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Abstract: The observability of the scale direction in visual–inertial odometry (VIO) under degenerate
motions of intelligent and connected vehicles can be improved by fusing Ackermann error state
measurements. However, the relative kinematic error measurement model assumes that the vehicle
velocity is constant between two consecutive camera states, which degrades the positioning accuracy.
To address this problem, a consistent monocular Ackermann VIO, termed MAVIO, is proposed to
combine the vehicle velocity and yaw angular rate error measurements, taking into account the
lever arm effect between the vehicle and inertial measurement unit (IMU) coordinates with a tightly
coupled filter-based mechanism. The lever arm effect is firstly introduced to improve the reliability
for information exchange between the vehicle and IMU coordinates. Then, the process model and
monocular visual measurement model are presented. Subsequently, the vehicle velocity and yaw
angular rate error measurements are directly used to refine the estimator after visual observation.
To obtain a global position for the vehicle, the raw Global Navigation Satellite System (GNSS) error
measurement model, termed MAVIO-GNSS, is introduced to further improve the performance of
MAVIO. The observability, consistency and positioning accuracy were comprehensively compared
using real-world datasets. The experimental results demonstrated that MAVIO not only improved
the observability of the VIO scale direction under the degenerate motions of ground vehicles, but also
resolved the inconsistency problem of the relative kinematic error measurement model of the vehicle
to further improve the positioning accuracy. Moreover, MAVIO-GNSS further improved the vehicle
positioning accuracy under a long-distance driving state. The source code is publicly available for the
benefit of the robotics community.

Keywords: visual–inertial odometry (VIO); lever arm effect; vehicle velocity and yaw angular rate
error measurements; intelligent and connected vehicles

1. Introduction

Intelligent and connected vehicles (ICVs) are a popular research topic in intelligent transportation
systems [1,2]. The Global Navigation Satellite System (GNSS) is one of the most mature global
positioning technologies for vehicle navigation [3]. However, the GNSS signal is vulnerable
under tunnels, trees and other obstacles [4]. Providing real-time and accurate vehicle pose
information in GNSS-denied environments is a necessary prerequisite for ICV navigation [5–7].
Visual–inertial odometry (VIO), which integrates a visual sensor and inertial measurement unit
(IMU), can provide pose information with six degrees of freedom (DOF). It is widely used in
the pose estimation of mobile robots owing to the advantages of favorable robustness, small size
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and low cost. VIO mainly consists of filter-based methods, including the Multi-Sensor Fusion
Approach (MSF) [8], the Robust Visual-Inertial Odometry (ROVIO) [9], the Multi-State Constraint
Kalman Filter (MSCKF) [10], Stereo-MSCKF [11], S-MSCKF [12], the Robocentric Visual-Inertial
Odometry (R-VIO) [13], Schmidt-MSCKF [14], the Lightweight Hybrid Visual-Inertial Odometry
(LARVIO) [15,16] and optimization-based methods including the Open Keyframe-based Visual-Inertial
SLAM (OKVIS) [17], ORB-SLAM-VI [18], VINS-Mono [19], PL-VIO [20], ICE-BA [21], VI-DSO [22],
VINS-Fusion [23,24], Basalt [25] and ORB-SLAM3 [26]. A detailed review of the VIO methods can be
found in the literature [27,28].

However, the standard VIO is subjected to additional unobservable directions under constant
acceleration and straight-line driving states or approximate combinations of the above two driving states
of ground vehicles, resulting in larger pose-estimation errors [29–31]. To address this problem, there are
some studies of integrating VIO algorithms with the information from the vehicle proprioceptive
sensors, including the drive motor encoder sensor and steering wheel angle sensor. Wu et al. [30]
proposed fusing wheel speed encoder measurements into VIO based on the square-root inverse
sliding window filter (SR-ISWF) [32], which significantly improved positioning accuracy under special
motions of ground differential steering robots. Li et al. [33] proposed a factor-graph-based, gyro-aided
localization system by exploiting the wheel odometry and gyro measurements, which achieved
better accuracy than ORB-SLAM [34,35]. KO-Fusion [36] was proposed to fuse the Mecanum wheel
motion constraint into RGB-D SLAM for ground robots, which improved the robustness of SLAM.
Zheng and Liu [37] proposed an SE(2)-constrained pose parameterization optimization-based VIO
for ground vehicles, which obtained better accuracy under sharp-turn motion. Dang et al. [38]
proposed a tightly-coupled VIO to fuse wheel encoder measurements by considering wheel slippage,
which achieved great improvements in positioning accuracy. Quan et al. [39] proposed a tightly
coupled monocular simultaneous localization and mapping (SLAM) system, VOSLAM, by integrating
visual, odometer and gyroscope measurements, which ensured the system’s accuracy. The VOSLAM
improved the robustness of initialization and faulty information by a map initialization method and
reliable odometer measurements. Liu et al. [40] proposed a tightly coupled optimization-based VIO to
combine a wheel encoder, IMU and visual sensor, which improved the robustness of initialization and
positioning accuracy. To improve the positioning accuracy before the first turning in [40], Liu et al. [41]
proposed a bidirectional trajectory computation method, which achieved a more accurate real-time
trajectory. Zhang et al. [42] proposed a wheel odometry with motion manifold representation for
ground robot localization, which achieved accurate 6D pose estimation. Ye et al. [43] proposed a robust
pose estimation method with multi-camera, odometer and gyroscope measurements in a tightly coupled
optimization framework, which had obvious advantages in loop-closure detection. Gang et al. [44]
proposed a tightly coupled SLAM method using wheel speed, IMU and monocular vision, which solved
the problem of an unobservable scale and improved the positioning robustness. Zuo et al. [45] proposed
a kinematics-constrained VIO and provided detailed observability analysis for a skid-steering mobile
robot, and the experimental results showed that the kinematic parameters were observable under
general motion and online kinematic parameter estimation can significantly improve positioning
accuracy. VINS-Vehicle [46] was proposed to fuse two DOF vehicle dynamics models into VIO based
on the sliding window optimization method, which significantly enhanced the robustness and accuracy
compared with existing VIO methods. Lee et al. [47] proposed a visual-inertial-wheel odometry
system, VIWO, by integrating the measurements of IMU, camera and wheel odometry preintegration,
which provided theoretical guidance for the localization of ground differential steering vehicle.

By integrating the information from the vehicle proprioceptive sensors, the above tightly coupled
VIO methods can improve the observability of the VIO scale direction and further enhance the vehicle
positioning accuracy. However, apart from in [46], the above methods have not taken enough advantage
of the measurements from the steering wheel angle sensor, which is a low-cost built-in sensor in ICVs.
Moreover, the above methods except [30,47] adopt an optimization-based backend, which requires
higher computational complexity. In view of the efficient performance, the Ackermann Multi-State



Sensors 2020, 20, 5757 3 of 32

Constraint Kalman Filter (ACK-MSCKF) [48] was proposed for integrating Ackermann error state
measurements and S-MSCKF in a tightly coupled filter-based mechanism in our previous work,
which improved the positioning accuracy under degenerate motions of ground vehicles. However,
it adopts a stereo configuration, which is more costly and less computationally efficient than monocular
solutions. Moreover, it assumes that the vehicle velocity is constant between two consecutive camera
states, which degrades the positioning accuracy. Lastly and most importantly, the observability,
consistency and positioning accuracy of different parameter configurations of ACK-MSCKF with
vehicle relative kinematic error measurements need to be further explored.

Therefore, in this paper, a tightly coupled filter-based consistent monocular Ackermann VIO,
termed MAVIO, is proposed to combine the vehicle velocity and yaw angular rate error measurements,
considering the lever arm effect between the vehicle and IMU coordinates. Similar to in the
work [49], to obtain a global position for the vehicle, the raw GNSS error measurement model,
termed MAVIO-GNSS, is introduced to further improve the performance of MAVIO. The famous
open-source VIO, i.e., S-MSCKF [12], is adopted as the base of this work. The main contributions of
this paper are highlighted as follows:

(1) Additional analyses of different parameter configurations of ACK-MSCKF are performed with
more real-world experiments.

(2) Conducting the formulation and implementation of a consistent monocular Ackermann VIO,
MAVIO, which not only improves the observability of the VIO scale direction but also resolves
the inconsistency problem of ACK-MSCKF for further improving the positioning accuracy.

(3) Introducing the raw GNSS error measurement model, MAVIO-GNSS, which further improves
the vehicle positioning accuracy under the long-distance driving state.

(4) The performance of MAVIO and MAVIO-GNSS are comprehensively compared with S-MSCKF and
ACK-MSCKF on real-world datasets with twenty rounds, on average, of real-world experiments.

