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Abstract: The precision of target-based registration is related to the geometry distribution of targets,
while the current method of setting the targets mainly depends on experience, and the impact is only
evaluated qualitatively by the findings from empirical experiments and through simulations. In this
paper, we propose a new quantitative evaluation model, which is comprised of the rotation dilution
of precision (rDOP, assessing the impact of targets’ geometry distribution on the rotation parameters)
and the translation dilution of precision (tDOP, assessing the impact of targets’ geometry distribution
on the translation parameters). Here, the definitions and derivation of relevant formulas of the rDOP
and tDOP are given, the experience conclusions are theoretically proven by the model of rDOP and
tDOP, and an accurate method for determining the optimal placement location of targets and the
scanner is proposed by calculating the minimum value of rDOP and tDOP. Furthermore, we can
refer to the model (rDOP and tDOP) as a unified model of the geometric distribution evaluation
model, which includes the DOP model in GPS.

Keywords: terrestrial laser scanning; target-based registration; targets’ geometry distribution;
precision of the registration

1. Introduction

Terrestrial laser scanning (TLS) can provide a three-dimensional (3D) spatial point cloud dataset
of the objects’ surfaces. The spatial resolution of the data is much higher than that of conventional
surveying methods [1]. Due to occluded surfaces and limitations in the view of a scanner, we usually
need to make several scans from different setups of the scanner in order to survey a quite large and
complex object [2,3]. These point clouds (scans) must first be registered to a chosen coordinate system
before a coherent parametric description of the object can be formed [4]. Target-based registration with
two scans is one of the most common registration approaches and is often performed using a 3D rigid
body transformation algorithm [5,6].
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Although target-based registration technology is relatively mature [7], studies of the target-based
registration precision are still required, such as those on measurement improvement [8,9], the uncertainty
of the target center estimation [10], the error propagation for two scans and multiple scans [3,4,11],
the directly geo-referenced TLS data precision [3,12], the relationship between the registration precision
and the rotation and translation matrices [13], the relationship between the registration precision and
the targets’ geometry distribution (TGD) [2], etc. For the relationship between the registration precision
and TGD, some researchers have found that an increase in the number of targets can improve the
registration precision, and think that the targets will be distributed evenly and will not lie on the same
line or be close to such a configuration [2,14–20]. Fan et al. [12] and Liu et al. [17] used a simulation
method to demonstrate that the registration error is inversely proportional to the number of targets
and the sum of distances between targets and the barycenter of all targets. Bornaz et al. [21] proved
that the registration precision of two scans depends on the overlap ratio adopted (namely the target
distribution range of the overlap area), and found that the minimum overlap ratio of 30% is required
for assuring a final precision comparable to the range precision of the used instruments. However, all
of the above studies have only evaluated the impact of TGD on the registration precision qualitatively
through empirical experiments and simulations, while there has been no research conducted on the
theoretical evaluation model for it. As a result, we can never know the best location of the scanner and
the best TGD. How can we quantitatively evaluate the impact of TGD and describe the relationship
between TGD and registration precision? These issues are the focus of this research.

In this study, we first used the theorem of error propagation to constitute a new theoretical
evaluation model of the TGD, that is, the rotation dilution of precision (rDOP) and the translation
dilution of precision (tDOP); we then theoretically analyzed the model’s existence conditions,
the relationship between the model and the number of targets, and the model’s bounds; and finally,
we verified the evaluation model of the TGD by conducting experiments.

2. Methods

There are two kinds of situations in practical applications, which are “we need to determine the
optimal setting position of scanner where TGD is known” and “we need to determine the optimal
TGD where the position of scanner is known”. The unit of the rotation parameters is different from
the unit of translation parameters, and the calculation results of translation and rotation will interact
with each other when the transformation parameters are dependent on calculation models. For these
reasons, we will first introduce the common registration model of two scans. We will then present
the calculation of rotation parameters using the Rodrigues matrix [3,6]. Thirdly, we will propose a
new calculation method of the translation parameter (similar to spatial distance resection in GPS [22]),
which can ensure that the parameters of translation and rotation are computed independently. Fourthly,
we will propose a new quantitative evaluation model of TGD, namely rDOP (which can be used to
help determine the optimal TGD) and tDOP (which can be used to help determine the optimal setting
position of scanner). Finally, we will derive an equal weight model of TGD and propose a set of model
application schemes.

