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Abstract: Although recently developed trackers have shown excellent performance even when
tracking fast moving and shape changing objects with variable scale and orientation, the trackers for
the electro-optical targeting systems (EOTS) still suffer from abrupt scene changes due to frequent
and fast camera motions by pan-tilt motor control or dynamic distortions in field environments.
Conventional context aware (CA) and deep learning based trackers have been studied to tackle these
problems, but they have the drawbacks of not fully overcoming the problems and dealing with their
computational burden. In this paper, a global motion aware method is proposed to address the fast
camera motion issue. The proposed method consists of two modules: (i) a motion detection module,
which is based on the change in image entropy value, and (ii) a background tracking module, used to
track a set of features in consecutive images to find correspondences between them and estimate
global camera movement. A series of experiments is conducted on thermal infrared images, and the
results show that the proposed method can significantly improve the robustness of all trackers with a
minimal computational overhead. We show that the proposed method can be easily integrated into
any visual tracking framework and can be applied to improve the performance of EOTS applications.

Keywords: visual object tracking; camera motion; motion aware; robust tracking

1. Introduction

Visual tracking is one of the core problems in computer vision. The main task of short term visual
tracking is to localize the target in consecutive frames in a video. Recently, visual tracking received
much attention from researchers, resulting in significant improvements of the tracking algorithms.
These improvements are reflected in the large number of tracking benchmarks [1–7]. The subfield
of visual tracking focuses on thermal infrared (TIR) tracking, which is less developed than the RGB
based short term tracking. In this paper, we focus on hybrid RGB + TIR images, which is common
in image sensors for electro-optical targeting systems (EOTS). As a matter of fact, many defense and
security applications such as helicopters and armored vehicles are integrated with EOTS sub-systems.
They have stabilizing inner gimbals to achieve high object detection and tracking performance at night
and in dynamic motion environments.

Thermal infrared images have outstanding advantages over the standard RGB based imaging
systems, i.e., the lack of light and reflections is not very problematic in TIR, while on the other hand,
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there is less color information, which can be useful for robust tracking. These properties result in
TIR images having great application potential, especially in surveillance and object tracking missions.
A typical tracking scenario in TIR is the tracking of an object that is far; therefore, it is small in the
image. Another property is that TIR cameras are static most of the time, but when they are used to
search and track to observe a target continuously at a long range at high magnification, the scene moves
fast and suddenly, which causes significant camera movement and blurred images. The TIR sensor
has a relatively small amount of photon energy compared to the RGB sensor; therefore, its integration
time to accumulate photon energy and to make clear images is longer than the integration time of the
RGB sensor in the readout integrated circuit (ROIC). TIR images are therefore easily blurred in the
event of severe camera movements due to the longer integration time compared to general imaging
sensors. As a result of that, trackers on TIR images often fail due to the image blur caused by fast
camera motion. Most of the existing trackers do not explicitly address fast camera motion, and they
use a fixed sized search region. As shown in Figure 1a, if the target goes out of the search region due to
significant camera motion, the tracker fails to keep tracking it continuously. This is more problematic
for TIR images, especially in real EOTS applications, since motion blur occurs more often than in RGB
tracking due to the sensitivity of the TIR detector and its severe operating environment.

Figure 1. Conventional trackers fail due to the fast camera motion, and they are no longer able to
recover the target position (a). The proposed tracker can handle large target movements caused by the
camera motion and can successfully track the target (b).

The main contribution of the paper is a new method for global camera motion estimation that
can be incorporated into most of the existing tracking algorithms. Figure 1b shows the conceptual
idea of the proposed method. We extend four conventional fast correlation filter based trackers with
the proposed method, and we show the performance boost in terms of robustness for all compared
methods, with a negligible complexity overhead. All methods are tested on the recent Visual Object
Tracking Challenge in 2019 (VOT2019) using RGB + TIR datasets, which are not only the most
challenging infrared tracking datasets, but also the most similar published infrared datasets with real
EOTS applications [8]. Additionally, we analyze extensive experimental datasets on the PTB–TIR and
RGB–T234 benchmark [9,10]. Especially, the RGB-T234 object tracking benchmark datasets have in total
234 thermal infrared sequences with 89 fast camera motions in contrast to PTB-TIR, having 17 moderate
camera motions. We also apply the proposed tracking method to real EOTS in the conditions of fast
camera motions for validation. The results show that the proposed method can improve the robustness
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of an EOTS and show improvement of the intersection over union (IOU) and center error compared to
the conventional tracking methods [11,12].

