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Abstract: The Time-based One-Time Password (TOTP) algorithm is commonly used for two-factor
authentication. In this algorithm, a shared secret is used to derive a One-Time Password (OTP).
However, in TOTP, the client and the server need to agree on a shared secret (i.e., a key). As a
consequence, an adversary can construct an OTP through the compromised key if the server is
hacked. To solve this problem, Kogan et al. proposed T/Key, an OTP algorithm based on a hash chain.
However, the efficiency of OTP generation and verification is low in T/Key. In this article, we propose
a novel and efficient Merkle tree-based One-Time Password (MOTP) algorithm to overcome such
limitations. Compared to T/Key, this proposal reduces the number of hash operations to generate and
verify the OTP, at the cost of small server storage and tolerable client storage. Experimental analysis
and security evaluation show that MOTP can resist leakage attacks against the server and bring a
tiny delay to two-factor authentication and verification time.

Keywords: one-time password; two-factor authentication; hash chain; Merkle tree

1. Introduction

Traditional authentication schemes based on usernames and passwords are affected by security
vulnerabilities since they require users to provide usernames and passwords to prove their identity.
Again, since a person chooses a password, such a password could be related to personal privacy
and also affected by some regularity [1]. Therefore, an adversary can crack the password more
efficiently, through consultations of and queries to a predefined password dictionary [2]. Furthermore,
to remember a password quickly, most users use a fixed password for an extended period. On the other
hand, with advances in the performance of processors, the possibility of the fixed password being
cracked by brute force attacks also increases. In the end, to verify a user’s identity, the server needs to
store the password, but can all servers guarantee the security of the password stored? Some servers
still obey the bad practice of storing plaintext passwords. For example, six million plaintext passwords
were exposed in the CSDN (China Software Developer Network) data breach, prompting users to
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change their passwords [3]. As is known, if a user uses the same password on multiple servers,
whenever the password of one server is leaked, this password could be used for all the servers.

Consequently, multi-factor authentication has been widely applied to improve the security of
traditional authentication schemes [4]. Besides fixed passwords, authentication factors typically
include graphic passwords, biometrics, and One-Time Passwords (OTP). The two-factor authentication
scheme based on OTP and fixed passwords is easy to implement, considering the cost. In particular,
Google Authenticator [5] adopts the HMAC-based OTP (HOTP) [6] algorithm and the Time-based
OTP (TOTP) [7] algorithm to implement a two-factor authentication scheme. However, HOTP and
TOTP require that the client and the server share a secret key, bringing security risks when the server
is compromised.

To deal with leakage attacks, Kogan et al. proposed T /Key [8]. T/Key is an OTP algorithm based
on a hash chain. In this algorithm, the server stores the tail node of the hash chain for verification.
Due to the pre-image resistance of the hash function, it is difficult for an adversary to forge the
OTP from the information exposed by the server. Unfortunately, the efficiency of OTP generation
and verification is low. Although Kogan et al. proposed a checkpoint method to increase the OTP
generation efficiency at the cost of the client storage, the method still cannot improve the worst time
complexity of verification.

SmartOTPs [9] is a solution that provides two-factor authentication for smart contract wallets.
It uses a Merkle tree and hash chains to construct the OTP and uses the root of the Merkle tree stored
in a smart contract to verify the OTP. Therefore, the leakage of smart contract information has little
effect on the OTP security. Because SmartOTPs involves many entities and the scheme is complicated,
it is not easily adopted by a simple client-server architecture.

The main goal of this paper is to propose an OTP algorithm that can resist leakage attacks.
The proposed algorithm is efficient in terms of execution time and can be easily implemented.
More precisely, inspired by T/Key and SmartOTPs, we propose an OTP algorithm based on the
Merkle tree, called the Merkle tree-based One-Time Password (MOTP).

In detail, the main contributions are as follows:

1. We propose a novel OTP algorithm, referred to as the Merkle tree-based One-Time Password
(MOTP). MOTP combines a Merkle tree with T/Key to construct many OTPs. Again, since it
is affected by the limited number of generated OTPs, MOTP can be periodically reinitialized,
reducing the probability for OTP to be cracked.

2. We improve the execution efficiency of the OTP algorithm. More precisely, MOTP improves the
OTP verification performance of T/Key, at the cost of little server storage. In particular, since the
time consumption of MOTP is milliseconds, it is difficult for users to notice such delays. On the
other hand, compared with TOTP, the time consumption can increase the cost of brute force
attacks for the adversary, and MOTP can resist leakage attacks against servers.

3. Security analysis and experiments prove the effectiveness of MOTP. More precisely, security
analysis demonstrates that MOTP can resist leakage attacks against the server, and experimental
results show that MOTP brings little delay to two-factor authentication.

The remainder of this article is organized as follows. In Section 2, we present the related works on
OTP algorithms and two-factor authentication. Then, in Section 3, we propose the Merkle tree-based
OTP (MOTP) algorithm and analyze the security of this algorithm. In Section 4, we describe the
two-factor authentication scheme using QR codes to transfer OTPs generated by MOTP. In Section 5,
we show the experimental evaluation and comparison. Finally, we present concluding remarks and
future research directions in Section 6.