2.1. Registration Model of Two Scans

In the context of TLS, registration is the transformation of multiple point clouds (scans) into the
coordinate system of a chosen scan [2]. The rigid body transformation operation of registration is
expressed in Equation (1), in which the point clouds in Scan i + 1 are transformed into Scan i using the
three translation parameters tx, ty, and tz and the three rotation parameters ra, rb, and rc [3,23].

pi
j =


xi

j
yi

j
zi

j

 = R


xi+1

j
yi+1

j
zi+1

j

+ T = Rpi+1
j + T, (1)
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where pi
j and pi+1

j represent the same target in Scan i and Scan i + 1, respectively, whose observation

values of coordinates are (xi
j, yi

j, zi
j) and (xi+1

j , yi+1
j , zi+1

j ); R is the standard 3× 3 rotation matrix; T is
the 3× 1 translation vector; and

R =
1

1 + r2
a + r2

b + r2
c


1 + r2

a − r2
b − r2

c 2(rc + rarb) 2(rarc − rb)

2(rarb − rc) 1− r2
a + r2

b − r2
c 2(ra + rbrc)

2(rb + rarc) 2(rbrc − ra) 1− r2
a − r2

b + r2
c

, T =


tx

ty

tz

. (2)

For uniquely determining the above transformation parameters between Scan i and Scan Scan i +
1, we usually need to use three or more targets with known 3D coordinates [2,21], and these targets are
placed in the overlap locations between the two point-clouds.

In this study, we assumed that the number of targets k is greater than 3 (k ≥ 3) and the coordinate
of any point in Scan i (on a chosen coordinate system) is known, and we employed scanning to obtain
the new point cloud in Scan Scan i + 1, which was transformed into Scan i.

2.2. Calculation of Rotation Parameters

If pi
jc = pi

j −
1
k

k∑
jm=1

pi
jm

and pi+1
jc = pi+1

j −
1
k

k∑
jm=1

pi+1
jm

, with Equation (1), we can get

pi
jc =


xi

jc
yi

jc
zi

jc

 = R


xi+1

jc
yi+1

jc
zi+1

jc

 = Rpi+1
jc . (3)

From the Rodrigues matrix [21,23], with Equations (2) and (3), we can get

(I3 + S)


xi

jc
yi

jc
zi

jc

 = (I3 − S)


xi+1

jc
yi+1

jc
zi+1

jc

, (4)

where S =


0 −rc rb
rc 0 −ra

−rb ra 0

 and R = (I3 + S)−1(I3 − S).

With Equation (4), we can get

α j


ra

rb
rc

 = pi
jc − pi+1

jc , j = 1, 2, · · · , k, (5)

where S =


0 −rc rb
rc 0 −ra

−rb ra 0

 and R = (I3 + S)−1(I3 − S).

α j =


0 −τz, j τy, j
τz, j 0 −τx, j
−τy, j τx, j 0

,

τx, j
τy, j
τz, j

 =


xi
jc + xi+1

jc
yi

jc + yi+1
jc

zi
jc + zi+1

jc

 = pi
jc + pi+1

jc = (I3 + R)pi
jc. (6)

If the estimated values of ra, rb, and rc are r̂a, r̂b, and r̂c, respectively, with Equations (5) and (6),
the observation equation of rotation parameters can be expressed as

Ar(k)δr = Lr(k), (7)
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where Ar(k), Lr(k), and δr are 3k× 3 matrix, 3k× 1 matrix, and 3× 1 matrix, respectively, and

Ar(k) =


α1
...
αk

, Lr(k) =


pi

1c − pi+1
1c

...
pi

kc − pi+1
kc

, δr =


r̂a

r̂b
r̂c

. (8)

Assuming the weight matrix of Lr(k) is Pr(k), by using the principle of indirect adjustment [24] and
VTPV = min, we can obtain the estimated δr for rotation parameters as

δr = (AT
r(k)Pr(k)Ar(k))

−1
AT

r(k)Pr(k)Lr(k). (9)

2.3. Calculation of Translation Parameters

As the position of scanner i + 1 in Scan i + 1 is (0, 0, 0), with Equation (1), we can find that
the position of scanner i + 1 in Scan i is equal to the value of T, namely, the process of determining
translation parameters is equivalent to solving the position of scanner i + 1 in Scan i. If the targets
are regarded as GPS satellites, scanner i + 1 is regarded as a GPS receiver, and the calculation method
of translation parameters is equivalent to solving the position of the GPS receiver by GPS satellites,
namely, spatial distance resection in GPS [22], which will not be affected by the estimated precision of
rotation parameters.