(5) The source code [50] of MAVIO is publicly available to facilitate the reproducibility of
related research.

The remainder of this paper is structured as follows: The proposed approach is introduced in
detail in Section 2. Then, Section 3 describes how the real-world experiments were carried out. Besides,
the experimental results are discussed in Section 4. Finally, Section 5 presents the conclusions drawn.

2. The Proposed Approach

2.1. Coordinate Systems and Notations

The Vehicle Coordinate System {B}, IMU Coordinate System {I} and Camera Coordinate System
{C} had the same definitions as in [48]. The additional four coordinate systems were defined as follows:

(1) Inertial Coordinate System of IMU {GI}. The origin of {GI} is the same as that of {I} at the time of
VIO initialization. The axes of {GI} are obtained by calculation at the time of VIO initialization,
and its z-axis is aligned with Earth’s gravity.

(2) Inertial Coordinate System of Vehicle {GB}. The origin of {GB} is the same as that of {B} at the time
of VIO initialization. The axes of {GB} are obtained by calculation at the time of VIO initialization,
and its z-axis is aligned with Earth’s gravity.

(3) GNSS Coordinate System {S}. The origin of {S} lies in the center of the GNSS equipment. The x-axis
and y-axis point forward and to the right, respectively, following the right-hand rule.

(4) Universal Transverse Mercator Coordinate System {US}. The {US} is a universal global coordinate
system. Please refer to [51] for more details.

In this paper, we adopted the Jet Propulsion Laboratory (JPL) Proposed Standard Conventions [52,
53] to derive the corresponding formulas.
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2.2. The Lever Arm Effect between the Vehicle and IMU Coordinates

In the practical application of VIO systems for vehicles, the IMU and camera are usually installed
on the front of the vehicle. Due to the existence of translation extrinsic parameters between {B} and {I},
the lever arm effect between {B} and {I} cannot be negligible. The lever arm effect between {B} and {I} is
shown in Figure 1.
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According to the presentation of the lever arm effect in [54], the vehicle velocity BvBk
at time tk is

derived as
BvBk = C

(Bk
GI

q
)
GI vIk
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where Bvlk denotes the lever arm velocity at time tk between {B} and {I}, Bvlk and C
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and the vehicle angular Bωk rate at time tk is derived as

Bωk = C
(
B
I qk

)
·

Iωk +
Iωib,k (3)

where Iωib,k denotes the relative angular rate between {B} and {I}, which can be negligible with a fixed
installed location for the IMU.

2.3. Process Model and Monocular Visual Measurement Model

The vehicle state vector XBk at the sampling time for the IMU tk is defined as [54]

XBk =
[ Bk

GB
qT GBpT

Bk
GB vT

Ik
B
I qT

k
IpT

B,k bT
g,k bT

a,k

]T
(4)

where Bk
GB

q denotes the rotation quaternion from {GB} to {B} at time tk. GBpBk
denotes the position of

{B} in {GB}. GB vIk
denotes the velocity of {I} in {GB}. B

I qk and IpB,k denote the rotation and translation



Sensors 2020, 20, 5757 5 of 32

extrinsic parameters between {B} and {I} at time tk, respectively. The symbols bg,k and ba,k denote the
gyroscope and accelerometer biases of the IMU at time tk, respectively.

Following Equation (4), the error state vector X̃Bk ∈ R
21 at time tk is defined as

X̃Bk =
[

Bk
GB
θ̃T GB p̃T

Bk
GB ṽT

Ik
B
I θ̃

T
k

Ip̃T
B,k b̃

T
g,k b̃

T
a,k

]T
(5)

The continuous-time kinematic differential equations of the true state are

Bk
GB

.
q = 1

2 Ω
(
C
(
B
I qk

)
Iωk

)Bk
GB

q
GB

.
pBk =

GB vIk + C
(Bk
GB

q
)T

C
(
B
I qk

)(⌊
Iωk×

⌋
IpB,k

)
GB

.
vIk = C

(Bk
GB

q
)T

C
(
B
I qk

)
Iak +

Gg
B
I

.
q

k
= 03×1, I .

pB,k = 03×1
.
bg,k = n

ωg,k.
ba,k = n

ωa,k

(6)

where nωg,k and n
ωa,k denote the random-walk noises of the gyroscope and accelerometer biases at

time tk, respectively. The true IMU angular rate Iωk and acceleration Iak at time tk are represented as{ Iωk =
Iωm,k − bg,k − ng,k

Iak =
Iam,k − ba,k − na,k

(7)

where ng,k and na,k denote the Gaussian white noises of the gyroscope and accelerometer measurements
at time tk, respectively.

According to Equation (6), the linearized continuous-time kinematic differential equation of the
error state at time tk follows

.

X̃Bk = FBk X̃Bk + GBk nBk (8)

where nBk =
[

nT
g,k nT

ωg,k nT
a,k nT

ωa,k

]T
denotes the continuous-time input noise vector. FBk and

GBk are the continuous-time error-state transition matrix and input noise Jacobian matrix at time tk,
respectively. FBk and GBk are represented as

FBk =



FBk
(1,1)

03×3 03×3 FBk
(1,4)

03×3 FBk
(1,6)

03×3

FBk
(2,1)

03×3 FBk
(2,3)

FBk
(2,4)

FBk
(2,5)

FBk
(2,6)

03×3

FBk
(3,1)

03×3 03×3 FBk
(3,4)

03×3 03×3 FBk
(3,7)

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3


(9)

GBk =



GBk
(1,1)

03×3 03×3 03×3

GBk
(2,1)

03×3 03×3 03×3

03×3 03×3 GBk
(3,3)

03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 GBk
(6,2)

03×3 03×3

03×3 03×3 03×3 GBk
(7,4)


(10)
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where the analytical expressions of each block matrix in FBk and GBk are derived as described in
Appendix A.

The camera state at the sampling time of camera t j is defined as

XC j =
[

C j

GB
qT GB pT

C j

]T
(11)

where
C j

GB
q denotes the rotation quaternion from {GB} to {C} at time t j and GBpC j is the position of {C} in

{GB}. At tk = t j,
C j

GB
q and GBpC j are given by

C j

GB
q = C

I q ⊗ I
Bqk ⊗

Bk
GB

q
GBpC j

= GB pBk
+ C

(Bk
GB

q
)T

C
(
B
I qk

)(
IpC −

IpB,k
) (12)

According to Equation (4) and Equation (11), the full state vector Xk with N camera states at time
tk ∈

[
t j t j+1

)
is given by

Xk =
[

XT
Bk

C j−N+1

GB
qT GB pT

C j−N+1

C j−N+2

GB
qT GB pT

C j−N+2
· · ·

C j−1

GB
qT GB pT

C j−1

C j

GB
qT GB pT

C j

]T
(13)

Following Equation (13), the full error state vector X̃k ∈ R21+6N at time tk is defined as

X̃k =
[

X̃
T
Bk

C j−N+1

GB
θ̃T GB p̃T

C j−N+1

C j−N+2

GB
θ̃T GB p̃T

C j−N+2
· · ·

C j−1

GB
θ̃T GB p̃T

C j−1
C j

GB
θ̃T GB p̃T

C j

]T
(14)

The augmented state covariance matrix and monocular visual feature measurement model can be
obtained as detailed in [10,12].

2.4. Kinematic Error Measurement Model for Vehicle

2.4.1. Measurements of Vehicle Relative Kinematic Error

The refined measurement Jacobian matrix HB j of the vehicle relative kinematic errors in Equation
(18) of [48] is represented as

HB j =

 03×15 H
B j,θ

(1,2)
03×3 03×(6N−12) H

B j,θ

(1,5)
03×3 H

B j,θ

(1,7)
03×3

03×15 H
B j,v

(2,2)
H

B j,v

(2,3)
03×(6N−12) H

B j,v

(2,5)
H

B j,v

(2,6)
H

B j,v

(2,7)
H

B j,v

(2,8)

 (15)

where H
B j,θ

(1,2)
, H

B j,θ

(1,5)
and H

B j,θ

(1,7)
denote the measurement Jacobian block matrixes of the vehicle relative

rotation errors; H
B j,v

(2,2)
, H

B j,v

(2,3)
, H

B j,v

(2,5)
, H

B j,v

(2,6)
, H

B j,v

(2,7)
and H

B j,v

(2,8)
denote the measurement Jacobian block

matrixes of the vehicle relative translation errors; and their analytical expressions are derived as
described in Appendix B.