2. Related Work

The research on password security points out the contradiction between the security and usability
of static passwords [10]. Authentication schemes based on Merkle trees and OTP have been proposed
to improve the security of identity authentication.
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Merkle trees have been applied in many authentication schemes. Li et al. [11] proposed a Merkle
tree-based authentication to protect smart grids from message injection attacks and replay attacks.
Huszti et al. [12] employed a Merkle tree to design an authentication and key exchange scheme for
the cloud environment. SmartOTPs [9] applied a Merkle tree in the public blockchain to provide
a two-factor authentication solution for smart contract wallets. In detail, SmartOTPs involves four
entities: an authenticator (mobile), a client, a private key wallet, and a smart contract. Therefore,
SmartOTPs is not quickly adopted by simple client-server architectures.

In terms of OTP, OTP algorithms are classified into two categories: one is based on a secret key;
the other is based on a hash chain. Algorithms that are based on a secret key are HOTP [6] and
TOTP [7]. These two algorithms require the client and the server to share a key and use the count value
and timestamp to generate the OTP. However, when the server’s key gets exposed, the adversary can
use it to forge the OTP.

Lamport first proposed an OTP algorithm based on a hash chain. Lamport’s OTP algorithm [13]
uses a hash chain to construct the OTP. More precisely, the chain is generated by performing multiple
times a one-way function (like a hash function) on a nonce. Each node value on the hash chain is
regarded as an OTP. OTPs are consumed in order from the end to the head of the chain. Due to the
pre-image resistance of the one-way function, it is difficult for an adversary to obtain a new OTP based
on the consumed OTPs. However, the length of the hash chain is limited, and the algorithm can only
provide a limited number of OTPs. Therefore, when the usage frequency of the OTPs is uncertain, it is
difficult for the user to grasp the time when all OTPs ran out.

Bittl [14] used two hash functions to create a hash chain for infinite OTP generation. However,
this algorithm requires that the client and the server share the same key, losing the advantages of
Lamport’s OTP against leakage attacks. Park [15] used multiple short hash chains to defer construction
and generate OTP infinitely. The feature of delayed construction reduces the initialization time
of the algorithm, but Park’s algorithm increases the time cost of OTP generation and verification.
Based on Lamport’s algorithm, Kogan et al. introduced a time gap to the OTP and proposed T/Key [8].
For example, in T/Key, if the validity time gap of each OTP is 30 seconds, a hash chain of 220 length can
be used for one year. Therefore, T/Key needs to periodically re-register the hash chain, reducing the
possibility of the hash chain being cracked. Unfortunately, the main weakness of T/Key is that the OTP
generation and verification execution efficiency are affected by the length of the hash chain. The longer
the chain, the more hash operations are required for OTP generation and verification.

In terms of two-factor authentication, Erdem et al. proposed an OTP service, to make
medium-sized enterprises adopt two-factor authentication efficiently [16]. Shirvanian et al. proposed
LBD-QR-PIN [17], which is based on asymmetric encryption algorithms. More precisely,
when verifying the user’s identity, the server uses the public key to encrypt a nonce and encodes it
into a QR code. Then, the user scans the QR code using a mobile device, and such a device uses the
private key to decrypt the nonce and then maps the nonce to a short-digit password through a hash
function. It is difficult for an adversary to forge an OTP unless he/she obtains the private key stored
on the user’s device. However, the performance of asymmetric encryption is poor.

3. Merkle Tree-Based One-Time Password Algorithm

To better understand the proposed algorithm, we first introduce the Merkle tree and explain why
a Merkle tree can be used for OTP verification. Then, a naive Merkle tree-based one-time password
scheme is proposed. Based on the naive scheme, we further improve the scheme, thereby improving
execution efficiency, reducing network traffic, reducing client storage costs, and introducing a time gap
to OTPs.

The notation used in the Merkle tree-based one-time password algorithm is shown in Table 1.
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Table 1. Notation description. OTP, One-Time Password.

Notation Description

hm Height of the Merkle tree (the height of the root node is 0)
hs Height of the subtree
p Execution times of the hash function when constructing a hash chain

hash(x) Hash x
hashp(x) Hash x p times

tgen Generation time of the Merkle tree
tminus Difference between the device’s current time and tgen
tgap Time gap of the OTP
otp Node value on the hash chain

proo f Proof path

3.1. Merkle Tree

Merkle proposed the Merkle tree [18], which is widely used in blockchain to verify the integrity
of data blocks [19–21].

Construction: The Merkle tree is a tree constructed bottom-up. More precisely, the tree discussed
in this paper is a full binary tree. Assume that the height of the tree is hm, and the tree owns 2hm data
blocks xi and yi = hash(xi), i ∈ [0, 2hm − 1], where yi is a leaf node value of the Merkle tree. Each value
of the parent node is the hash of the concatenation of its children, yparent = hash(yle f t|yright), where |
refers to concatenation.

In Figure 1, we show a Merkle tree of height two.

x0 x1 x2 x3

y0 y2 y3y1

y4 y5

y6

Figure 1. Merkle tree of height two. Each value of the parent node is the hash of the concatenation of
its children, such as y4 = hash(y0|y1).