2. Related Works

Correlation filter trackers achieved state-of-the-art results in the visual tracking tasks in recent
years. In the following, we review some popular tracking methods based on correlation filters
and describe how the field developed in the last few years. The discriminative correlation filter
(DCF) methodology was introduced by Hester and Casasent [13]. It was successfully applied to the
localization task in visual tracking by Bolme et al. [14], who introduced the minimum output sum
of squared error (MOSSE) correlation filter and achieved state-of-the-art results at the remarkable
tracking speed of few hundred frames per second. The method was improved by introducing
kernels [15] and the multi-channel formulation of DCFs [16]. Danelljan et al. [17] proposed the
scale estimation method formulated as a set of one-dimensional correlation filters on each pixel.
The advancements and performance improvements of these methods were not only methodological;
they also incorporated more complex features such as color names [18], HoG [19] and even CNN based
features [3]. Lui proposed a correlation filter based ensemble tracker with multi-layer convolutional
features for TIR tracking and found that the features from the convolution layer were more effective
than a fully connected layer for thermal infrared tracking [20]. Xin li et al. proposed a TIR tracker via a
hierarchical spatially aware Siamese CNN to obtain both spatial and semantic features of the TIR object;
the tracker was designed as a Siamese CNN that combined the multiple hierarchical convolutional
layers [21]. Li et al. proposed a target aware deep tracking framework integrated with the Siamese
CNN and target aware features [22]. Liu proposed a tracker that performed a prediction using a given
threshold by providing a template update method as a score function between a candidate group and
a template [23,24]. This tracker had an effective observation module, which could deal with occasional
large appearance variation or severe occlusions. These state-of-the-art trackers have been successfully
researched with various advanced methods to overcome the limitations of conventional trackers using
TIR and RGB images. However, in order to consider the application of the embedded tracking module
in EOTS, these methods required great computing power with parallel processors, and the processing
time was not fast enough, being under 3∼10 fps.

According to the development of deep learning methods, in order to improve tracking accuracy
and robustness under the conditions of dynamic objects or camera motions, Danelljan et al. [25]
proposed a method of applying a deep RGB feature and a deep motion feature. However,
the operational condition with abrupt camera motion caused serious blurred images such that the
object and the background could not be distinguished, and as a result, the motion feature map could
be expanded and saturated up to the global search area; finally, the coarse localization of the target
could not be estimated. Risse et al. [26] proposed a compensation method to find the localization of
the target in sequence frames using the RANSAC approach. This method had a limitation with respect
o correcting the position of the target in motion blur situations under fast camera motion cases where
the target and background are not distinguished. Zhu et al. [27] proposed a framework that worked by
using the distractor aware approach to reduce the response of the background rather than the object
so that the response score of the object became apparent. However, the semantic negative pairs had
a limitation in that they could not find the distractor when fast motion blur occurred. In addition,
these methods used pre-trained deep learning models; although their accuracy and robustness were
outstanding compared to general DCF based trackers, the accuracy and robustness could be drastically
reduced according to the quality of pre-trained datasets, as well as variation of new test environments.
Furthermore, it was difficult to apply to real-time EOTS applications since the frame rate was too slow
for conventional compact embedded systems. The most useful and high performance object tracking
methods for real-time EOTS applications are advanced DCF baseline trackers such as discriminative
scale space tracking (DSST) [28].
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The following authors made advancements in the size of the search region in correlation filters.
Danelljan et al. [29] proposed a method that introduced a penalty function that penalized large filter
values far away from the target region. Such a filter can be larger while preventing the background
from having a large effect. A similar issue was addressed by Galoogahi et al. [30], who formulated
constrained learning within the target region only, and by Lukezic et al. [31], who used a binary mask
obtained as color segmentation to constrain the filter. Mueller et al. [5] presented a method, the context
aware (CA) correlation filter tracking, to train the correlation filter robustly, by taking into account
negative samples. On the other hand, Bertinetto et al. [32] proposed a method (STAPLE) to improve
the localization of the correlation filter by combining correlation response and color segmentation
in the localization step. All described existing correlation filters localized the target within a search
region of a limited size, which was defined by the size of the filter. The search region was centered
on the target position from the previous frame. This limitation could cause tracking failure, which
could not be recovered in the event of significant camera motion. In a review paper, Li et al. [33]
showed that most of the trackers are not guaranteed to function properly with respect to fast camera
motions, and in particular, representative DCF trackers, including DSST, showed the most degradation
of performance in motion blur (MB) conditions. In this work, we address the fast camera movement
issue with a separate background tracking method, which reduces the impact of large displacements
between the consecutive frames. We use a motion blur detection method when the camera moves
fast, and the global motion is found from the time duration of motion blur frames. To detect motion
blur and feature tracking, the motion blur detection method should be reliable and accurate [34].
Moshe Ben-Ezra et al. proposed a motion blur detection method using the hybrid camera system and
point spread function (PSF) calculation to detect motion blur and improve the accuracy of the object
tracking algorithm [35]. Cho et al. proposed a fast deblurring method that produced a deblurring result
from a single image of various sizes in 5∼0.2 fps [36]. The method is general and can be incorporated
into any tracking method, as well as DCF trackers. This can especially contribute to improving the
robustness of fast DCF based trackers without much additional computational complexity.