Considering the fact that the measurements of vehicle kinematic error originate from the vehicle
velocity, angular rate, and the characteristics of the vehicle relative kinematic errors between two
consecutive camera states, the method using a kinematic error measurement model for the vehicle
has different parameter configurations in practical application. Therefore, following Equation (15),
the tunable parameter configurations of ACK-MSCKF are as shown in Table 1.
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Table 1. The tunable parameter configurations of ACK-MSCKF.

ACK-MSCKF Tunable Parameter Configurations

ACK-MSCKF(1) For Equations (A24) and (A31), H
B j,θ

(1,5)
= H

B j,v

(2,5)
= H

B j,v

(2,6)
= 03×3

ACK-MSCKF(2) For Equations (A24) and (A31), H
B j,θ

(1,2)
= H

B j,θ

(1,5)
= H

B j,θ

(1,7)
= H

B j,v

(2,5)
= H

B j,v

(2,6)
= 03×3

ACK-MSCKF(3) Same as Equations (A24) and (A31)

ACK-MSCKF(4) For Equation (A24), H
B j,θ

(1,5)
= 03×3

2.4.2. Measurements of Vehicle Velocity and Angular Rate Error

The limitation of the above relative kinematic error measurement model for the vehicle derives
from the assumption that the vehicle velocity is constant for low-speed motion between two consecutive
camera states. To address this problem, the vehicle velocity and yaw angular rate error measurement
model, taking into account the lever arm effect between {B} and {I}, is presented as one of the primary
contributions of this paper.

The measurement residual rBk at time tk is defined as

rBk =

( Brωk
Brvk

)
=

( Bωk −
Bω̂k

BvBk −
Bv̂Bk

)
(16)

where Brvk
and Brωk

denote the vehicle velocity measurement residual and angular rate measurement
residual at time tk in {B}, respectively. BvBk and Bωk denote the vehicle velocity and angular rate
measurements at time tk in {B}, respectively. Bv̂Bk and Bω̂k denote the vehicle velocity and angular rate
estimations at time tk in {B}, respectively.

Considering the nonholonomic constraint of ground vehicles [54], BvBk and Bωk are represented as
BvBk =

[
BvBk,x 0 0

]T

Bωk =
[

0 0 Bωk,z
]T (17)

where BvBk,x and Bωk,z denote the vehicle’s longitudinal speed and the yaw angular rate measurements
at time tk in {B}, respectively. BvBk,x can be obtained from the vehicle controller area network-bus
(CAN-bus), and Bωk,z is represented as

Bωk,z =
BvBk,x/Rk (18)

where Rk denotes the steering radius at time tk; it can be obtained according to the Ackermann steering
geometry [55]:

Rk =
2L− B tanαo,k

2 tanαo,k
(19)

Following Equation (19), Bωk,z is represented as

Bωk,z =
BvBk,x/Rk =

2BvBk,x tanαo,k

2L− B tanαo,k
(20)

where Rk denotes the steering radius at time tk. L and B denote the wheel base and the distance between
the steering king pins, respectively, which can be acquired from manual measurement. αo,k denotes the
outer front wheel steering angle at time tk, which is represented as

αo,k = δo,k/λ (21)

where λ denotes the steering angular transmission ratio obtained from the offline calibration. δo,k
denotes the steering wheel angle at time tk, which can also be obtained from the vehicle CAN-bus.
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Based on the lever arm effect between {B} and {I}, Bω̂k and Bv̂Bk are represented as Bω̂k = C
(
B
I q̂k

)
·

Iω̂k
Bv̂Bk = C

(Bk
GB

q̂
)
GB v̂Ik + C

(
B
I q̂k

)(⌊
Iω̂k×

⌋
Ip̂B,k

) (22)

By linearizing Equation (16) at current error state X̃k, rBk is approximated as

rBk ' HBk X̃k + nBk (23)

where nBk denotes the measurement noise vector at time tk:

nBk =
[

nB
ωx nB

ωy nBk
ωz nB

vx nB
vy nB

vz

]T
(24)

where nB
ωx, nB

ωy and nBk
ωz denote the measurement noises of Bωk, and nB

vx, nB
vy and nB

vz denote the
measurement noises of BvBk . The measurement covariance matrix of nBk is given by

Uk = diag
{
σ2

B,ωx σ2
B,ωy UBk

ωz σ2
B,vx σ2

B,vy σ2
B,vz

}
(25)

where σB,vx, σB,vy, σB,vz, σB,ωx and σB,ωy denote the standard deviations of the measurement noise.

UBk
ωz denotes the variance of nBk

ωz at time tk; it is obtained by

UBk
ωz = ZkVZT

k + QBk
ωz (26)

where QBk
ωz denotes the variance of additional uncertain noise, and V denotes the covariance matrix of

the input noise:

V =

[
σ2
α 0

0 σ2
B,vx

]
(27)

where σα denotes the standard deviation of the outer front wheel steering angle.
Zk in Equation (26) denotes the Jacobian matrix of the input noise; it is represented as

Zk =
[

Zk,α Zk,vx
]

(28)

where 
Zk,α =

∂Bωk,z
∂αo,k

=
LBvBk ,x(tan2 αo,k+1)

(Rk tanαo,k)
2

Zk,vx =
∂Bωk,z
∂BvBk ,x

= 1
Rk

(29)

HBk in Equation (23) represents the measurement Jacobian matrix of vehicle velocity and angular
rate errors; it is derived as

HBk =

 03×3 03×3 03×3 HBk,ω
(1,4)

03×3 HBk,ω
(1,6)

03×3 03×6N

HBk,v
(2,1)

03×3 HBk,v
(2,3)

HBk,v
(2,4)

HBk,v
(2,5)

HBk,v
(2,6)

03×3 03×6N

 (30)

where HBk,ω
(1,4)

and HBk,ω
(1,6)

denote the measurement Jacobian block matrixes of the vehicle angular rate

errors; HBk,v
(2,1)

, HBk,v
(2,3)

, HBk,v
(2,4)

, HBk,v
(2,5)

and HBk,v
(2,6)

denote the measurement Jacobian block matrixes of the
vehicle velocity errors; and their analytical expressions are derived as described in Appendix C.

Following Equation (30), the tunable parameter configurations of MAVIO are shown in Table 2.
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Table 2. The tunable parameter configurations of the monocular Ackermann visual–inertial odometry
(VIO) (MAVIO).

MAVIO Tunable Parameter Configurations

MAVIO(1) Same as Equations (A35) and (A40)
MAVIO(2) For Equation (A35), HBk,ω

(1,4)
= HBk,ω

(1,6)
= 03×3

Following Equations (8) and (23), the updated covariance matrix and state vector of MAVIO at
time tk are obtained by using the standard extended Kalman filter (EKF).

2.5. Raw GNSS Error Measurement Model

To obtain a global position for the vehicle, the raw GNSS error measurement model is proposed to
further refine the estimator after the process of MAVIO(1).

The measurement residual USrpk
at time tk is defined as

USrpk
= US pSk −

US p̂Sk (31)

where US pSk and US p̂Sk denote the measured and estimated values of {S} in {US} at time tk,
respectively. USpSk can be converted from the raw latitude and longitude of the dual-antenna
Spatial NAV982-RG inertial navigation system without the carrier-phase based differential process by
using the robot_localization [56] process. US p̂Sk is derived as

US p̂Sk =
US pGB + C

(
GB
US

q
)TGB p̂Sk

= US pGB + C
(
GB
US

q
)T

(
GB p̂Bk + C

(Bk
GB

q̂
)TBp̂S,k

)
= US pGB + C

(
GB
US

q
)TGB p̂Bk + C

(
GB
US

q
)T

C
(Bk
GB

q̂
)T

C
(
B
I q̂k

)(
IpS −

Ip̂B,k

) (32)

where GB
US

q denotes the rotation quaternion from {US} to {GB}. US pGB denotes the position of {GB} in

{US}. IpS denotes the translation extrinsic parameter between {S} and {I}.

By linearizing Equation (32) at current error state X̃k, USrpk
is approximated as

US rpk
' HSk X̃k + nSk (33)

where nSk denotes the measurement noise vector of the raw GNSS data at time tk. HSk represents the
measurement Jacobian matrix of the raw GNSS errors; it is derived as

HSk =
[

HSk,p
(1,1)

HSk,p
(1,2)

03×3 HSk,p
(1,4)

HSk,p
(1,5)

03×3 03×3 03×6N

]
(34)

where HSk,p
(1,1)

, HSk,p
(1,2)

, HSk,p
(1,4)

and HSk,p
(1,5)

denote the measurement Jacobian block matrixes of the raw
GNSS errors, and their analytical expressions are derived as described in Appendix D.

Following Equations (8) and (33), the updated covariance matrix and state vector of MAVIO-GNSS
at time tk are obtained by using the standard extended Kalman filter (EKF).