Proof path: Select a data block and find the sibling node of the corresponding leaf node. Based on
this node, find the uncle node (the sibling node of its parent node) and repeat it until no uncle node can
be found. The path composed of these nodes is called the proof path of the data block. For example,
in Figure 1, the leaf node corresponding to the data block x0 is y0, and its sibling is y1. Then, based on
y1, find its uncle node y5, and y5 has no uncle. Therefore, the proof path of x0 is {y1, y5}

Verification: Assume that a client has stored a whole Merkle tree and a server has the root node of
the Merkle tree. The client sends a data block and its proof path to the server. The server uses the root
node and the proof path to verify the data block. Take Figure 1 as an example. The server verifies x0 by
checking hash(hash(hash(x0)|y1)|y5) == y6. Actually, the server does not know y1 is a right child of
y4, and y5 is a right child of y6, so the server cannot determine the concatenation order. We will handle
this problem in Section 3.3.2. In general, a Merkle tree of height hm can verify 2hm data blocks.
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3.2. A Naive Merkle Tree-Based One-Time Password Scheme

Using the Merkle tree to verify data blocks, we introduce a naive Merkle tree-based One-Time
Password (MOTP) algorithm. This algorithm specifies data blocks as nonces and considers a nonce
and its proof path as an OTP. Then, the server verification of the data block can be regarded as an OTP
verification. The root node stored on the server can verify 2hm OTPs. Besides, due to the pre-image
resistance of the hash function, it is difficult for adversaries to forge the OTP by using the root node
leaked from the server.

3.3. An Improved Merkle Tree-Based One-Time Password Scheme

However, some problems arise in the naive scheme. We will discuss problems and solutions
covering efficiency, network transmission, client storage, and validity.

3.3.1. Efficiency

Assume that there is an association relationship between the sibling nodes. When obtaining a
node’s uncle, we have to read its parent and then read the sibling of the parent. Therefore, to get a
proof path of length n, we have to visit the nodes of a Merkle tree 2n times. This visit directly affects
the generation efficiency of OTP. To improve efficiency, we associate each node with its uncle to reduce
read times, as shown in Figure 2. Of course, the improvement of reading performance occurs at the
expense of reference address memory.

x0 x1 x2 x3

y0 y2 y3y1

y4 y5

y6

Figure 2. Associate each node with its uncle. The dotted line represents the new association. By taking
x0 as an example, we can get its proof path {y1, y5} quickly by the new association.

3.3.2. Network Transmission

As a part of the OTP, the proof path brings three problems.
The first is that the length of the proof path affects network transmission performance. In a Merkle

tree of height hm, the proof path includes hm nodes. Therefore, the higher the tree, the longer the proof
path is. For example, when hm = 10 and the size of the hash value is 32B, the size of the proof path
is 320 B.

The second is that some nodes in the proof paths frequently appear, which reduces the randomness
of OTPs. Nodes with low depth appear more frequently in proof paths. For example, in Figure 1,
we show four proof paths, namely {y0, y5}, {y1, y5}, {y2, y4}, {y3, y4}. The node depth of y4 is one, and the
frequency of y4 in proof paths is 1/2.

To solve the problems mentioned above, we divide the Merkle tree into multiple subtrees,
as shown in Figure 3. More precisely, the tree of height hm is divided into 2hm−hs subtrees of height hs.
This operation shortens the proof path length to hs. On the other hand, the server needs to store 2hm−hs
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root nodes of subtrees for OTP verification. Hence, we need to find a tradeoff between server storage
and transmission traffic. For example, when hm = 10, hs = 7, and the size of the hash value is 32 B,
the original 1024 OTPs generate 352KB = 1024× (10 + 1)× 32B of traffic in the network transmission.
Instead, after splitting the tree into subtrees, the traffic is reduced to 256KB = 1024× (7 + 1)× 32B.
Conversely, the cost of server storage is increased from 32B to 256B. However, in terms of the saved
traffic, the cost is worth it. Therefore, within the server’s storage capacity, the Merkle tree can be
divided appropriately into multiple subtrees.

hm

hs

root

...

root of
subtrees

Figure 3. The tree of height 2hm is split into 2hm−hs subtrees of height 2hs .

The third is that the server needs to know the position information of each node (left child or
right child) in the proof path. For example, the client sends x1, its proof path {y0, y5}, and position
information {0, 1} (zero is left, and one is right) to the server. {0, 1} means y0 is a left child and y5

is a right child. Then, the server knows y0 is a left child and executes hash(y0|hash(x1)) instead of
hash(hash(x1)|y0) to get y4. y5 is a right child, then the server executes hash(y4|y5) to get y6.

To avoid the extra traffic caused by position information, we use i (the index of x) to replace
position information. Assume the server receives xi, its proof path, and i. If we know the index of a
node, we can know the index of its parent by iparent = ichild/2 + 2hm . If iparent is even, then the index of
its uncle is iuncle = iparent + 1. Otherwise, iuncle = iparent − 1. Hence, the server can obtain the index
of each node in the proof path from i. According to whether the index is even, the server can know
whether the node is a left or right child.

Take an example: the server receives x1, {y0, y5}, and one. As we know, xi is associated with
yi, so iparent of x1 is one, and iuncle is zero. Then, the server calculates iparent of y0 and obtains four
(hm = 2), so the iuncle of y0 is five. The server gets a set of uncle indices {0, 5} and obtains the position
information {0, 1}. In Section 3.3.4, the transmission traffic of i will be avoided.

3.3.3. Client Storage

The number of OTPs provided by the Merkle tree increases exponentially with the tree height.
Again, the higher the tree, the more storage the client requires, as shown in Table 2. The tree of height
10 owns 210 nonces and 211 − 1 nodes. When the size of the hash value and the nonce is 32 B, the tree
needs 96 KB of storage.

Table 2. The relationship between the height of the Merkle tree, the number of OTPs, and the client
storage (the size of the hash value and the nonce is 32 B).