If the observation value of distance between scanner i + 1 and the jth target in Scan i + 1 is di+1
j ,

the observation equation of translation parameters can be expressed as


di+1

1
...

di+1
k

 =


√
(xi

1 − tx)
2
+ (yi

1 − ty)
2
+ (zi

1 − tz)
2

...√
(xi

k − tx)
2
+ (yi

k − ty)
2
+ (zi

k − tz)
2

, (10)

where di+1
j =

√
(xi+1

j )
2
+ (yi+1

j )
2
+ (zi+1

j )
2

and j = 1, 2, · · · , k.

If the approximation values of translation parameters and corrections of translation parameters tx,
ty, and tz are tx,0, ty,0, and tz,0 (calculated by the method of Appendix C in [3]) and εtx , εty , and εtz , then
from the linearization theorem [22,24], the linearization form of Equation (10) can be expressed as

At(k)δt = Lt(k), (11)

where T = T0 + δt; At(k), Lt(k), and δt are k× 3 matrix, k× 1 matrix, 3× 1 matrix, respectively; and

At(k) =


β1
...
βk

 =


lx,1 my,1 nz,1
...

...
...

lx,k my,k nz,k

, δt =


εtx

εty

εtz

, Lt(k) =


di

1,0 − di+1
1

...
di

k,0 − di+1
k

, T0 =


tx,0

ty,0

tz,0

, (12)

β j =
[

lx, j my, j nz, j
]
=

[
xi

j−tx,0

di
j,0

yi
j−ty,0

di
j,0

zi
j−tz,0

di
j,0

]
, j = 1, 2, · · · , k, (13)

di
j,0 =

√
(xi

j − tx,0)
2
+ (yi

j − ty,0)
2
+ (zi

j − tz,0)
2. (14)

Assuming the weight matrix of Lt(k) is Pt(k), by using the principle of indirect adjustment [24], we
can obtain the estimated δt for translation parameters as

δt = (AT
t(k)Pt(k)At(k))

−1
AT

t(k)Pt(k)Lt(k). (15)
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2.4. Quantitative Evaluation Model of TGD

With Equations (9) and (15), based on the theorem of error propagation [24], the covariance Dδrδr

and Dδtδt of the rotation parameters δr and the translation parameter corrections δt can be obtained as Dδrδr = (AT
r(k)Pr(k)Ar(k))

−1
σ2

0

Dδtδt = (AT
t(k)Pt(k)At(k))

−1
σ2

0

, (16)

where Dδrδr and Dδtδt are 3× 3 matrices, and σ0 is the unit weight variance, usually determined in the
initial processing before registration.

As the trace of a real-symmetric matrix is equal to the trace of its corresponding diagonal matrix
and the parameters’ variance-covariance matrix is a real-symmetric matrix, we usually use the trace of
the parameters’ variance-covariance matrix in the precision evaluation of parameters, such as point
precision evaluation. For this reason, we assume that the variances of rotation parameters r̂a, r̂b, and r̂c

and the translation parameters’ corrections εtx , εty , and εtz are σa, σb, σc, σtx , σty , and σtz , respectively.
With Equation (16), the registration precision (namely, the variances of parameters δr and δt) can be
obtained as √

σ2
a + σ2

b + σ2
c = tr(

√
Dδrδr) = tr(

√
(AT

r(k)
Pr(k)Ar(k))

−1
)σ0, (17)

√
σ2

tx
+ σ2

ty
+ σ2

tz
= tr(

√
Dδtδt) = tr(

√
(AT

t(k)
Pt(k)At(k))

−1
)σ0, (18)

where tr(.) is the trace of the matrix.
In GPS positioning, the impact of the satellites’ geometry distribution on the positioning quality is

evaluated by the dilution of precision (DOP) values [25–27]. Similarly, we can also build a quantitative
evaluation model of the impact of TGD on the registration precision, that is, the rotation dilution of
precision (rDOP) and the translation dilution of precision (tDOP), namely

rDOP =
√

tr(G−1
k ), (19)

tDOP =
√

tr(H−1
k ), (20)

where Gk = AT
r(k)Pr(k)Ar(k) and Hk = AT

t(k)Pt(k)At(k).
With Equations (17)–(20), we can find that the registration precision of rotation parameters and

translation parameters are √
σ2

a + σ2
b + σ2

c = rDOP · σ0, (21)√
σ2

tx
+ σ2

ty
+ σ2

tz
= tDOP · σ0. (22)