3. Experiments and Results

3.1. Experimental Vehicle Platform and Real-World Datasets

The real-world experiments were performed with a medium-size Ackermann steering vehicle, i.e.,
Vehicle_a27, which is shown in Figure 2. For further details of the experimental vehicle setup, please
refer to [48].
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state. The VD03 dataset was acquired under a circular-curve driving state for five circles. The VD04 
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turning driving states by traveling around the building in a test field for one circle. The VD04 and 
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was acquired under straight-line and turning driving states by traveling around the building in a test 
field for three circles. The details of the real-world experimental datasets are shown in Table 3. 
  

Figure 2. Experimental vehicle platform: Vehicle_a27.

Taking into account the different vehicle driving states and travel distances, six different real-world
experimental datasets were acquired by using Vehicle_a27, i.e., the VD01 dataset, VD02 dataset, VD03
dataset, VD04 dataset, VD05 dataset and VD06 dataset. The VD01 dataset and VD02 dataset were,
respectively, acquired under a straight-line driving state and an S-shaped-curve driving state. The VD03
dataset was acquired under a circular-curve driving state for five circles. The VD04 dataset was
acquired under straight-line and turning driving states by traveling around the building in a test field
for one circle. The VD05 dataset was acquired under S-shaped-curve, straight-line and turning driving
states by traveling around the building in a test field for one circle. The VD04 and VD05 datasets
correspond to the AM_01 and AM_02 datasets in [48], respectively. The VD06 dataset was acquired
under straight-line and turning driving states by traveling around the building in a test field for three
circles. The details of the real-world experimental datasets are shown in Table 3.

Table 3. List of the real-world experimental datasets adapted from [54].

Dataset Vehicle Driving
State

Travel
Duration (s)

Travel
Distance (m)

Data Bulk

Vehicle
CAN-Bus

Stereo
Images IMU Ground

Truth

VD01 Straight 54 109 8657 1615 10,808 10,818
VD02 S-shaped 60 122 9644 1820 12,146 12,186
VD03 Circular 99 162 15,631 2959 19,716 19,789

VD04 Straight and
Turning 151 371 24,171 4532 30,164 30,244

VD05
S-shaped and
Straight and

Turning
170 400 27,135 5102 33,933 34,025

VD06 Straight and
Turning 367 1085 58,463 11,014 73,169 73,386

Figure 3 shows the ground-truth vehicle longitudinal speeds for the real-world datasets.
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Figure 3 indicates that the ground-truth vehicle longitudinal acceleration was close to a constant
value in short periods of time for all of the real-world datasets, which provides potential support for
the data with degenerate motions of ground vehicles.

3.2. Experimental Results

Considering the differences between each round of real-world experimental results caused by the
non-real-time computer operating system and other uncertain factors, the performance of MAVIO
and MAVIO-GNSS were compared with S-MSCKF and ACK-MSCKF using real-world datasets by
averaging all twenty rounds of experimental results. The arithmetic mean was adopted for the
averaging of many rounds of vehicle position and root mean square scale ratio data. For the average
of the vehicle attitude data, the weighted average quaternion [57] was used. For qualitative and
quantitative positioning accuracy evaluation, the estimated trajectory, absolute trajectory error (ATE),
relative translation error (RTE) and relative translation error percentage (RTEP) were calculated based
on the average results by using the rpg_trajectory_evaluation [58] package. Owing to this operation,
the results in this paper are more convincing. The source code for the data average processing can be
publicly accessed from [59].



Sensors 2020, 20, 5757 12 of 32

For consistency of comparison, we adopted the ground-truth pose errors and estimated ±3σ
(triple standard deviation) bounds [60] along with time in one round of experiments. For observability
comparisons for scale direction, the root mean square scale ratio (RMSSR) Srmssr,k at time tk was used
as an evaluation index. The smaller the root mean square scale ratio Srmssr,k, the more consistent the
estimated scale of the positioning trajectory with the real scale [54]. Srmssr,k is defined as

Srmssr,k =

√√√
1

k− 1

k∑
i=2

S2
i (35)

where k denotes the number of output pose estimation results. Si denotes the scale ratio [30] at time ti

Si =


∆d̂i
∆di
− 1 for ∆d̂i > ∆di

−

(
∆di
∆d̂i
− 1

)
for∆di > ∆d̂i

(36)

where,

∆d̂i =
Bi−1 p̂T

Bi
·

Bi−1 p̂Bi
=

(
GB p̂Bi

−
GB p̂Bi−1

)T
·

(
GB p̂Bi

−
GB p̂Bi−1

)
∆di =

Bi−1pT
Bi
·

Bi−1pBi
=

(
GB pBi

−
GB pBi−1

)T
·

(
GB pBi

−
GB pBi−1

) (37)

where GB p̂Bi
and GB p̂Bi−1

denote the estimated positions of {B} in {GB} at time ti and ti−1, respectively.
GB pBi

and GBpBi−1
denote the ground-truth positions of {B} in {GB} at time ti and ti−1, respectively.

GB
US

q and US pGB are initialized by the trajectory alignment method [61]; the open source code [62] is
referenced in the implementation of the trajectory alignment. For simplicity, the origin of {B} coincides
with that of {S}. The initial translation extrinsic parameter vector IpB between {B} and {I} is obtained
by manual measurement. The initial rotation extrinsic parameter vector B

I q between {B} and {I} was
calibrated by the method proposed in Section 2.4 of [48]. Taking into account the effects of vehicle
vibration and temperature changes, the IMU noise parameters calibrated with the kalibr_allan [63]
package were expanded by 10 times in all the real-world experiments.

3.2.1. Observability and Consistency Comparison

Figures 4 and 5 show the ground-truth pose errors and estimated ±3σ bounds of ACK-MSCKF(1)
and ACK-MSCKF(2) with time, respectively.

Figures 4 and 5 show that the estimated three-axis position standard deviation of ACK-MSCKF(1)
and ACK-MSCKF(2) with time for the VD06 dataset is close to zero, and the estimated three-axis
attitude angle standard deviation tends to be constant with time. These results indicate that the
three-axis vehicle position error state GB p̃B and attitude angle error state B

GB
θ̃ are both observable.

Actually, the vehicle relative kinematic error measurements do not provide information on the vehicle
yaw angle and three-axis position in {GB}. Therefore, ACK-MSCKF(1) and ACK-MSCKF(2) obtain
spurious information along the direction of the vehicle yaw angle and three-axis position, which leads
to an inconsistency problem in that the ground-truth errors of the vehicle yaw angle and three-axis
position are far greater than their estimated 3σ with time.
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Figures 6 and 7 show the ground-truth pose errors and estimated ±3σ bounds of ACK-MSCKF(3)
and ACK-MSCKF(4) with time, respectively.
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Similarly, it is seen from Figures 6 and 7 that ACK-MSCKF(3) and ACK-MSCKF(4) are subjected
to the same problem as above, especially along the direction of the vehicle yaw angle. From the
above analysis, there appears the problem of estimator inconsistency in all the tunable parameter
configurations of ACK-MSCKF.
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Figures 8 and 9 show the ground-truth pose errors and estimated ±3σ bounds of MAVIO(1) and
MAVIO(2) with time, respectively.
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It is concluded from Figures 8 and 9 that the estimator of MAVIO(1) and MAVIO(2) is consistent
according to the fact that the ground-truth errors of the vehicle yaw angle and three-axis position are
enclosed in their estimated ±3σwith time. Moreover, the three-axis vehicle position error state and yaw
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angle error state of the different parameter configurations of MAVIO are unobservable, which agrees
with the result of the existing VIO observability analysis [64]. Therefore, MAVIO can overcome the
inconsistency problem of ACK-MSCKF by introducing the vehicle velocity and angular rate error
measurements, which could have a positive effect on improving positioning accuracy. Note that the
reset phenomenon of the estimated ±3σ is attributed to the robust implementation of S-MSCKF [12].

Figure 10 shows the ground-truth pose errors and estimated ±3σ bounds of MAVIO-GNSS
with time.
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Satellite System (GNSS) with time for the VD06 dataset.

It can be seen from Figure 10 that the three-axis vehicle position error state and yaw angle error
state of MAVIO-GNSS are observable, which benefits from the raw GNSS error measurement model.
This implies that MAVIO-GNSS can obtain a global position for a vehicle under a long-distance
driving state.

By averaging all rounds of experimental results, the better performance of the RMSSR among the
different configurations at the last time step for each experimental dataset is shown in Table 4.

Table 4. The average root mean square scale ratio (RMSSR) at the last time step on each
experimental dataset.