Height Number of OTPs Client Storage

10 1024 96 KB
15 32,768 3 MB
20 1,048,576 96 MB
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In this paper, we use the idea of “space-time tradeoff” [22] to decrease the storage space with
increased execution time. More precisely, we use Lamport’s OTP algorithm to hash a nonce p times,
to generate a hash chain of length p + 1. The tail node of the hash chain serves as the leaf node of the
Merkle tree, as shown in Figure 4. The client only stores the nonce x and the tail node yp, and thus,
the intermediate nodes of the hash chain must be re-calculated by using x when needed. Therefore,
the storage cost of a node plus the appropriate execution cost can be exchanged for the storage cost of
p nodes.

yp yp-1 xy1

Figure 4. Space-time tradeoff of the hash chain. The nonce x in the figure is hashed p times to generate
a hash chain, where yi = hashi(x).

In addition to the leaf node, the hash chain can provide p OTPs. To construct a Merkle tree of
height hm, we need to construct 2hm hash chains of length p + 1. The Merkle tree based on the hash
chain can provide 2hm p OTPs. The client only needs to store the nonces used for the generation of
hash chains and the whole Merkle tree constructed with leaf nodes. We call the node value on the
hash chain otp (except for the leaf node) to avoid confusion. In MOTP, the OTP consists of otp and the
corresponding proof path.

We remark that the above method increases the computing cost of the client and the server,
but reduces the client’s storage burden. The Merkle tree of height 10 and the hash chain of length
1024 can provide 1,048,576 OTPs, while the client only requires 96 KB of storage. Without the hash
chain, the client needs 96 MB to provide the same amount of OTP, as shown in Table 2. As a result,
the solution with the hash chain saves about p times client storage than the solution without the
hash chain.

3.3.4. Validity

Since OTPs of MOTP are determined in advance, the more OTPs, the higher the probability
of adversaries hitting an OTP by guessing attacks is. Furthermore, replay attacks and phishing
attacks threaten the security of OTPs [23,24]. Therefore, we have to consider the validity of OTPs.
Inspired by T/Key, when generating a hash chain, we make each OTP valid within a time gap of tgap.
The construction time of the Merkle tree is recorded as tgen, which is shared by the client and the server.

After introducing tgap and tgen, the client and the server can locate OTP by the device time. Nodes
in the same index of the hash chain are recorded as the same layer. Since the tail node of the hash chain
is a leaf node, the penultimate node is marked as the zeroth layer, as shown in Figure 5. OTP(i,j) is an
OTP of the ith layer of the jth hash chain. The calculation formula of i and j is as follows: % represents
the modulo operation, and tminus represents the difference between the current time of the device
and tgen.

i =
⌊

tminus/(2hm · tgap)
⌋

,

j =
⌊
(tminus%(2hm · tgap))/tgap

⌋
.

(1)

The number of nodes in a layer of the hash chain is equal to the number of leaf nodes, that is 2hm .
2hm · tgap shows the validity period of a layer of the hash chain. According to tminus, we can know the
layer i of the valid otp. Similarly, we can know the sequence number j of the hash chain of the valid
otp. After the client gets (i, j), it hashes the jth nonce p− i− 1 times to generate otp. The OTP is then
composed of otp and proo f corresponding to the jth nonce is sent to the server. After receiving the

OTP, the server hashes otp i times and uses the root node of the
⌊

j/2hs
⌋th

subtree to verify the OTP.
Hence, an expired OTP cannot pass the verification of the server. We remark that there is a threat of
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replay attacks in a time gap. The adversary can replay the same OTP in the time gap. Hence, the server
should save the recently verified (i, j). When the server receives the OTP that has not expired, it checks
whether the OTP’s (i, j) is equal to the saved (i, j). We remark that the server knows i by tgap, so the
transmission traffic of i mentioned in Section 3.3.2 can be avoided, which prevents the adversary from
obtaining i in the transmission.

The validity period brings an implicit constraint; that is, the client and the server’s clocks must
be synchronized. The problem can be solved using a time server to synchronize the client and the
server clocks. Besides, the delay caused by algorithm execution and data transmission might also lead
to failed verification. The solution to the problem can take a cue from TOTP, where the server uses
multiple time gaps for OTP verification.

0th layer

p-1th layer

leaves

nonces

...

0th 
chain

... ... ...

...

...

...

p-2th layer

1th 
chain

n-2th 
chain

n-1th 
chain

Figure 5. Hash chain layer.

Since the number of nodes constructed by MOTP is limited and the validity period of each OTP
is determined, MOTP can only work for a specified period. For example, assuming that hm = 10,
p = 1024, and tgap = 30 s, MOTP can be used for one year. Although the periodic initialization of
MOTP will bring inconvenience to users, users can reinitialize the algorithm regularly. This operation
can reduce the possibility of the root nodes stored on the server being cracked.

3.3.5. Overall Schema

After the above optimizations, the binary format of the Merkle tree stored on the client is shown
in Figure 6. The binary stream of the Merkle tree contains basic information and node information
(including nonces).

The size of the hash digest defines the size of the hash value of each node and nonce. If the size is
equal to four, the hash value requires four bytes of storage. The node information contains nonces and
all nodes from the leaves to the roots of the subtrees. Suppose that hm = 10, hs = 7, and the size of hash
is 32; the binary file storage of the Merkle tree is 110, 317 = 13 + (210 + (28 − 1)× 210−7)× (32 + 4)
bytes, i.e., about 108KB. The basic information needs 13 bytes. Each node needs 32 bytes for hash and
four bytes for the address. The number of nodes is 210 + (28 − 1)× 210−7, where 210 is the number of
nonces, 28 − 1 is the number of nodes in a subtree, and 210−7 is the number of subtrees.