3. Methods

The EOTS applications with thermal imaging sensors mounted on aircraft, drones, or battle tanks
are used under the conditions of static background images because of the long surveillance distance.
However, they must perform observation missions under conditions of the complex movement of
targets, as well as fast camera motions. Although their background is simpler than general near-field
cameras, many of the conventional trackers fail to track the target robustly because the images are
significantly blurred. We are motivated to detect this blurring phenomenon using the entropy value
and to find the camera fast motion vector effectively to improve the performance of trackers. In this
work, we propose a global camera motion estimation framework consisting of the gradient of the
entropy sensor (GES) and background tracking (BT), as shown in Figure 2. The GES component
(Section 3.1) detects camera motion based on the change of the gradient of the image entropy, and it
triggers the BT (Section 3.2) component, which estimates the global fast camera movement.

3.1. Gradient of the Entropy Sensor

In the tracking method using TIR images, tracking failure often happens when the images are
blurred and the shape of the objects becomes unclear. The image signal processor (ISP) of the thermal
image sensor includes a process of setting the integration time for accumulating photon energy due to
the low energy level of TIR detectors. Because of the integration time, image blur occurs when fast
motion occurs in the camera. In general, the image blur of a thermal image can be detected by the low
values of the entropy [37]. We used the phenomenon of motion blur as a sensor signal for fast camera
motion detection because the thermal imaging sensors are required to be set with a long integration
time and motion blur occurs easily. In general, the motion blur of images is measured quantitatively
using the point spread function (PSF) and the discrete entropy (DE) [35]. The PSF derives the level and
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direction of motion blur as a vector, but requires complex two-dimensional convolution operations.
On the other hand, the entropy derives a quantitative value only by the level of motion blur of the
image, and the calculation speed is fast due to the simple one-dimensional summation. However,
depending on the complexity of the background scenes, the absolute value of the entropy shows large
variation. The variation affects the accuracy of the blurring detection and is problematic. Therefore,
we propose the gradient of the entropy (GES) method for fast camera motion detection without the
variation problems. In summary, the intuition behind GES is a value that can quantitatively detect the
amount of change in image blur caused by fast camera motion. Furthermore, GES is described as a
sensor signal that detects the timing of fast camera motions for image sequences in real time.

Figure 2. An overview of the proposed method. The IR and RGB images are used in the gradient of
the entropy sensor (GES) module to determine when camera motion happens. Then, the background
tracking (BT) module is used to estimate global movement on the consecutive IR images. Estimation of
the global movement is used to translate the position of the search region.

The entropy of information theory was proposed by Claude Elwood Shannon in 1948, which was
used as a metric for information chaos [38]. It has been primarily used in data analysis and
communication systems to calculate the minimum number of bits required for lossless compression
of information. Denoting A as a finite set of MA possible states, i.e., A = {aj}, j = {1, ..., MA},
the Shannon entropy H(A) is defined as:

H(A) = −
MA

∑
j=1

p(aj) log p(aj), (1)

where p(aj) denotes the probability of the state aj. In the field of computer vision, the entropy is also
used to analyze how well image quality is maintained or improved [39,40]. To obtain the entropy EI of
an image I, the probability p(ai) is changed to pd f (Ii), calculated as:

pd f (Ii) =
|Ii|
n

, i = {0, 1, ..., L− 1}. (2)