Methods VD01 VD02 VD03 VD04 VD05 VD06

MAVIO 1.29 (a) 1.29 (a,b) 1.14 (b) 1.42 (a) 1.42 (b) 1.63 (a)

ACK-MSCKF 1.21 (f) 1.11 (f) 0.98 (d,e,f) 1.31 (f) 1.21 (f) 1.46 (f)

S-MSCKF 1.68 1.38 1.22 1.99 1.57 2.08
(a) From MAVIO(1); (b) From MAVIO(2); (c) From ACK-MSCKF(1); (d) From ACK-MSCKF(2); (e) From ACK-MSCKF(3);
(f) From ACK-MSCKF(4).

It can be seen from the quantitative results in Table 4 that the average RMSSRs of MAVIO
and ACK-MSCKF are smaller than the RMSSR for S-MSCKF for all of the datasets. Taken together,
the above results indicate that both MAVIO and ACK-MSCKF can improve the observability of the
VIO scale direction.
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3.2.2. Positioning Accuracy Comparison

Figure 11 shows the vehicle trajectory estimation results with a top view.
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Figure 11 shows that S-MSCKF has larger scale drift, especially for the VD01, VD03, VD04 and
VD06 datasets. Meanwhile, by selecting the appropriate parameter configuration in practice, the
estimated trajectories of ACK-MSCKF and proposed MAVIO align to the ground truth better
than S-MSCKF for all of the datasets. The performance difference among the different parameter
configurations of ACK-MSCKF could be attributed to the inconsistency problem mentioned above.
By improving the consistency, MAVIO is more robust than ACK-MSCKF. By introducing the raw GNSS
error measurements, MAVIO-GNSS performs better than MAVIO, especially for the long-distance
VD06 dataset.

The boxplots of the RTEPs are shown in Figure 12.
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Figure 12 demonstrates that the RTEPs of ACK-MSCKF and the proposed MAVIO are significantly
reduced in comparison to the RTEP of S-MSCKF within the sub-trajectory length of 5 m for all of the
datasets. Based on the average results for twenty rounds of experiments, the better performance of
ATE among the different configurations along the whole trajectory for each experimental dataset is
shown in Table 5, and Table 6 shows the overall RTE for all of the experimental datasets.

Table 5. The average absolute trajectory error (ATE) along the whole trajectory for each
experimental dataset.

Methods VD01
(m)

VD02
(m)

VD03
(m)

VD04
(m)

VD05
(m)

VD06
(m)

MAVIO 1.31 (b) 2.45 (b) 0.78 (a) 2.01 (b) 3.16 (b) 4.73 (b)

MAVIO-GNSS 1.22 2.27 0.79 1.67 3.59 3.28
ACK-MSCKF 1.60 (d) 2.57 (c) 0.87 (d) 2.46 (c,d) 3.67 (d) 3.80 (d)

S-MSCKF 9.78 2.31 2.44 14.83 4.25 21.76
(a) From MAVIO(1); (b) From MAVIO(2); (c) From ACK-MSCKF(1); (d) From ACK-MSCKF(2); (e) From ACK-MSCKF(3);
(f) From ACK-MSCKF(4).

The quantitative results in Table 5 show that the average ATEs of MAVIO, MAVIO-GNSS and
ACK-MSCKF is smaller than the ATE of S-MSCKF for all of the datasets but VD02. The trajectory
error difference of S-MSCKF with that in [48] for the VD05 dataset is attributed to the data average
processing which ensures more generalizable result. Compared with S-MSCKF, MAVIO reduces the
average ATE by 86.61%, 68.03%, 86.45%, 25.65% and 78.26% for the VD01, VD03, VD04, VD05 and
VD06 datasets, respectively. Moreover, MAVIO performs better than ACK-MSCKF for the VD01, VD02,
VD03, VD04 and VD05 datasets, which reduces the average ATEs by 18.13%, 4.67%, 10.34%, 18.29%



Sensors 2020, 20, 5757 20 of 32

and 13.90%, respectively. It is also observable that MAVIO performs worse than ACK-MSCKF for the
VD06 dataset. A potential reason is that the extrinsic parameters between {B} and {I} are not accurate
enough. Furthermore, MAVIO-GNSS performs better than MAVIO for the VD01, VD02, VD04 and
VD06 datasets, which reduces the average ATEs by 6.87%, 7.35%, 16.92% and 30.66%, respectively.

Table 6. The overall relative translation error (RTE) for all of the experimental datasets.

Sub-Trajectory
Length (m)

Relative Translation Error (m)

MAVIO MAVIO-GNSS ACK-MSCKF S-MSCKF

1 0.08 (a, b) 0.08 0.08 (c, d) 0.22
5 0.23 (b) 0.21 0.26 (c, d) 0.93
10 0.40 (b) 0.35 0.44 (c, d) 1.71
20 0.70 (b) 0.60 0.76 (d) 3.00
50 1.51 (b) 1.29 1.51 (d) 5.57

100 2.79 (b) 2.29 2.57 (d) 8.33
(a) From MAVIO(1); (b) From MAVIO(2); (c) From ACK-MSCKF(1); (d) From ACK-MSCKF(2); (e) From ACK-MSCKF(3);
(f) From ACK-MSCKF(4).

Table 6 shows that the overall RTE of MAVIO within the sub-trajectory length of 20 m is smaller
than that of ACK-MSCKF. MAVIO-GNSS performs best in terms of the RTE within the sub-trajectory
length of 100 m. The lowest RTE from MAVIO-GNSS is 2.29 m in the sub-trajectory length of 100 m,
which is reduced, respectively, by 17.92%, 10.89% and 72.51% under the same conditions compared to
that with MAVIO, ACK-MSCKF and S-MSCKF.

4. Discussion

ACK-MSCKF significantly improves the observability of the VIO scale direction and positioning
accuracy under degenerate motions of ground vehicles. However, for practical implementation,
the appropriate parameter configuration is needed to obtain better performance due to the
inconsistency problem.

By improving the observability of the VIO scale direction and overcoming the inconsistency of
ACK-MSCKF, MAVIO is more robust and further improves vehicle positioning accuracy using only
a monocular configuration, which mainly benefits from the vehicle velocity and yaw angular rate
error measurement model instead of the relative kinematic error measurement model for the vehicle.
Compared with S-MSCKF, MAVIO reduces the average ATE by 86.61%, 68.03%, 86.45%, 25.65% and
78.26% for the VD01, VD03, VD04, VD05 and VD06 datasets, respectively. Moreover, MAVIO performs
better than ACK-MSCKF for the VD01, VD02, VD03, VD04 and VD05 datasets, which reduces the
average ATE by 18.13%, 4.67%, 10.34%, 18.29% and 13.90%, respectively. By introducing the raw GNSS
error measurement model, MAVIO-GNSS further improves the vehicle positioning accuracy under a
long-distance driving state. The lowest RTE from MAVIO-GNSS is 2.29 m in the sub-trajectory length
of 100 m, and it is reduced, respectively, by 17.92%, 10.89% and 72.51% under the same conditions
compared to the values obtained with MAVIO, ACK-MSCKF and S-MSCKF.

5. Conclusions

This paper proposed a consistent monocular Ackermann VIO termed MAVIO. The vehicle velocity
and yaw angular rate error measurement model was introduced in detail, considering the lever
arm effect between {B} and {I}. To obtain a global position for the vehicle, the raw GNSS error
measurement model was introduced to further improve the performance of MAVIO. The observability
and positioning accuracy were comprehensively compared using real-world datasets, averaging twenty
rounds of experimental results. The experimental results demonstrated that the proposed MAVIO
not only improved the observability of the VIO scale direction under degenerate motions of ground
vehicles, but also resolved the inconsistency problem of ACK-MSCKF to further improve the vehicle
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positioning accuracy. Moreover, MAVIO-GNSS further improved the vehicle positioning accuracy
under a long-distance driving state.

A limitation derives from the assumptions of approximate planar motion for a low-speed driving
state and highly accurate extrinsic parameters between {B} and {I}. A future research target is to
further investigate the performance impact of the vehicle speed and vehicle-IMU extrinsic parameter
calibration to better enhance the positioning accuracy.

Author Contributions: Conceptualization, F.M. and J.S.; funding acquisition, F.M.; investigation, S.Z.;
methodology, J.S.; project administration, L.W.; resources, K.D.; supervision, F.M. and L.W.; writing—original
draft, J.S.; writing—review and editing, F.M. and L.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Jilin Province Key Technology and Development Program (Grant No.
20190302077GX).