The MOTP data structure is shown in Figure 7. In detail, as can be seen from this figure, based on
n nonces, we use n hash chains of length p + 1, where n = 2hm . The tail node of the hash chain is
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used as a leaf node, and then, a Merkle tree of height hm is constructed. The Merkle tree is split into k
subtrees of height hs, where k = 2hm−hs .

all nodes

generation time size of 
hash digest

number of
leaves

length of 
hash chain

hash value of node address of the sibling node 
of its parent node

4 byte

basic

4 byte 1 byte 4 byte 4 byte

13 byte

depend on the size of hash digest

storage format of a node

Figure 6. Binary format of the Merkle tree.

0 1 2 3 n-4 n-3 n-1n-2

0

p-1

nonce

otp

root of subtrees

0 k-1

root

...

hm

hs

... ... ... ... ... ... ...

......

......

......

......

... ...

...

Figure 7. Merkle tree-based One-Time Password (MOTP) data structure.

The execution process of the MOTP is shown in Figure 8. The overall functioning of this algorithm
includes the following steps:

Initialization: The client initializes the parameters and sends the initial value to the server,
as described in Algorithm 1.

We remark that the MOTP algorithm parameters (hm, hs, p, tgap, and the hash used algorithm)
need to be negotiated by the client and the server in advance. Moreover, the communication between
the client and the server is protected by TLS.

1. The client generates 2hm nonces and then performs p hash operations on each nonce to generate
each hash chain.
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2. The tail nodes of all hash chains serve as the leaf nodes and then generate a Merkle tree of height
2hm .

3. Split the Merkle tree into 2hm−hs subtrees of height 2hs .
4. The client stores subtrees, the nonces, and tgen, then it sends the root nodes of subtrees and tgen to

the server through a secure channel.

Algorithm 1: MOTP initialization.
Input: height, subHeight, p
Output: randomList, hashTree, subTreeList, generatedTime
n← pow(2, height);
for i ∈ [0, n) do

random← generateRandom();
randomList.add(random);
lea f List.add(hashMultiTimes(random, p));

end
hashTree← creatHashTree(lea f List);
subTreeRootList← listSubTreeRoot(hashTree, subHeight);
generatedTime← now();
return {randomList, hashTree, subTreeRootList, generatedTime};

Send tgen and roots of subtrees

Send OTP(i, j)

Client

Init MOTP

Server

Return verification result

Verify OTP(i, j)

Locate OTP by time

Locate OTP by time

Create OTP(i, j)

Figure 8. Execution process of MOTP.

OTP generation: The client is responsible for the generation of the OTP, as described in
Algorithm 2. More precisely, the client:

1. Calculates tminus and obtains (i, j), according to Equation (1).
2. Reads the jth nonce, xj, and hashes it p− i− 1 times to get otp.
3. Reads the proof path proo f of xj.
4. Sends {otp, proo f } as OTP(i,j) to the server through a secure channel.
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Algorithm 2: MOTP generation.
Input: hashTree, subHeight, randomList, generatedTime
Output: OTP
timeMinus← now()− generatedTime;
i, j← getPos(timeMinus);
random← getRandom(j, randomList);
otp← hashMultiTimes(random, p− i− 1);
proo f ← getProo f (j, hashTree, subHeight);
return {otp + proo f };

OTP verification: The server is responsible for the verification of the OTP, as described in
Algorithm 3. More precisely, the server:

1. Receives OTP(i,j) and parses it to get otp and proo f .
2. Calculates tminus and gets (i, j) according to Equation (1).
3. Hashes otp i times to get hashp−1(xj).

4. Calculates
⌊

j/2hs
⌋

, which is the sequence number of the subtree corresponding to OTP(i,j).
5. Uses proo f and the root node value of the subtree to verify the correctness of hashp−1(xj).

Algorithm 3: MOTP verification.
Input: OTP, subHeight, subTreeRootList, generatedTime
Output: verification result (true / false)
timeMinus← now()− generatedTime;
otp, proo f ← parse(OTP);
i, j← getPos(timeMinus);
data = hashMultiTimes(otp, i);
subRoot← getSubRoot(j, subTreeRootList, subHeight);
return veri f yProo f (data, proo f , subRoot);

3.4. Security Analysis

Before going into the details of the security analysis, we first introduce the adversary model.
Because MOTP and T/Key both are used in two-factor authentication, we refer to the adversary model
of T/Key [8].

• The adversary can access all information stored on the server by using leakage attacks, but he/she
cannot modify any value. Such information could be the root nodes.

• The adversary can perform at most T hash function computations until the server detects the
attack and resets the Merkle tree.

• There is no malware on the client, and the adversary cannot get the OTP from the client.
If the adversary can directly access the user’s device, he/she can carry out session hijacking,
and authentication cannot prevent it. Then, the communication between the client and the server is
protected by TLS, so the adversary cannot intercept the OTP through a man-in-the-middle attack.

• We divide adversaries into two types. Adversary A1 performs guessing attacks to guess the
correct OTP. Adversary A2 intends to restore the Merkle tree by the root stored on the server and
obtains all OTPs.