The Ii represents a specific intensity level in the image, and |Ii| is the number of pixels with this
intensity. All possible intensity values in the image are denoted as L, e.g., in the case of an eight bit
grayscale image L = 256. n is the total number of pixels in the image I. The image entropy EI is finally
calculated as:

EI = −
L−1

∑
i=0

pd f (Ii) log pd f (Ii), (3)

and it can be used to detect the image blurring caused by camera motion. However, since the sequences
of various images have different scenes of different images and have different EI level values, it is
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difficult to detect the camera motion robustly only by EI . Therefore, we calculate the temporal
derivative ∆EI of the image entropy EI as:

∆EI(t) =
∂EI
∂t

=
Et

I − Et−1
I

t− (t− 1)
. (4)

The current and previous time steps are denoted as t and t− 1, respectively, while image entropy
at the current and previous time steps is Et

I and Et−1
I , respectively. In general, as an example of

using the variation of entropy for motion blur detection, Jiadong et al. proposed a noise robust
motion compensation method using parametric minimum entropy optimization [34]. Shuigen et al.
proposed a gradient magnitude distribution based no-reference image blur assessment method [41].
Considering visual tracking using two modalities, e.g., thermal infrared (IR) and color (RGB) images,
the temporal derivatives of the image entropy are denoted as ∆EIR and ∆ERGB, respectively. The two
modalities are captured using different sensors, which have different optical properties and sensitivities;
therefore, they are considered separately to detect camera motion:

GES(t) = [∆EIR(t) < αIR] ∧ [|∆ERGB(t)| > αRGB]

∧ [max(R(t)) < τR]
(5)

The main influential sensitivities of the motion blur are the integration time and the frame
rate. The integration time improves the quality of the thermal image and generates blurring [42,43].
GES(t) represents the trigger for camera motion in frame t, and αIR and αRGB are sensor specific
thresholds, which are adjusted and optimized according to the sensitivity of sensors. In more detail,
two parameters are initialized in relation to the integration time and the frame rate. The equations for
the initializing parameters are shown in Equation (6). The term of the integration time is also used as
the exposed time or the read out time of charged photons. However, the motion blur is also changed
depending on the optics, ROIC, image transmissions, and compression processes. Therefore, the final
αIR and αRGB values should be fine tuned and verified from the initial values through the ablation test
process based on the actual output images.

αIR = TIR × (−102), αRGB = TRGB × (0.5). (6)

where TIR is initialized to the integration time of the IR sensor and TRGB is initialized to the frame
rate. For an uncooled type of bolometer as a longer wavelength infrared (LWIR) detector sensor,
its integration time is approximated by 600 µs, so the threshold is set to αIR = −0.06. For an RGB
sensor, its frame rate is 50 Hz (20 ms), so the threshold is set to αRGB = 0.01.

We observed that the correlation response can also be a good indicator to know when the image
is significantly blurred. The correlation response of the tracker is denoted as R(t), and the correlation
response threshold is τR = 0.2. Figure 3 shows how the GES is calculated on a few consecutive frames
where the camera motion occurs.

GES is a motion blur detector and is derived from three sub-sensor signals, ∆EIR, ∆ERGB, and Rt,
as shown in Equation (5). An ablation study was performed to verify the accuracy of parameter
tuning and motion blur detection for the GES optimization, as shown in Figure 4. The GESALL
signals are the final detected GES values, which are compared to the ground truth of fast camera
motion GTFM, and they show the results of the corresponding timing when the fast camera motions is
occurring. GESALL−∆EIR means a result except the ∆EIR signal; GESALL−∆ERGB means a result, except
the ∆ERGB signal; and GESALL−RES shows that it supports removing outlier GES signals. As a result,
this ablation study shows that the most accurate performance is derived when the three sub-signals
are collaborating altogether.
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Figure 3. Example of the camera movement detection (camera movement happens between the
frames #64 an #66, bordered with green). During that period, ∆ERGB and ∆EIR are increased, and R is
significantly lower, which triggers the camera motion event.

3.2. Background Tracking

During camera motion, the target position in the image can change significantly, which can cause
the target to disappear from the fixed size search range, which makes it impossible for the tracker to
localize it. To address this issue, we propose a method to estimate global camera movement and to use
it to move the position of the search range of the tracker. The background tracking (BT) framework
estimates the translation of the global camera motion from two consecutive frames ft−1 and ft when
the GES trigger (Section 3.1) detects camera motion. Figure 5 shows the comparison of the proposed
tracking method and the conventional tracking method, which does not estimate global camera motion.
The BT framework consists of two modules: feature detection and feature tracking.