From the above evaluation model of TGD, we can find that

1. The values of rDOP and tDOP represent the amplification of the unit weight variance, which
means the lower the values of rDOP and tDOP, the higher the solution precisions of the rotation
parameters and the translation parameters;

2. The values of rDOP calculated by Equation (19) are related to the coefficient matrix Ar(k) and the
weight matrix Pr(k) of Lr(k), among which Ar(k) is related to TGD (the coordinates of targets pi

jc)
and the rotation matrix R. Namely, when R is fixed, the better the quality of TGD, the lower the
values of rDOP;

3. The values of tDOP calculated by Equation (20) are related to the coefficient matrix At(k); and the
weight matrix Pt(k) of Lt(k), among which At(k) is related to TGD (the coordinates of targets pi

j)
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and the position of scanner i + 1 in Scan i. Namely, the better the quality of TGD and the position
of scanner i + 1, the lower the values of tDOP;

4. The calculation formula of tDOP is identical to the calculation formula of DOP in GPS, so the
tDOP can be used to evaluate the quality of the received GPS satellites’ distribution. Namely,
the rDOP and tDOP model is a unified evaluation model of the targets’ and GNSS satellites’
geometric distribution.

2.5. Equationuationual Weight Model of rDOP and tDOP

In constituting the DOP model for evaluating the impact of the selected GNSS satellite geometry [25–
27], we usually assume that the weight matrix is an identity matrix. Additionally, in all the empirical
experiments and simulations of the TGD impact on the registration precision [2,12,14–20], we assume
that the weight matrix is an identity matrix. For these reasons and for convenience of the following
analysis on the nature of the rDOP and tDOP model, we assume that Pr(k) and Pt(k) are equal to identity
matrix I, and use the equal weight least squares method to compute the registration parameters in
Equations (9) and (15). With Equations (6)–(8) and Equations (12)–(14), we then get

Gk = AT
r(k)Ar(k) =

k∑
j=1


τ2

j − τ
2
x, j −τx, jτy, j −τx, jτz, j

−τx, jτy, j τ2
j − τ

2
y, j −τy, jτz, j

−τx, jτz, j −τy, jτz, j τ2
j − τ

2
z, j

, (23)

Hk = AT
t(k)At(k) =

k∑
j=1


l2x, j −lx, jmy, j −lx, jnz, j

−lx, jmy, j l2y, j −my, jnz, j

−lx, jnz, j −my, jnz, j l2z, j

, (24)

where τ2
j = τ2

x, j + τ2
y, j + τ2

z, j = (xi
jc + xi+1

jc )
2
+ (yi

jc + yi+1
jc )

2
+ (zi

jc + zi+1
jc )

2
.

Through the simulation method similar to [13], we can find that the relationship curve between
rDOP and the rotation angle of the rotation matrix R under different TGDs is different and increases
monotonically, and the relationship curves corresponding to different TGDs do not intersect. Therefore,
we can compare the rDOP values of different TGDs under the rotation angle of the rotation matrix
R by the values of rDOP under the rotation angle of the unit matrix I3 (namely, the conclusions of
rDOP under arbitrary rotation matrix R are equivalent to the conclusions under R = I3). Then, we
can evaluate the quality of TGD by only the values of rDOP under R = I3, and Equation (23) can be
written as

Gk = 4
k∑

j=1


(yi

jc)
2
+ (zi

jc)
2

−xi
jcyi

jc −xi
jcz

i
jc

−xi
jcyi

jc (xi
jc)

2
+ (zi

jc)
2

−yi
jcz

i
jc

−xi
jcz

i
jc −yi

jcz
i
jc (xi

jc)
2
+ (yi

jc)
2

. (25)

2.6. Model Application Scheme

In order to use our proposed evaluation model, here, we give the implementation procedures
for three kinds of situations: (1) the position of all targets are known, so we need to determine the
optimum setting position of scanner i + 1 in Scan i, namely, the best position of scanner i + 1; (2) the
position of scanner i + 1 is known, so we need to determine the optimum setting positions of targets,
namely, the best TGD; and (3) we need to determine both the optimum positions of targets and the
scanner i + 1 in Scan i, namely, the best TGD and the best position of scanner i + 1.