Acknowledgments: We would like to express our gratitude for the support received from Yu Yang, and we
acknowledge that some of the content of this paper refers to the dissertation [54] of J.S.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

According to the derivation of Equation (177) in [53], Bk
GB

.

θ̃ is derived as

Bk
GB

.

θ̃ = −
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⌋Bk

GB
θ̃ + Bω̃k (A1)

where Bω̃k is derived from the following formula:
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B
I qk

)
Iωk (A2)

According to the error quaternion representation [53], Equation (A2) is represented as
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By ignoring the second order terms, Equation (A4) is represented as
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Therefore, the Jacobian matrix of Bk
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θ̃ is represented as
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Following Equation (6), GB
.
pBk is calculated as
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Equation (A8) is represented as
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Therefore, the Jacobian matrix of GB
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is represented as
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Following Equation (6), GB
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Equation (A12) is represented as
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Iãk

)
+ Gg

= C
(
Bk
GB

q̂
)T

C
(
B
I q̂k

)
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I q̂k

)
Iâk×

⌋
Bk
GB
θ̃ + C

(
Bk
GB

q̂
)T⌊

C
(
B
I q̂k

)
Iâk×

⌋
B
I θ̃k

+ C
(
Bk
GB

q̂
)T

C
(
B
I q̂k

)(
−b̃a,k − na,k

) (A14)

Therefore, the Jacobian matrix of GB
.
ṽIk

is represented as



FBk
(3,1)

=
∂GB

.
ṽIk

∂
Bk
GB
θ̃

= −C
(Bk
GB

q̂
)T⌊

C
(
B
I q̂k

)
Iâk×

⌋
FBk
(3,4)

=
∂GB

.
ṽIk

∂B
I θ̃k

= C
(Bk
GB

q̂
)T⌊

C
(
B
I q̂k

)
Iâk×

⌋
FBk
(3,7)

=
∂GB

.
ṽIk

∂b̃a,k
= −C

(Bk
GB

q̂
)T

C
(
B
I q̂k

)
GBk

(3,3)
=

∂GB
.
ṽIk

∂na,k
= −C

(Bk
GB

q̂
)T

C
(
B
I q̂k

)
(A15)

According to the characteristics of the IMU noise model [53],

.
bg,k = n

ωg,k,
.
ba,k = n

ωa,k.
b̂g,k = 03×1,

.
b̂a,k = 03×1

(A16)

Equation (A16) can be represented as

.

b̃g,k = n
ωg,k.

b̃a,k = n
ωg,k

(A17)

Therefore, 
GBk

(6,2)
=

∂
.

b̃g,k
∂n
ωg,k

= I3

GBk
(7,4)

=
∂

.

b̃a,k
∂n
ωa,k

= I3

(A18)

Thereby, the analytical expressions of each block matrix in Equations (9) and (10) are derived.
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Appendix B

Following Equation (7) in [48], according to the error quaternion representation [53], the Ackermann

steering attitude angle error
B j−1

B j
θ̃ from time t j−1 to time t j is derived as

(
I3×3 −

⌊
B j−1

B j
θ̃×

⌋)
C
(
B j−1

B j
q̂
)

= C
(
C
B q̂

)T(
I3×3 +

⌊
C
I θ̃×

⌋)(
I3×3 −

⌊
C j−1

G θ̃×

⌋)
C
(
C j−1

G q̂
)

C
(
C j

G q̂
)T(

I3×3 +
⌊

C j

G θ̃×

⌋)(
I3×3 −

⌊
C
I θ̃×

⌋)
C
(
C
B q̂

)
=

(
C
(
C
B q̂

)T
C
(
C j−1

G q̂
)
C
(
C j

G q̂
)T
−C

(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(
C j−1

G q̂
)
C
(
C j

G q̂
)T

+ C
(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(
C j−1

G q̂
)
C
(
C j

G q̂
)T

)
(
C
(
C
B q̂

)
−

⌊
C
I θ̃×

⌋
C
(
C
B q̂

)
+

⌊
C j

G θ̃×

⌋
C
(
C
B q̂

))
=

(
C
(
C
B q̂

)T
C
(
C j−1

C j
q̂
)
−C

(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(
C j−1

C j
q̂
)
+ C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(
C j−1

C j
q̂
))

(
C
(
C
B q̂

)
−

⌊
C
I θ̃×

⌋
C
(
C
B q̂

)
+

⌊
C j

G θ̃×

⌋
C
(
C
B q̂

))
= C

(
C
B q̂

)T
C
(
C j−1

C j
q̂
)
C
(
C
B q̂

)
−C

(
C
B q̂

)T
C
(
C j−1

C j
q̂
)⌊

C
I θ̃×

⌋
C
(
C
B q̂

)
+ C

(
C
B q̂

)T
C
(
C j−1

C j
q̂
)⌊

C j

G θ̃×

⌋
C
(
C
B q̂

)
−

C
(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(
C j−1

C j
q̂
)
C
(
C
B q̂

)
+ C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(
C j−1

C j
q̂
)
C
(
C
B q̂

)

(A19)

Equation (A19) can be represented as⌊
B j−1

B j
θ̃×

⌋
C
(

B j−1

B j
q̂
)

= C
(
C
B q̂

)T
C
(

C j−1

C j
q̂
)⌊

C
I θ̃×

⌋
C
(
C
B q̂

)
−C

(
C
B q̂

)T
C
(

C j−1

C j
q̂
)⌊

C j

G θ̃×

⌋
C
(
C
B q̂

)
+

C
(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(

C j−1

C j
q̂
)
C
(
C
B q̂

)
−C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(

C j−1

C j
q̂
)
C
(
C
B q̂

) (A20)

Then,⌊
B j−1

B j
θ̃×

⌋
= C

(
C
B q̂

)T
C
(

C j−1

C j
q̂
)⌊

C
I θ̃×

⌋
C
(

C j−1

C j
q̂
)T

C
(
C
B q̂

)
−C

(
C
B q̂

)T
C
(

C j−1

C j
q̂
)⌊

C j

G θ̃×

⌋
C
(

C j−1

C j
q̂
)T

C
(
C
B q̂

)
+

C
(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(
C
B q̂

)
−C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(
C
B q̂

) (A21)

According to the properties of the cross product skew-symmetric matrix [53], Equation (A21) is
represented as⌊

B j−1

B j
θ̃×

⌋
=

⌊
C
(
C
B q̂

)T
C
(

C j−1

C j
q̂
)

C
I θ̃×

⌋
−

⌊
C
(
C
B q̂

)T
C
(

C j−1

C j
q̂
)

C j

G θ̃×

⌋
+

⌊
C
(
C
B q̂

)TC j−1

G θ̃×

⌋
−

⌊
C
(
C
B q̂

)TC
I θ̃×

⌋ (A22)

Then,

B j−1

B j
θ̃ = −C

(
C
B q̂

)T
C
(

C j−1

C j
q̂
)

C j

G θ̃ + C
(
C
B q̂

)TC j−1

G θ̃ +
(
C
(
C
B q̂

)T
C
(

C j−1

C j
q̂
)
−C

(
C
B q̂

)T
)

C
I θ̃ (A23)
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Therefore, the measurement Jacobian matrixes of the vehicle relative rotation errors are
represented as

H
B j,θ

(1,7)
=

∂rB
θ j−1, j

∂
Cj
G θ̃

=
∂

Bj−1
Bj
θ̃

∂
Cj
G θ̃

= −C
(
C
B q̂

)T
C
(

C j−1

C j
q̂
)
= −C

(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

H
B j,θ

(1,2)
=

∂rB
θ j−1, j

∂C
I θ̃

=
∂

Bj−1
Bj
θ̃

∂C
I θ̃

= C
(
C
B q̂

)T
C
(

C j−1

C j
q̂
)
−C

(
C
B q̂

)T
= C

(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T
−C

(
C
B q̂

)T

H
B j,θ

(1,5)
=

∂rB
θ j−1, j

∂
Cj−1
G θ̃

=
∂

Bj−1
Bj
θ̃

∂
Cj−1
G θ̃

= C
(
C
B q̂

)T

(A24)

Similarly, the velocity measurement residual rB
v j

at time t j is represented as

rB
v j
= zB

v j
−

B j−1 p̂B j /∆t j−1, j (A25)

Then,
rB

v j
∆t j−1, j = zB

v j
∆t j−1, j −

B j−1 p̂B j

= B j−1pB j −
B j−1 p̂B j

(A26)

