset have both solid and dashed lines.

The inference speed of our designed model is not the fastest. This is related to the backbone
network we used, and the Unet is not a commonly used lightweight network. In future research work,
the proposed DVH block can be used in the lightweight semantic segmentation networks. Although the
models we designed have achieved relatively favorable results on linear feature extraction, our models
have not improved significantly for the metric of precision.

5. Conclusions

This paper explored a new method to introduce the dilated convolutions with horizontal and
vertical kernels in VH-stage. We constructed an HF layer behind the decoder layer of Unet, and tried
to apply different types of horizontal and vertical convolution kernels in the VH-stage at different
positions on neutral networks. All the experimental results show that our best models improved
the accuracy of the slot marking, roads, and lanes in public datasets. From the experimental results,
we found that the performance of the DVH block we designed is more stable than the v9h9 block for
the linear feature extraction on a different datasets. Regardless of the types of horizontal and vertical
convolution in VH-stage, the VH-stage module putting in the encoder will destroy the information
that is learned from encoder layers, even if we put it in the encoder with a single branch. Compared
with the v9h9 block, the DVH block we designed caused less damage to encoder learning information,
so we can mix the DVH block and the v9h9 block for linear feature extraction; the DVH block can
be put in the encoder layer, while v9h9 must be put after the encoder. The v9h9 block will cause
irreparable damage to information that is learned by the lower layers. Our model can be used for lane
segmentation, parking slots segmentation, and road segmentation. The method proposed in this paper
will be extremely beneficial to lane classification and 3D lane detection tasks for the straight lines and
dashed lines, and lane segmentation is the first and most important step of these tasks.

Sensors 2020, 20, 5759 20 of 23

Since the training loss functions for binary classification are different from multi-category
segmentation, the designed models are trained on the datasets containing background and linear
objects (slot markers, lanes, roads) to verify the segmentation performance of the model for linear
features. In the next step, we will explore how DVH blocks will affect multi-class segmentation,
and how priori knowledge will help us to design spatial convolution kernels for geometric shape
segmentation (such as circles and rectangles). We found that many lanes were missing in the TuSimple
lane dataset, which will affect the training results of the designed models. In future work, we will
relabel such data and publish it to all researchers.

Author Contributions: Data curation, X.L.; Formal analysis, W.L.; Funding acquisition, L.C.; Investigation, X.L.;
Methodology, J.L.; Software, J.L.; Supervision, L.C. and X.F.; Writing—original draft, J.L.; Writing—review &
editing, W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Science and Technology Major Special Support Projects of Hunan
Province under Grant 2018GK4010.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
FCN Fully Convolutional Network
CNN Comvolutional Netural Network
DVH Dilated convolution with vertical and horizontal kernels
HOG Histogram of Oriented Gradient
LSTM Long Short-Term Memory
MPA Mean Pixel Accuracy
PA Pixel Accuracy
TP True Positive
TN True Negative
FP False Positive
FN False Negative
GAN Generative Adversarial Network
BCELoss Binary Cross-Entropy Loss
GPU Graphics Processing Unit
RAM Random Access Memory
HF High Fusion
VH-stage Vertical and Horizontal stage
log Logarithmic Function
R Set of Real Numbers
β1 A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates.
β2 A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates.
gamma The multiplicative factor of the decay learning rate.
ms Millisecond
km2 Square Kilometers
r Receptive field
σ ReLU function
dn Dilated factor
s Stride in Convolution Layers
k Kernel size

References

1. Jang, C.; Sunwoo, M. Semantic segmentation-based parking space detection with standalone around view
monitoring system. Mach. Vis. Appl. 2019, 30, 309–319. [CrossRef]

http://dx.doi.org/10.1007/s00138-018-0986-z

Sensors 2020, 20, 5759 21 of 23

2. Wu, Y.; Yang, T.; Zhao, J.; Guan, L.; Jiang, W. VH-HFCN based Parking Slot and Lane Markings
Segmentation on Panoramic Surround View. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium
(IV), Changshu, China, 26–30 June 2018.

3. Neven, D.; De Brabandere, B.; Georgoulis, S.; Proesmans, M.; Van Gool, L. Towards End-to-End Lane
Detection: An Instance Segmentation Approach. In Proceedings of the 2018 IEEE Intelligent Vehicles
Symposium (IV), Changshu, China, 26–30 June 2018.

4. Zhang, W.; Mahale, T. End to End Video Segmentation for Driving: Lane Detection For Autonomous Car.
arXiv 2018, arXiv:1812.05914.

5. Chen, P.R.; Lo, S.Y.; Hang, H.M.; Chan, S.W.; Lin, J.J. Efficient road lane marking detection with deep learning.
In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai,
China, 19–21 November 2018.