We define a uniform distribution hash function: [N]→ [N], where N = 2n and [N] is the set of
{0, 1, ..., 2n − 1}.
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Theorem 1. Assume MOTP has the tree height hm. A1 obtains the root and the device’s current time from the
server. Then, the adversary calculates the q, which is the number of hash operations required to convert to the
leaf. If A1 guesses the correct OTP, A1 wins. Then,

Pr[A1 wins] ≤ T
(q + hm)N

Proof. The OTP consists of otp and a proof path of length hm. To know whether the guessed OTP can
pass the root’s verification, the adversary needs to perform q + hm hash operations. The root value
is selected from [N]. Hence, the adversary can obtain an OTP, which can pass the verification with a
probability of at most T

(q+hm)N .

We remark that when an OTP is correctly guessed, there is also the possibility that such an OTP
has expired.

Theorem 2. Assume the MOTP has tree height hm and hash chain length p. Let A2 obtain the root stored on
the server. If A2 restores the Merkle tree from the root and obtains all OTPs, A2 wins. Then,

Pr[A2 wins] ≤ T
(2hm − 1)N

(
T

pN

)2hm

Proof. The tree of height hm has 2hm − 1 internal nodes and 2hm leaf nodes. Therefore, to generate
a Merkle tree from the leaf nodes, the adversary has to perform 2hm − 1 hash operations and has at
most T

2hm−1
chances to restore the Merkle tree. Since the range of the root is [0, N), the adversary has a

probability of at most T
(2hm−1)N

to obtain the correct Merkle tree.

Assume that the adversary restores the tree and wants to gain all OTPs from the tree.
The adversary selects a nonce, hashes it p times, and checks whether the result is equal to one
of 2hm leaves. If they are equal, the adversary obtains a correct hash chain to generate OTPs. There are
2hm leaves, and the range of a leaf is [N], so the adversary obtains all correct hash chains with a

probability of at most
2hm−1

∏
i=0

T
p−i
N−i . Assume that T

p < N,

2hm−1

∏
i=0

T
p − i

N − i
≤
(

T
pN

)2hm

Hence, the adversary restores the tree and obtains all OTPs with a probability of at most:

T
(2hm − 1)N

2hm−1

∏
i=0

T
p − i

N − i
≤ T

(2hm − 1)N

(
T

pN

)2hm

Through the above theorems and proofs, we show that even if the server is compromised, it is
difficult for adversaries to guess a legal OTP or to obtain all OTPs.

4. Two-Factor Authentication

The two-factor authentication introduced in this paper is an authentication scheme composed
of the static password and OTP. The two-factor authentication scheme based on OTP usually uses a
mobile device as a client for generating OTPs. The verification of OTPs is performed by an application
that requires identity authentication. In MOTP, the initialization and the generation of the OTP need
to be done on the same side, so the mobile device must implement these two functions. Moreover,
the long OTP provided by MOTP is not convenient for users to manually input. Although TOTP
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provides a truncation algorithm that converts the OTP to short digits, MOTP’s OTP contains a proof
path that cannot be truncated directly. Therefore, we use QR codes [25] to transmit the OTP. In the
following, we introduce two methods for using QR codes to achieve two-factor authentication. In the
first method, the mobile device provides QR codes with MOTP’s initial information or the OTP. First,
the user logs into the application through traditional username-password authentication and enables
two-factor authentication. At this point, the application requires the user to provide MOTP’s initial
information (root nodes and the generation time of the tree). The user then uses the mobile device to
initialize MOTP and get a QR code encoded with initial information. Next, the application scans the
QR code through the PC’s built-in camera and stores the initial information on the server. The next
time the user logs into the application, an OTP is required besides providing the username and the
password. Similarly, the application obtains an OTP through the QR code provided by the mobile,
as shown in Figure 9. This method requires that the application can use a camera.

scan QR code
username
password

OTP

user

········
OTP

Figure 9. The application scans the QR code containing the OTP and obtains the OTP.

In the latter method, the application provides QR codes with a URL. Due to the limitations of the
previous method, we change the device that has to scan the QR code. Because most mobile devices
provide a camera, we let the mobile device scan the QR codes, and the application provides the
QR codes. After the mobile device scans the QR code containing a URL, it sends the initialization
information or the OTP to the URL to replace the user’s manual input, as shown in Figure 10. Again,
to prevent the mobile device from sending sensitive information to a malicious server, the user needs
to confirm the URL’s domain.

scan QR code

send OTP URL

Figure 10. The mobile device scans the QR code containing a URL and sends the OTP to the URL.

5. Experimental Results and Discussion

To assess the MOTP algorithm’s performance, we designed and developed a proof of concept of
this algorithm. We then tested the execution cost of the MOTP core functions and the transmission
cost of OTP generated by MOTP. Finally, we compared MOTP with other schemes, especially T/Key
and SmartOTPs.

5.1. Implementation

We implemented MOTP initialization and the OTP generation function using Android to
evaluate the performance of MOTP on mobile devices. We also implemented MOTP initialization,
OTP generation, and verification using Java to assess the performance of MOTP on PC devices.

The parameter configuration of the implemented MOTP is shown in Table 3. hm and p were set to
10 and 1024, respectively, which ensures enough OTPs generated by MOTP; hs was set to seven as a
balance between server storage and transmission traffic, and tgap was set to 30 s to balance security
and availability [7].
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Table 3. MOTP parameter configuration.

Parameter Value Parameter Value

hm 10 p 1024
hs 7 Hash algorithm SHA256

tgap (s) 30 Size of nonce (bit) 256

Based on the hash chain, the OTP algorithm usually stores the verified OTPi temporarily
on the server. Then, when the server receives the new OTPj, the server only needs to consider
the hash operation from OTPj to OTPi, which avoids the operation from OTPi to the tail node,
thereby improving the verification efficiency. However, the verification efficiency of the current OTP
will be affected by whether the previous OTP has been verified. It is difficult to show the verification
efficiency of the worst case in the experiment. Therefore, the implemented OTP algorithms in the
experiment will not adopt this approach.