Feature detection: In the first step of the BT process, the features on the two consecutive frames
are detected. The cross-correlation method can be used as a conventional approach to detect the feature
of two consecutive image frames and tracking the background. However, when the cross-correlation
method is used to detect the background motion of the blurred screen, the convolution calculation of
the image has to be performed several times over the entire range, which is very slow. The proposed
tracker is required to be fast to be applied to the DCF based trackers of the EOTS in real time. Hence,
we employed and modified a feature detector with fast speed and accurate feature point detection
performance on the blurry images. Dan et al. performed experiments of four feature detection methods,
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Shi–Tomasi, Harris–Stephens–Plessey, SUSAN, and FAST [44]. As a result, the Shi–Tomasi method
outperformed other methods to detect feature points and showed the fastest speed. Fenghui et al.
showed that the Shi–Tomasi method was a more reliable and faster feature detector than other methods
for moving IR camera applications [45]. Therefore, for efficient feature detection of the blurred image,
we used the Shi and Tomasi corner detection method [46,47], which is an extension of the Harris
corner detection method [48]. First, the sum of squared differences (SSD) is calculated using the sliding
window approach. The SSD at the position (x, y) in the frame f is defined as:

SSD(∆x, ∆y) = ∑
x

∑
y
[ f (x− ∆x, y− ∆y)]2, (7)

where ∆x and ∆y are the size of the window within which the SSD is calculated. Equation (7) can be
linearly approximated as:

f (x− ∆x, y− ∆y) ≈ f (x, y) + [ fx(x, y), fy(x, y)]2, (8)

where fx(x, y) and fy(x, y) are the x and y image coordinates. The derivation can be further expanded
into the following form:

SSD(∆x, ∆y) ≈∑
x

∑
y
[ f (x, y)

+[ fx(x, y), fy(x, y)][∆x, ∆y]− f (x, y)]2

and finally written into the matrix form:

[
∆x, ∆y

]
H

[
∆x
∆y

]
. (9)

Figure 4. The ablation study of the proposed gradient of entropy method. (a) The bikeman sequence
and (b) cycle3 sequence.
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Figure 5. Comparison of the tracking method that does not estimate global camera motion (upper)
and the tracker that uses the proposed global camera motion estimation method. The conventional
method fails in the event of significant camera motion since the target disappears from the search range.
The proposed method estimates the global camera motion and corrects the position of the tracker
before localization, which results in successful tracking.

The score for corner structures is defined as:

SH = λ1λ2 − q(λ1 + λ2)
2, (10)

where λ1 and λ2 represent the eigenvalues of the matrix H.
In the conventional Shi–Tomasi detection algorithm, q is a pre-defined constant as a quality

threshold of detecting feature points. We observed that it was difficult to determine a single q for IR
images since they were often poorly textured. Therefore, we proposed to use an adaptive method to
select q in each frame separately, which we define as:

qA =
E3

IR
SF

. (11)

Note that qA is an adaptive constant of the q in (10), and it is denoted differently just for clarity.
EIR denotes the image entropy value (3) of the IR image. The scale factor value (SF) can be adjusted
according to the image quality performance parameters including the minimum resolvable temperature
difference (MRTD) and modulation transfer function (MTF) performance.

We tested several SF values and selected SF = 2× 104. See Figure 6 for the results. The SF
value was set such that qA = 0.01 if EIR = 6, while qA = 0.02 if EIR = 7. qA = 0.01 represents
extracting about 1% of the feature points, and qA = 0.02 reduces the number of feature points by about
0.5%. In Figure 7, there are two scenarios when fast camera motions occurred. The stable number
of detected feature points assured the high accuracy of the background tracking. The variation of
detected feature points in Figure 7a,d is larger than the proposed detector, Figure 7c,f. As shown in
Figure 6b, when different feature point detectors are applied to the baseline tracker, the results showed
a quantitative comparison of the precision and the success rate of the trackers. The conventional



Sensors 2020, 20, 566 10 of 20

Shi–Tomasi feature detector had a low quality threshold (constant q = 0.01) and a high quality
threshold (constant q = 0.05), and the proposed tracker had an adaptive qA with the SF = 2× 104

based feature detector. The proposed tracker showed the best performance on both precision and
success plots compared to the original feature detecting method. The optimization of the SF value
was inversely proportional to the MRTD and MTF performance of the IR camera, which was tuned
through experiments.