Equation (A26) is represented as

rB
v j

∆t j−1, j =
B j−1pB j −

B j−1 p̂B j = C
(
C
Bq

)T
[
C
(

C j−1

G q
)[

C
(

C j

G q
)T

CpB + GpC j −
GpC j−1

]
−

CpB

]
−

B j−1 p̂B j (A27)

where
CpB = CpI + C

(
C
I q

)
IpB

= −C
(
C
I q

)
IpC + C

(
C
I q

)
IpB

= C
(
C
I q

)(
−

IpC + IpB

) (A28)
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Thus, Equation (A27) is represented as

rB
v j

∆t j−1, j

= C
(
C
Bq

)T
[
C
(

C j−1

G q
)[

C
(

C j

G q
)T

CpB + GpC j −
GpC j−1

]
−

CpB

]
−

B j−1 p̂B j

= C
(
C
B q̂

)T(
I3×3 +

⌊
C
I θ̃×

⌋)(
I3×3 −

⌊
C j−1

G θ̃×

⌋)
C
(

C j−1

G q̂
)
·[

C
(

C j

G q̂
)T(

I3×3 +
⌊

C j

G θ̃×

⌋)(
I3×3 −

⌊
C
I θ̃×

⌋)
C
(
C
I q̂

)(
−

Ip̂C −
Ip̃C + IpB

)
+ Gp̂C j +

Gp̃C j −
Gp̂C j−1 −

Gp̃C j−1

]
−

C
(
C
B q̂

)T(
I3×3 +

⌊
C
I θ̃×

⌋)(
I3×3 −

⌊
C
I θ̃×

⌋)
C
(
C
I q̂

)(
−

Ip̂C −
Ip̃C + IpB

)
−

B j−1 p̂B j

= C
(
C
B q̂

)T
(
I3×3 −

⌊
C j−1

G θ̃×

⌋
+

⌊
C
I θ̃×

⌋)
C
(

C j−1

G q̂
)
·[(

C
(

C j

G q̂
)T

C
(
C
I q̂

)
−C

(
C j

G q̂
)T⌊

C
I θ̃×

⌋
C
(
C
I q̂

)
+ C

(
C j

G q̂
)T⌊C j

G θ̃×

⌋
C
(
C
I q̂

))(
−

Ip̂C −
Ip̃C + IpB

)
+ Gp̂C j +

Gp̃C j −
Gp̂C j−1 −

Gp̃C j−1

]
−(

C
(
C
B q̂

)T
C
(
C
I q̂

)
−C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(
C
I q̂

)
+ C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(
C
I q̂

))(
−

Ip̂C −
Ip̃C + IpB

)
−

B j−1 p̂B j

=
(
C
(
C
B q̂

)T
C
(

C j−1

G q̂
)
−C

(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(

C j−1

G q̂
)
+ C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(

C j−1

G q̂
))
·[(

C
(

C j

G q̂
)T

C
(
C
I q̂

)
−C

(
C j

G q̂
)T⌊

C
I θ̃×

⌋
C
(
C
I q̂

)
+ C

(
C j

G q̂
)T⌊C j

G θ̃×

⌋
C
(
C
I q̂

))(
−

Ip̂C −
Ip̃C + IpB

)
+ Gp̂C j +

Gp̃C j −
Gp̂C j−1 −

Gp̃C j−1

]
−(

C
(
C
B q̂

)T
C
(
C
I q̂

)(
−

Ip̂C + IpB

)
−C

(
C
B q̂

)T
C
(
C
I q̂

)
Ip̃C

)
−

B j−1 p̂B j

=
(
C
(
C
B q̂

)T
C
(

C j−1

G q̂
)
−C

(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(

C j−1

G q̂
)
+ C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(

C j−1

G q̂
))
·(

C
(

C j

G q̂
)T

Cp̂B −C
(

C j

G q̂
)T

C
(
C
I q̂

)
Ip̃C −C

(
C j

G q̂
)T⌊

C
I θ̃×

⌋
Cp̂B + C

(
C j

G q̂
)T⌊C j

G θ̃×

⌋
Cp̂B + Gp̂C j +

Gp̃C j −
Gp̂C j−1 −

Gp̃C j−1

)
−

C
(

C j

G q̂
)T

Cp̂B + C
(
C
B q̂

)T
C
(
C
I q̂

)
Ip̃C −

B j−1 p̂B j

= C
(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

Cp̂B −C
(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

C
(
C
I q̂

)
Ip̃C −C

(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T⌊

C
I θ̃×

⌋
Cp̂B+

C
(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T⌊C j

G θ̃×

⌋
Cp̂B + C

(
C
B q̂

)T
C
(

C j−1

G q̂
)

Gp̂C j + C
(
C
B q̂

)T
C
(

C j−1

G q̂
)

Gp̃C j−

C
(
C
B q̂

)T
C
(

C j−1

G q̂
)

Gp̂C j−1 −C
(
C
B q̂

)T
C
(

C j−1

G q̂
)

Gp̃C j−1 −C
(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

Cp̂B−

C
(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(

C j−1

G q̂
)(

Gp̂C j −
Gp̂C j−1

)
+ C

(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

Cp̂B+

C
(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(

C j−1

G q̂
)(

Gp̂C j −
Gp̂C j−1

)
−C

(
C j

G q̂
)T

Cp̂B + C
(
C
B q̂

)T
C
(
C
I q̂

)
Ip̃C−

C
(
C
B q̂

)T
[
C
(

C j−1

G q̂
)[

C
(

C j

G q̂
)T

Cp̂B + Gp̂C j −
Gp̂C j−1

]
−

Cp̂B

]
= −C

(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

C
(
C
I q̂

)
Ip̃C −C

(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T⌊

C
I θ̃×

⌋
Cp̂B+

C
(
C
B q̂

)T
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T⌊C j

G θ̃×

⌋
Cp̂B + C

(
C
B q̂

)T
C
(

C j−1

G q̂
)

Gp̃C j −C
(
C
B q̂

)T
C
(

C j−1

G q̂
)

Gp̃C j−1−

C
(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

Cp̂B −C
(
C
B q̂

)T
⌊

C j−1

G θ̃×

⌋
C
(

C j−1

G q̂
)(

Gp̂C j −
Gp̂C j−1

)
+

C
(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(

C j−1

G q̂
)
C
(

C j

G q̂
)T

Cp̂B + C
(
C
B q̂

)T⌊C
I θ̃×

⌋
C
(

C j−1

G q̂
)(

Gp̂C j −
Gp̂C j−1

)
+

C
(
C
B q̂

)T
C
(
C
I q̂

)
Ip̃C

(A29)

Then,

rB
v j

∆t j−1, j

= −C
(
C
B q̂

)T
C
(
C j−1

G q̂
)
C
(
C j

G q̂
)T⌊

Cp̂B×
⌋C j

G θ̃ + C
(
C
B q̂

)T
C
(
C j−1

G q̂
)
Gp̃C j+

C
(
C
B q̂

)T
[
C
(
C j−1

G q̂
)
C
(
C j

G q̂
)T⌊

Cp̂B×
⌋
−

⌊(
C
(
C j−1

G q̂
)
C
(
C j

G q̂
)T

Cp̂B + C
(
C j−1

G q̂
)(

Gp̂C j −
Gp̂C j−1

))
×

⌋]
C
I θ̃+

C
(
C
B q̂

)T
(
C
(
C
I q̂

)
−C

(
C j−1

G q̂
)
C
(
C j

G q̂
)T

C
(
C
I q̂

))
Ip̃C −C

(
C
B q̂

)T
C
(
C j−1

G q̂
)
Gp̃C j−1+

C
(
C
B q̂

)T
⌊(

C
(
C j−1

G q̂
)
C
(
C j

G q̂
)T

Cp̂B + C
(
C j−1

G q̂
)(

Gp̂C j −
Gp̂C j−1

))
×

⌋
C j−1

G θ̃

(A30)
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Therefore, the measurement Jacobian matrixes of the vehicle relative translation errors are
represented as



H
B j,v

(2,7)
=

∂rB
vj

∂
Cj
G θ̃

= −C
(
C
B q̂

)T
C
(

C j−1
G q̂

)
C
(

C j
G q̂

)T⌊
Cp̂B×

⌋
/∆t j−1, j

H
B j,v

(2,8)
=

∂rB
vj

∂Gp̃Cj
= C

(
C
B q̂

)T
C
(

C j−1
G q̂

)
/∆t j−1, j

H
B j,v

(2,2)
=

∂rB
vj

∂C
I θ̃

= C
(
C
B q̂

)T
[
C
(

C j−1
G q̂

)
C
(

C j
G q̂

)T⌊
Cp̂B×

⌋
−

⌊(
C
(

C j−1
G q̂

)
C
(

C j
G q̂

)T
Cp̂B + C

(
C j−1
G q̂

)(
Gp̂C j −

Gp̂C j−1

))
×

⌋]
/∆t j−1, j

H
B j,v

(2,3)
=

∂rB
vj

∂I p̃C
= C

(
C
B q̂

)T
(
C
(
C
I q̂

)
−C

(
C j−1
G q̂

)
C
(

C j
G q̂

)T
C
(

C
I q̂

))
/∆t j−1, j

H
B j,v

(2,5)
=

∂rB
vj

∂
Cj−1
G θ̃

= C
(
C
B q̂

)T
⌊(

C
(

C j−1
G q̂

)
C
(

C j
G q̂

)T
Cp̂B + C

(
C j−1
G q̂

)(
Gp̂C j −

Gp̂C j−1

))
×

⌋
/∆t j−1, j

H
B j,v

(2,6)
=

∂rB
vj

∂Gp̃Cj−1

= −C
(
C
B q̂

)T
C
(

C j−1
G q̂

)
/∆t j−1, j

(A31)

Thereby, the analytical expressions of all the block matrixes in Equation (15) are derived.