5.2. Experiment

In the experiment, we mainly tested the execution cost of MOTP’s core functions. Considering that
the OTP generated by MOTP is too long, we also needed to check the transmission cost of OTP.

5.2.1. Execution Cost

We evaluated the time cost of the three core functions of the MOTP algorithm: initialization,
OTP generation, and OTP verification. Initialization and OTP generation were tested on a mobile
device equipped with a Qualcomm Snapdragon 855 Plus processor, 8GB memory, and Android
10 system, and a PC equipped with AMD 4-core A10-7400P processor, 12GB memory, and Ubuntu
19.10 system. OTP verification was only tested on the PC. Each core function was run more than
1000 times, and their average time consumption was counted. To demonstrate the execution efficiency
of MOTP, we also tested T/Key.

Assuming that the other parameters are fixed, the value of the parameter p directly affects the
validity period of T/Key and MOTP. For example, when T/Key’s p is 220, 222, 224, and MOTP’s is 210,
212, 214, the two schemes can provide OTPs for 1 year, 2 years, and 4 years, respectively.

Table 4 shows that the initialization time of the two schemes in the mobile environment is about
five times slower than the PC. In the same device, the initialization time of MOTP is similar to T/Key.
The length of the hash chain initialized in T/Key is 210 times MOTP, and the number of hash chains
initialized in MOTP is 210 times T/Key. Therefore, the number of hash operations required for the
initialization of the two schemes is equivalent. Although the initialization time cost of the two schemes
is relatively high, waiting for five seconds in the mobile environment, the schemes can provide OTP
for one year. Therefore, the time cost of initialization is worthwhile.

Table 4. Initialization time cost of T/Key and MOTP (ms).

Validity Period (Year)
Mobile PC

T/Key MOTP T/Key MOTP

1 5403 5445 1193 1280
2 10791 10,809 2356 2409
4 21,610 21,540 4713 4812

In T/Key and MOTP, the current time of the device determines which OTP is generated.
More specifically, the number of hash operations required for the OTP generation and verification is
affected by the device time. Furthermore, considering availability and security, we recommend using
T/Key and MOTP with one-year validity. Hence, we modified the device time to test the time cost of
OTP generation and verification in 12 months.
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Figures 11 and 12 show that MOTP’s time cost of OTP generation and verification is less than
T/Key’s, and the time cost of MOTP is negligible. More specifically, the OTP generation and verification
time cost of MOTP is one-thousandth that of T/Key. Because the OTP of the MOTP comes from 210

hash chains of length 210 and the OTP of T/Key comes from a hash chain of length 220, the generation
and verification time cost of MOTP is much lower than that of T/Key. Besides, we can find that the
generation time cost decreases with the month, and the verification time increases with the month.

Figure 11. OTP generation and verification time cost of T/Key (valid for one year).

Figure 12. OTP generation and verification time cost of MOTP (valid for one year).

Given that, the total number of hash operations performed by the generation and verification is
equal to the length of the hash chain. When the month is small, more hash operations are required for
generation, and fewer operations are required for verification. Even in the worst case, MOTP’s OTP
generation on the mobile device is below 6 ms, and verification on the PC is below 2 ms. Hence,
the worst time of OTP generation and verification is 8 ms.

Therefore, the time cost is small, and the frequency of two-factor authentication is low (only used
when the user logs in), so it is difficult for the user to perceive the delay. Finally, the time cost can
burden adversaries and increase the cost of brute force cracking attacks.
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5.2.2. Transmission Cost

Considering the OTP length of MOTP, we need to test the transmission cost of the OTP. We use
the client to issue 100,000 serial requests to the server automatically.

We only count the average time from issuing a request to getting a response, and the server does
not do anything and immediately responds after receiving the request. The experiment was conducted
in the following two cases to observe the transmission cost caused by the introduction of OTP:

1. Request without OTP
2. Request with OTP

As can be seen from Table 5, requests with the OTP are 0.3 ms longer than requests without the
OTP, so we can think that requests with the OTP will bring an additional 0.3 ms of transmission cost.
Therefore, the transmission cost is negligible.

Table 5. Average time for response.

Request without OTP Request with OTP

Time (ms) 0.7811 1.0923

5.3. Comparison

To better understand the difference between MOTP and other schemes, we compare MOTP with
classical schemes, i.e., Lamport’s OTP and TOTP. Besides, we compare MOTP with recent works,
i.e., T/Key and SmartOTPs. We refer to [26] for the four properties of comparison, and Table 6 shows a
property comparison between five schemes. + represents that the scheme supports the property, and −
means that the scheme does not support it.

Table 6. Scheme comparison. TOTP, Time-based One-Time Password.

Scheme Resistance to
Leakage Attacks Infinite OTPs OTPs’ Validity Is

Limited in Time
Ease of

Implementation

Lamport’s OTP + − − +
TOTP − + + +
T/Key + − + +

SmartOTPs + − − −
MOTP + − + +

In Table 6, we can observe that except for TOTP, the other four schemes can resist leakage attacks
against the server. Although MOTP cannot generate OTPs infinitely, like TOTP, MOTP needs to be
reinitialized when all OTPs are consumed, reducing the risk of the scheme being cracked. In terms of
OTPs’ validity, TOTP, T/Key, and MOTP make OTPs time sensitive to improve the security of OTPs.
In terms of implementation, SmartOTPs is more challenging to implement and deploy than other
schemes, because it involves four entities and the other schemes involve two entities: a client and
a server.