Figure 6. An experimental result for the optimal scale factor value (SF) value and the comparison of
feature point detectors. (a) A comparison of minimum accepted quality values following SF and (b)
different tracking performances by different feature point detecting approaches.

Figure 7. Comparison of different feature point detectors for the background tracking. (a,d) The
Shi–Tomasi detector with a low quality threshold (constant q = 0.01). (b,e) The Shi–Tomasi detector
with a high quality threshold (constant q = 0.05). (c,f) The proposed detector (adaptive qA with
SF = 2× 104).

Kanade–Lucas–Tomasi (KLT) feature matching [49]: Global camera motion between two
consecutive frames ft−1 and ft is denoted as d = [dx, dy]T . Feature points in frame t, denoted as
ut = [ux

t , uy
t ]

T , can be expressed using feature points from frame t− 1 as:

[ux
t , uy

t ] = [ux
t−1 + dx, uy

t−1 + dy]T . (12)
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The KLT method was used to estimate the final camera motion value d by repeatedly calculating
a point at which a relation between the detected feature points in frame t and frame t− 1 is minimal.

4. Experimental Results

In this section, we present the experimental results of the proposed method for the estimation of
global camera motion. We extend four existing DCF based trackers, described in Section 4.1, with the
proposed global camera motion estimation module (GESBT) framework. All tested trackers were
modified so that GESBT was used before their target localization process. The evaluation methodology
of the experimental validation is described in Section 4.2. The quantitative results using VOT2019
RGB-TIR datasets are described in Section 4.3. The qualitative results using VOT2019 RGB-TIR datasets
show the performance of the proposed tracker compare with others by visualization in Section 4.4.
The quantitative and qualitative results using real EOTS datasets are shown in Section 4.5.

4.1. Baseline Trackers

In the experimental comparison, we modified the four existing trackers, described in the following,
with the proposed GESBT method. (i) MOSSE_CA [5] is a visual tracking method, which extends the
well known MOSSE [14]. It uses simple (grayscale) features only and achieves remarkable robustness.
(ii) STAPLE [32] is a combination of the HoG based DSST [28] tracker and a color segmentation
method [50]. (iii) STAPLE is further extended with the context aware framework [5] and denoted as
STAPLE_CA. (iv) DFPReco [3] is an extension of the ECOtracker [51] by adding part based formulation
to the holistic tracker. The main features and release dates of these baseline trackers are shown in
Table 1.

Table 1. Baseline trackers that are extended with the proposed global motion estimation method.
The type of features, scale estimation, and year of publication are given for each method.

Trackers Features Scale Published

MOSSE_CA Grayscale No 2017 (CVPR)
STAPLE HoG, RGB histogram Yes 2016 (CVPR)
STAPLE_CA HoG, RGB histogram Yes 2017 (CVPR)
DFPReco HoG Yes 2018 (ECCV)

4.2. Evaluation Methodology

The VOT2019 RGB-TIR dataset (RGB and thermal infrared) was used in all of the experiments
consisting of 60 tracking sequences. Since they had several camera motion events, the dataset was
used to demonstrate the performance boost of the proposed method. The standard VOT short term
reset based methodology [4] was used to evaluate the tested trackers. A tracker was initialized at the
beginning of the sequence, and the overlap of the predicted region with the ground truth was calculated
in each frame. When the overlap dropped to zero, the tracker was considered as having failed, and it
was re-initialized in the following frames. The VOT methodology measures tracking performance
using two basic measures: accuracy, which represents average overlap and robustness, which is
measured as the average number of failures. The expected average overlap (EAO) is a combination of
accuracy and robustness calculated on an average short term tracking sequence. Furthermore, we used
the one pass evaluation (OPE) method for extensive experimental validation [6] to demonstrate the
effectiveness of the proposed method. All trackers were run on the same workstation (a single Intel
CPU i7-7700 3.6GHz 32 GB RAM) using MATLAB.