Appendix C

Following Equation (16), the vehicle angular rate measurement residual Brωk
at time tk in {B} is

represented as
Brωk

= Bωk −
Bω̂k (A32)

Based on the lever arm effect between {B} and {I}, Equation (A32) is represented as

Brωk
= Bωk −

Bω̂k

= C
(
B
I qk

)
·

Iωk −
Bω̂k

(A33)

According to the error quaternion representation [53], Equation (A33) is represented as

Brωk
= C

(
B
I qk

)
·

Iωk −
Bω̂k

=
(
I3×3 −

⌊
B
I θ̃k×

⌋)
C
(
B
I q̂k

)(
Iω̂k +

Iω̃k
)
−

Bω̂k

= C
(
B
I q̂k

)
Iω̂k + C

(
B
I q̂k

)
Iω̃k −

⌊
B
I θ̃k×

⌋
C
(
B
I q̂k

)
Iω̂k −C

(
B
I q̂k

)
·

Iω̂k

= C
(
B
I q̂k

)
Iω̃k −

⌊
B
I θ̃k×

⌋
C
(
B
I q̂k

)
Iω̂k

=
⌊
C
(
B
I q̂k

)
Iω̂k×

⌋
B
I θ̃k + C

(
B
I q̂k

)(
−b̃g,k − ng,k

)
=

⌊
C
(
B
I q̂k

)
Iω̂k×

⌋
B
I θ̃k −C

(
B
I q̂k

)
b̃g,k −C

(
B
I q̂k

)
ng,k

(A34)

Therefore, the measurement Jacobian matrix of the vehicle angular rate errors is represented as
HBk,ω

(1,4)
=

∂Brωk

∂B
I θ̃k

=
⌊
C
(
B
I q̂k

)
Iω̂k×

⌋
HBk,ω

(1,6)
=

∂Brωk

∂b̃g,k
= −C

(
B
I q̂k

) (A35)

Similarly, following Equation (16), the vehicle velocity measurement residual Brvk
at time tk in {B}

is represented as
Brvk

= BvBk −
Bv̂Bk (A36)

Based on the lever arm effect between {B} and {I}, Equation (A36) is represented as

Brvk
= BvBk −

Bv̂Bk

= C
(Bk
GB

q
)
GBvIk + C

(
B
I qk

)(⌊
Iωk×

⌋
IpB,k

)
−

Bv̂Bk

(A37)
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According to the error quaternion representation [53], Equation (A37) is represented as

Brvk
= C

(
Bk
GB

q
)

GB vIk + C
(
B
I qk

)(⌊
Iωk×

⌋
IpB,k

)
−

Bv̂Bk

=
(
I3×3 −

⌊
Bk
GB
θ̃×

⌋)
C
(

Bk
GB

q̂
)(

GB v̂Ik +
GB ṽIk

)
+

(
I3×3 −

⌊
B
I θ̃k×

⌋)
C
(

B
I q̂k

)(⌊
Iω̂k×

⌋
+

⌊
Iω̃k×

⌋)(
Ip̂B,k +

Ip̃B,k

)
−

Bv̂Bk

= C
(

Bk
GB

q̂
)

GB v̂Ik + C
(

Bk
GB

q̂
)

GB ṽIk −

⌊
Bk
GB
θ̃×

⌋
C
(

Bk
GB

q̂
)

GB v̂Ik −

⌊
Bk
GB
θ̃×

⌋
C
(

Bk
GB

q̂
)

GB ṽIk+(
C
(
B
I q̂k

)
−

⌊
B
I θ̃k×

⌋
C
(
B
I q̂k

))(⌊
Iω̂k×

⌋
Ip̂B,k +

⌊
Iω̂k×

⌋
Ip̃B,k +

⌊
Iω̃k×

⌋
Ip̂B,k +

⌊
Iω̃k×

⌋
Ip̃B,k

)
−

Bv̂Bk

(A38)

By ignoring the second order terms, Equation (A38) is represented as

Brvk
= C

(Bk
GB

q̂
)
GB v̂Ik + C

(Bk
GB

q̂
)
GB ṽIk −

⌊Bk
GB
θ̃×

⌋
C
(Bk
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q̂
)
GB v̂Ik+(

C
(
B
I q̂k

)
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⌊
B
I θ̃k×

⌋
C
(
B
I q̂k

))(⌊
Iω̂k×
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Iω̂k×

⌋
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⌊
Iω̃k×

⌋
Ip̂B,k

)
−
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GB

q̂
)
GB v̂Ik + C
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GB
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)
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GB
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GB v̂Ik×
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GB
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(
B
I q̂k

)⌊
Iω̂k×

⌋
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+C
(
B
I q̂k
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⌋
Ip̃B,k + C

(
B
I q̂k
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Iω̃k×

⌋
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⌊
B
I θ̃k×

⌋
C
(
B
I q̂k

)⌊
Iω̂k×

⌋
Ip̂B,k−(

C
(Bk
GB

q̂
)
GB v̂Ik + C

(
B
I q̂k

)(⌊
Iω̂k×

⌋
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))
= C

(Bk
GB

q̂
)
GB ṽIk +

⌊
C
(Bk
GB

q̂
)
GB v̂Ik×

⌋Bk
GB
θ̃ + C

(
B
I q̂k

)⌊
Iω̂k×

⌋
Ip̃B,k+

C
(
B
I q̂k

)⌊
Iω̃k×

⌋
Ip̂B,k −

⌊
B
I θ̃k×

⌋
C
(
B
I q̂k

)⌊
Iω̂k×

⌋
Ip̂B,k

= C
(Bk
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q̂
)
GB ṽIk +

⌊
C
(Bk
GB

q̂
)
GB v̂Ik×
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(
B
I q̂k
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Iω̂k×

⌋
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)
×
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(
B
I q̂k

)⌊
Iω̂k×
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(
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)⌊
Ip̂B,k×

⌋
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(Bk
GB
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)
GB ṽIk +
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GB
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)
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(
B
I q̂k
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I θ̃k+

C
(
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I q̂k
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GB
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)
GB v̂Ik×

⌋Bk
GB
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(Bk
GB

q̂
)
GB ṽIk +

⌊(
C
(
B
I q̂k

)⌊
Iω̂k×

⌋
Ip̂B,k

)
×

⌋
B
I θ̃k+

C
(
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(
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⌋
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(
B
I q̂k

)⌊
Ip̂B,k×

⌋
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(A39)

Therefore, the measurement Jacobian matrix of the vehicle velocity errors is represented as

HBk,v
(2,1)

=
∂Brvk

∂
Bk
GB
θ̃

=
⌊
C
(Bk
GB

q̂
)
GB v̂Ik×

⌋
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(2,3)
=

∂Brvk
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)
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I θ̃k
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C
(
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I q̂k
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Iω̂k×
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(2,5)
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∂Brvk
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= C
(
B
I q̂k
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Iω̂k×

⌋
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(2,6)
=

∂Brvk
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= C

(
B
I q̂k

)⌊
Ip̂B,k×

⌋
(A40)

Thereby, the analytical expressions of all the block matrixes in Equation (30) are derived.

Appendix D

According to the error quaternion representation [53], Equation (31) is represented as

US rpk
= US pSk −

US p̂Sk

= US pGB + C
(
GB
US

q
)T(GB p̂Bk +

GB p̃Bk

)
+

C
(
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US

q
)T

C
(
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⌊
B
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B
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(
B
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(A41)
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Following Equation (32), Equation (A41) is represented as
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q
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(A42)

Therefore, the measurement Jacobian matrix of the raw GNSS errors is represented as
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(A43)

Thereby, the analytical expressions of all the block matrixes in Equation (34) are derived.
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