6. Wegner, J.D.; Montoya-Zegarra, J.A.; Schindler, K. Road networks as collections of minimum cost paths.
ISPRS J. Photogramm. Remote. Sens. 2015, 108, 128–137. [CrossRef]

7. Wegner, J.D.; Montoya-Zegarra, J.A.; Schindler, K. A higher-order crf model for road network extraction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR,
USA, 23–28 Jun 2013; pp. 1698–1705.

8. Zhong, Z.; Li, J.; Cui, W.; Jiang, H. Fully convolutional networks for building and road extraction: Preliminary
results. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Beijing, China, 10–15 July 2016; pp. 1591–1594.

9. Wei, Y.; Wang, Z.; Xu, M. Road Structure Refined CNN for Road Extraction in Aerial Image. IEEE Geosci.
Remote. Sens. Lett. 2017, 14, 709–713. [CrossRef]

10. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698.
[CrossRef]

11. Gupta, S.; Mazumdar, S.G. Sobel edge detection algorithm. Int. J. Comput. Sci. Manag. Res. 2013, 2, 1578–1583.
12. Naegel, B.; Passat, N.; Ronse, C. Grey-level hit-or-miss transforms—Part i: Unified theory. Pattern Recognit.

2007, 40, 635–647. [CrossRef]
13. Aptoula, E.; Lefevre, S.; Ronse, C. A hit-or-miss transform for multivariate images. Pattern Recognit. Lett.

2009, 30, 760–764. [CrossRef]
14. Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for infrared dim small target

detection. Pattern Recognit. 2010, 43, 2145–2156. [CrossRef]
15. Wei, Y.; Tian, Q.; Guo, J.; Huang, W.; Cao, J. Multi-vehicle detection algorithm through combining Harr and

HOG features. Math. Comput. Simul. 2019, 155, 130–145. [CrossRef]
16. Illingworth, J.; Kittler, J. A survey of the hough transform. Comput. Vision Graph. Image Process. 1988,

44, 87–116. [CrossRef]
17. Zhang, Q.; Couloigner, I. Accurate Centerline Detection and Line Width Estimation of Thick Lines Using the

Radon Transform. IEEE Trans. Image Process. 2007, 16, 310–316. [CrossRef] [PubMed]
18. Cha, J.; Cofer, R.; Kozaitis, S. Extended Hough transform for linear feature detection. Pattern Recognit. 2006,

39, 1034–1043. [CrossRef]
19. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
20. Zubair, S.; Yan, F.; Wang, W. Dictionary learning based sparse coefficients for audio classification with max

and average pooling. Digit. Signal Process. 2013, 23, 960–970. [CrossRef]
21. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
22. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.

In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015,
Munich, Germany, 5–9 October 2015; pp. 234–241.

23. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 640–651. [CrossRef]

24. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martínez, V.; Garcia-Rodriguez, J. A Review on Deep
Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 26 June–1
July 2016; pp. 770–778.

http://dx.doi.org/10.1016/j.isprsjprs.2015.07.002
http://dx.doi.org/10.1109/LGRS.2017.2672734
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1016/j.patcog.2006.06.004
http://dx.doi.org/10.1016/j.patrec.2009.02.007
http://dx.doi.org/10.1016/j.patcog.2009.12.023
http://dx.doi.org/10.1016/j.matcom.2017.12.011
http://dx.doi.org/10.1016/S0734-189X(88)80033-1
http://dx.doi.org/10.1109/TIP.2006.887731
http://www.ncbi.nlm.nih.gov/pubmed/17269626
http://dx.doi.org/10.1016/j.patcog.2005.05.014
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.dsp.2013.01.004
http://dx.doi.org/10.1109/TPAMI.2016.2572683

Sensors 2020, 20, 5759 22 of 23

26. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual
connections on learning. arXiv 2016, arXiv:1602.07261.

27. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 2261–2269.

28. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation
with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal.
Mach. Intell. 2017, 40, 834–848. [CrossRef]

29. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time
Semantic Segmentation. arXiv 2016, arXiv:1606.02147.

30. Eigen, D.; Fergus, R. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale
Convolutional Architecture. In Proceedings of the IEEE international conference on computer vision,
Santiago, Chile, 13–16 December 2015; pp. 2650–2658.

31. Roy, A.; Todorovic, S. A Multi-scale CNN for Affordance Segmentation in RGB Images. In Proceedings of
the Computer Vision – ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; pp. 186–201.

32. Bian, X.; Lim, S.N.; Zhou, N. Multiscale fully convolutional network with application to industrial inspection.
In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid,
NY, USA, 7–9 March 2016; pp. 1–8.

33. He, J.; Deng, Z.; Zhou, L.; Wang, Y.; Qiao, Y. Adaptive Pyramid Context Network for Semantic Segmentation.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 7519–7528.