4.3. Quantitative Results

The accuracy and robustness of the baseline and modified trackers are shown on the ARgraph
in Figure 8a and EAO plot in Figure 8c. The proposed method (GESBT) improved the robustness of
all trackers. Table 2 shows the improvements of all methods in terms of robustness. STAPLE_GESBT
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improved the failure rate of the baseline version by 3.92% by reducing approximately four failures on
the whole dataset. The failure rates of MOSSE_CA and DFPReco were improved by GESBT by 2.92%
and 2.87%, respectively.

The VOT2019 RGB-TIR dataset had per-frame annotations of the visual attributes, and one of
them was camera motion. We compared the trackers under this attribute only and show the results on
the AR plot in Figure 8b. The proposed GESBT improved the tracking robustness even further under
this attribute, which was an expected result.

Additionally, the PTB-TIR and RGB-T234 object tracking benchmarks had various thermal infrared
sequences [9,10]. Specifically, RGB-T234 had 89 sequences containing fast camera motion; in contrast,
PTB-TIR had 17 sequences with slow camera motions. In order to verify the effectiveness of the
proposed method, we carried out extensive experimental validation using the 234 RGB-T sequences
and 89 sequences with fast camera motions as shown in Figure 9.
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Figure 8. Results of the experimental validation on the Visual Object Tracking Challenge in 2019
(VOT2019)-RGB-TIR datasets. (a) An evaluation of the accuracy and robustness for the VOT evaluation,
(b) the accuracy and robustness under camera motion for the VOT evaluation, (c) the expected average
overlap (EAO) of the compared trackers for the VOT evaluation, (d) the precision plots of the one pass
evaluation (OPE) result, and (e) the success plots of the OPE result.
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Figure 9. Results of the OPE experiment on the RGB-T234 datasets. (a,b) are the precision and success
plots on the 234 RGB-T234 video sequences, and (c,d) are the precision and success plots on the 89
RGB-T234 video sequences having fast camera motion.

Table 2. The improvements of the proposed method compared to the baseline trackers in terms of the
number of failures. The red color is the best result, blue the second best, and green the third best.

Method EAO Failures Failure (↓) Precision (↑) Success (↑) FPS

STAPLE 0.28 48.47 Baseline Baseline Baseline 39.4
STAPLE_CA 0.27 47.73 0.75 −0.014 −0.008 28.0
STAPLE + Proposed 0.28 44.55 3.92 0.023 0.012 36.1
STAPLE_CA + Proposed 0.27 44.44 4.03 0.011 0.005 22.2

MOSSE_CA 0.29 45.75 Baseline Baseline Baseline 55.9
MOSSE_CA + Proposed 0.29 41.83 2.92 0.021 0.008 36.0

DFPReco 0.26 54.43 Baseline Baseline Baseline 13.0
DFPReco + Proposed 0.26 51.56 2.87 0.064 0.061 12.8
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Speed analysis: The recently published CA method claimed that the speed was two to six times
faster than the compared target-adaptive counterpart (AT) method, and it was shown that it could be
applied as half speed (50%) compared to its baseline [5]. Measurements are presented in Figure 10.
The proposed method did not significantly reduce the speed compared to the CA method. The average
speed for all methods is presented in Table 2. It shows that when CA was applied to the baseline
STAPLE, it reduced the speed by 29%, while when GESBT was used, it reduced the speed by 8%
only. For more detailed speed analysis, we calculated the speed in frames-per-second (FPS) for three
randomly selected sequences from VOT2019 RGB-TIR for all four trackers and their modifications.

Figure 10. Speed comparison of the baseline trackers and their extensions with the proposed GESBT
on three randomly selected sequences from the VOT2019 RGB-TIR dataset. Speed is calculated as
frames-per-second (FPS).

4.4. Qualitative Results

Figure 11 shows qualitative results for the baseline trackers and GESBT based extensions of these
methods under significant camera motion. In the first two lines, all baseline trackers lost the target in
the frame after the camera motion occurred. The trackers with the proposed GESBT were able to track
the target successfully even after camera motion. The third line shows that even the baseline trackers
were still tracking the target, and the GESBT based methods were tracking the target more accurately.