After a simple comparison of the five schemes, we compare in detail MOTP with T/Key
and SmartOTPs.

5.3.1. Comparison with T/Key

To improve the performance of T/Key, Kogan et al. proposed the idea of the “checkpoint” to
improve OTP generation efficiency [8]. The checkpoint is a node of the hash chain and is stored on the
client to save the number of hash operations.

For example, select one checkpoint from every 210 nodes on the hash chain of length 220, and get
a total of 210 checkpoints. All checkpoints are stored on the client.
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When the client generates an OTP, it will perform hash operations on the most recent checkpoint,
thus reducing the number of hash operations. The checkpoint improves OTP generation efficiency
in the storage cost, but it does not improve the worst-case OTP verification efficiency. If we want
to improve the efficiency of OTP verification, we can introduce checkpoints in the server. However,
this approach is not recommended. This is because storing checkpoints of many users will impose
a storage burden on the server, and the leaked checkpoints will increase the probability of the hash
chain being cracked.

Assume that MOTP and T/Key both can provide 2hm p OTPs. Table 7 shows the space-time
comparison of the two schemes.

In terms of client storage, MOTP needs to store the entire Merkle tree and all the nonces,
while T/Key without checkpoints only needs to store a nonce, so the cost of MOTP storage is
much higher than T/Key. However, as mentioned in Section 3.3.3, MOTP provides 1,048,576 OTPs,
which only requires 96KB of client storage, which is tolerable for typical mobile devices.

Besides, in terms of server storage, MOTP needs to store the root node of 2hm−hs subtrees,
while T/Key without checkpoints only needs to store a hash value. In the experiment, hm was
set to 10, and hs was set to seven. Therefore, the server storage of MOTP is eight times greater than
that of T/Key without checkpoints. Therefore, MOTP’s server storage is slightly higher than T/Key’s.

Moreover, in terms of time complexity, MOTP spreads the OTP generation and verification
overhead on 2hm hash chains of length p, and T/Key without checkpoints depends on a hash chain of
length 2hm p. Therefore, the worst time complexity of MOTP generation and verification is much lower
than that of T/Key. We remark that the OTP verification of MOTP needs hs hash operations to verify
the proof path. In general, hs is much smaller than p, and O(p + hs) can be regarded as O(p).

To make the worst time complexity of T/Key the same as MOTP, we introduced 2hm checkpoints
in the client and the server, respectively. Then, we split the hash chain into 2hm hash chains of length
p. The first node of the hash chain serves as the client’s checkpoint, and the tail node serves as the
server’s checkpoint (does not consider leakage issues). Again, in the case of the same number of hash
chains, because MOTP uses the root node of the Merkle tree to verify the OTP, the server storage cost
of MOTP is much lower than that of T/Key with checkpoints. By comparison, MOTP improves OTP
generation and verification performance, at the cost of little server storage and tolerable client storage.

Table 7. MOTP and T/Key space-time complexity comparison (the size of the hash value and nonce is b).

Comparison MOTP T/Key without Checkpoints T/Key with Checkpoints

Client storage (3 · 2hm − 1)b b 2hm b
Server storage 2hm−hs b b 2hm b

OTP generation time complexity O(p), Ω(1) O(2hm p), Ω(1) O(p), Ω(1)
OTP verification time complexity O(p + hs), Ω(1) O(2hm p), Ω(1) O(p), Ω(1)

5.3.2. Comparison with SmartOTPs

SmartOTPs also uses a Merkle tree and hash chains to generate OTPs. Nevertheless, they are
quite different in other ways.

1. In terms of the entities involved, SmartOTPs involves four entities: an authenticator (mobile),
a client, a private key wallet, and a smart contract. MOTP only involves two entities: a client and
a server.

2. In terms of OTP usability, SmartOTPs separates the construction of OTP = {otp, proo f } on
two devices. The authenticator is used to generate otp so that the user only needs to enter the
short digit otp to the client. Then, the client generates proo f and sends {otp, proo f } to the smart
contract. On the other hand, MOTP uses QR codes to transmit the OTP generated by the client.

3. In the use of the hash chain, SmartOTPs only uses Lamport’s hash chain, while MOTP adopts the
idea of T/Key and introduces a time gap to make OTP time sensitive.
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4. In terms of OTP location, SmartOTPs relies on the sequence number sent by the client to the
authenticator to generate the corresponding OTP. On the other hand, MOTP uses the current time
of the device to generate the corresponding OTP without relying on other devices.

6. Conclusions and Future Work

Inspired by T/Key, we propose in this paper the Merkle tree-based OTP algorithm, called MOTP.
MOTP constructs time sensitive OTPs to improve the security of the generated OTPs. Moreover,
the periodic re-initialization of MOTP can reduce the probability of the root node being cracked.
Compared with T/Key, MOTP can significantly improve OTP generation and verification efficiency
at the cost of little server storage and tolerable client storage. Compared with the two-factor
authentication scheme based on TOTP, the scheme based on MOTP can resist leakage attacks against
the server. Again, security analysis and experimental results show that MOTP has adequate security
and brings little delay to two-factor authentication.

As future work, we intend to design and assess the configuration parameter’s standard values
of MOTP and shorten the length of the OTP while ensuring the same security level [27], as well as
investigate techniques for resource protection and recovery [28–30].
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