34. Hou, Q.; Zhang, L.; Cheng, M.-M.; Feng, J. Strip Pooling: Rethinking Spatial Pooling for Scene Parsing. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
USA, 14–19 June 2020; pp. 4002–4011.

35. Lo, S.-Y.; Hang, H.-M.; Chan, S.-W.; Lin, J.-J. Multi-Class Lane Semantic Segmentation using Efficient
Convolutional Networks. In Proceedings of the 2019 IEEE 21st International Workshop on Multimedia
Signal Processing (MMSP), Kuala Lumpur, Malaysia, 27–29 September 2019; pp. 1–6.

36. Yang, T.; Wu, Y.; Zhao, J.; Guan, L. Semantic segmentation via highly fused convolutional network with
multiple soft cost functions. Cogn. Syst. Res. 2019, 53, 20–30. [CrossRef]

37. Wu, Y.; Yang, T.; Zhao, J.; Guan, L.; Li, J. Fully Combined Convolutional Network with Soft Cost Function
for Traffic Scene Parsing. In Proceedings of the Intelligent Computing Theories and Application, Liverpool,
UK, 7–10 August 2017.

38. Pizzati, F.; Allodi, M.; Barrera, A.; García, F. Lane Detection and Classification Using Cascaded CNNs. arXiv
2019, arXiv:1907.01294.

39. Mnih, V. Machine Learning for Aerial Image Labeling. Available online: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.369.1363&rep=rep1&type=pdf (accessed on 10 October 2020).

40. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, Nevada, 26 June–1 July 2016; pp. 2818–2826.

41. Wu, J.; Chung, A.C.S. Cross Entropy: A New Solver for Markov Random Field Modeling and Applications
to Medical Image Segmentation. Comput. Vis. 2005, 229–237.

42. Soomro, T.A.; Afifi, A.J.; Gao, J.; Hellwich, O.; Paul, M.; Zheng, L. Strided U-Net Model: Retinal Vessels
Segmentation using Dice Loss. In Proceedings of the 2018 Digital Image Computing: Techniques and
Applications (DICTA), Palm Springs, CA, USA, 26–29 October 2018; pp. 1–8.

43. Roy, A.G.; Conjeti, S.; Karri, S.P.K.; Sheet, D.; Katouzian, A.; Wachinger, C.; Navab, N. ReLayNet: Retinal layer
and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed. Opt. Express 2017, 8, 3627–3642. [CrossRef]

44. Guo, Y.; Chen, G.; Zhao, P.; Zhang, W.; Miao, J.; Wang, J.; Choe, T.E. Gen-LaneNet: A Generalized and
Scalable Approach for 3D Lane Detection. arXiv 2020, arXiv: 2003.10656.

45. Qin, T.; Chen, T.; Chen, Y.; Su, Q. AVP-SLAM: Semantic Visual Mapping and Localization for Autonomous
Vehicles in the Parking Lot. arXiv 2020, arXiv:2007.01813.

http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1016/j.cogsys.2018.04.004
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.369.1363&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.369.1363&rep=rep1&type=pdf
http://dx.doi.org/10.1364/BOE.8.003627

Sensors 2020, 20, 5759 23 of 23

46. Ghafoorian, M.; Nugteren, C.; Baka, N.; Booij, O.; Hofmann, M. EL-GAN: Embedding loss driven generative
adversarial networks for lane detection. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 256–272.

47. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Available online:
https://static.bsteiner.info/papers/pytorch.pdf (accessed on 10 October 2020).

48. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
49. Zou, Q.; Jiang, H.; Dai, Q.; Yue, Y.; Chen, L.; Wang, Q. Robust Lane Detection From Continuous Driving

Scenes Using Deep Neural Networks. IEEE Trans. Veh. Technol. 2019, 69, 41–54. [CrossRef]
50. Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as deep: Spatial CNN for traffic scene understanding. arXiv

2017, arXiv:1712.06080.
51. Hsu, Y.-C.; Xu, Z.; Kira, Z.; Huang, J. Learning to Cluster for Proposal-Free Instance Segmentation.

In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Acre, Brazil,
8–13 July 2018; pp. 1–8.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://static.bsteiner.info/papers/pytorch.pdf
http://dx.doi.org/10.1109/TVT.2019.2949603
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proposed Method
	An Overview of the Method
	VH-Stage
	The Position of the DVH Block
	Loss Function
	Datasets and Experimental Settings
	Datasets
	Experimental Settings
	Experimental Models

	Metrics
	Results
	Comparison with State-of-the-Art Methods
	An Comparison with Different Models
	Experiments with Different VH-Stage
	An Comparison with the v9h9 and the DVH Block
	Experiments on the Massachusetts Roads Dataset

	Visualization of Results and Discussion
	Feature Maps Visualization
	Segmentation Results
	Discussion

	Conclusions
	References