Figure 11. Qualitative examples of baseline trackers and their extension with the proposed method.
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4.5. Results of the EOTS Applications

In this section, we compare the performance of the proposed method with conventional trackers
when applied to an EOTS product, which was mounted on an aircraft where actual fast and complex
camera motion occurred. There were two main reasons for fast camera motions in aircraft EOTS. First,
when the flights or vehicles’ dynamic disturbance exceeded the camera stabilization performance, fast
camera motion occurred. In fact, in the case of drastic flying of the aircraft or disturbance of vehicles
when they were traveling on uneven roads, the limitation of the tracking performance occurred, and
it was recorded in the user operating instructions. Second, the fast camera motion occurred when
the camera motor was controlled by the joystick command. The operator tended to keep the target
approximately in the center of the image; therefore, significant camera motion could happen when the
camera position was adjusted. Such events often resulted in a tracking failure.

We used the experimental environment as shown in Figure 12 to acquire the video sequences,
which included fast motion profiles of the EOTS product. The acquired video sequences included
camera motor movement in the azimuth and elevation directions and disturbances in the roll, pitch,
and yaw directions applied by the six degrees of freedom (6-DOF) motion simulator. Figure 13 shows
examples from the videos obtained by a hard mounted EOTS product in the experimental environment.
Figure 13a–d includes the fast motions generated by the movement of the target and the camera motor
control. The red solid line in the graph means the Euclidean distance (L2) from the center of the image
to the center of the target. Figure 13e–h includes the target motion and the movement generated by
the motion simulator. This movement occurred following the pitch, yaw, and roll directions, and the
vertical (heave), horizontal (sway), and straight (surge) linear movements were not observed because
they were canceled by the parallax at a long distance of more than 200 m.

Figure 14 shows the experimental results for the EOTS_parking and EOTS_6DOF_up_down
datasets. The sequential images qualitatively showed continuous object tracking results of the two
different trackers. The white bounding boxes represented the ground truth, the yellow boxes the
results of the proposed tracker, and others the conventional trackers. In Figure 14a,b, the solid red
lines on the graphs show camera motions, and the solid green lines show the intersection over union
(IOU) measurement index compared with the conventional tracker by the solid magenta lines [52].
The IOU measurement index function Φ(·) measures the overlap between the region predicted by a
tracker and a ground truth region.

As shown in Figure 14, the IOU result of φ is calculated between the region of the ground truth
RG

t and the region of the tracker RT
t . φt is measured until N frames, and it is expressed by Φ(ΛG,

ΛT). In Figure 14a,b, the dotted lines mean the center error calculated by the L2 distance between
the center positions of the ground truth and the center of predicted target region by the trackers.
The dotted green line is the proposed tracker, and the dotted magenta line is a conventional tracker
(MOSSE_CA). All experimental results using other trackers showed improved robustness to track
objects continuously. The proposed method especially showed the highest performance improvement
ratio when it was applied with MOSSE_CA compared to the others.
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Figure 12. Experimental environment for the data acquisition of an electro-optical targeting systems
(EOTS) application.

Figure 13. Videos and fast camera motion profiles of a real EOTS application. The solid
red lines represent x-axis motion profiles. (a–d) have fast camera motion caused by the
internal camera motor driver; (e–h) have fast camera motion caused by the external 6-DOF
motion generator. The names of the sequences are (a) EOTS_parking, (b) EOTS_women1,
(c) EOTS_shortupdown, (d) EOTS_clean_man2, (e) EOTS_6DOF_bag_cross, (f) EOTS_6DOF_up_down,
(g) EOTS_watertank_free, and (h) EOTS_two_roll_updown.
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Figure 14. Comparison of the proposed tracker with the conventional tracker. The red solid line on
the camera motion graph shows a representative x-axis motion profile. Green and magenta solid
lines are the IOU measurement results of the conventional tracker (MOSSE_CA) and the proposed
tracker (MOSSE_CA + GESBT). The dotted lines show the center error measurement results of
MOSSE_CA and the proposed tracker. (a) Tracking result of EOTS_parking dataset; (b) tracking
result of EOTS_6DOF_up_down dataset.

5. Conclusions

In this study, we proposed a global motion aware method that can be applied to improve the
performance of all visual object tracking algorithms for real-time applications. The method consisted of
the camera motion detection module based on the gradient of the entropy sensor and the background
detection module based on the feature tracking method. Global camera motion was estimated and used
in the target localization step. Compared with the existing CA method, the robustness of the proposed
method was increased especially when camera motion occurred. The additional computational
complexity was very low. We expect that this method will motivate researchers to study the limitations
of the trackers in thermal IR based electro-optical systems that are operated in real field environments.
Future work includes incorporation of deep CNN features used for estimation of the global motion
and formulating the problem as an end-to-end training task.
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