2.6.1. The Best Position of Scanner i + 1

The best position of Scanner ii + 1 can be identified as follows:

(1) Selecting the possible place
{
oi

1, · · · , oi
m

}
of scanner i + 1 in Scan i;
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(2) Obtaining the coordinates of all targets in Scan i;
(3) Using Equations (11), (12), (20) and (24) to calculate the values of tDOP under different possible

places of scanner i + 1;
(4) When the value of tDOP is the minimum, the corresponding place is the best position of scanner

i + 1.

2.6.2. The Best TGD

The best TGD can be identified as follows:

(1) Selecting the possible place
{
pi

1, · · · , pi
m

}
of targets in Scan i;

(2) Obtaining the coordinates of scanner i + 1 in Scan i;
(3) Setting the number k of targets;

(4) Choosing k places from
{
pi

1, · · · , pi
m

}
, and using Equations (6), (20) and (25) to calculate the values

of rDOP;
(5) When the value of rDOP is the minimum, the corresponding places are the optimum positions of

targets, namely, the best TGD.

2.6.3. The Best TGD and the Best Position of Scanner i + 1

From Section 2.4, it can be known that the rDOP model is mainly related to TGD, and the tDOP
model is related to TGD and the position of scanner i + 1′s origin, which is relative to the selected
TGD. Therefore, we firstly determined the best TGD by rDOP, and then determined the best position
of scanner i + 1 by tDOP. The implementation procedures are as follows:

(1) Selecting the possible place
{
pi

1, · · · , pi
m

}
of targets and the possible place

{
oi

1, · · · , oi
m

}
of scanner i +

1 in Scan i;
(2) Setting the number k of targets;
(3) Similar to the above, calculating the values of rDOP by k different possible places of targets, and

selecting the best TGD where the value of rDOP is the minimum;
(4) Similar to the above, calculating the values of tDOP under different possible places of scanner i +

1, and selecting the best position of scanner i + 1 where the value of tDOP is the minimum.

3. Theoretical Analysis

We first theoretically analyzed the existence conditions of rDOP and tDOP. We then theoretically
analyzed the relationship of “rDOP and tDOP” and the number of targets. Finally, we analyzed the
bounds of rDOP and tDOP.

3.1. The Existence Conditions of tDOP

The existence condition of tDOP is that the matrix Hk is invertible, which is equal to |Hk| , 0,
namely, the rank of At(k) is 3.

If all targets and scanner i + 1 are on the same plane, and assuming the plane equation is
c1x + c2y + c3z + c4 = 0, with Equation (13), we can get

c1

xi
j

di
j,0

+ c2

yi
j

di
j,0

+ c3

zi
j

di
j,0

+ c4 = 0, (26)

c1
tx,0

di
j,0

+ c2
ty,0

di
j,0

+ c3
tz,0

di
j,0

+ c4 = 0. (27)
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Then, Equation (26) minus Equation (27) is

c1

xi
j − tx,0

di
j,0

+ c2

yi
j − ty,0

di
j,0

+ c3

zi
j − tz,0

di
j,0

= 0. (28)

With Equations (12), (13) and (28), we can get

At(k)


c1

c2

c3

 = 0, (29)

where the equation has a non-zero solution if and only if the rank of At(k) is less than 3.
Therefore, the existence condition of tDOP is that all targets and scanner i + 1 are not on the same

plane, which theoretically proves the experience that “all targets and scanner i + 1 should not lie on
the same plane” [2,12].

3.2. The Existence Conditions of rDOP

The existence condition of rDOP is that the matrix Gk is invertible, which is equal to |Gk| , 0.
With Equation (23), using the property of matrix inversion, we can get

(Gk)
−1 =

1
|Gk|


g11 g12 g13

g21 g22 g23

g31 g32 g33

, (30)

where

|Gk| =
k∑

j=1
τ2

j

 k∑
j=1

τ2
x, j

k∑
j=1

τ2
y, j +

k∑
j=1

τ2
x, j

k∑
j=1

τ2
z, j +

k∑
j=1

τ2
y, j

k∑
j=1

τ2
z, j


−

k∑
j=1

τ2
j

( k∑
j=1

τx, jτy, j)

2

+ (
k∑

j=1
τx, jτz, j)

2

+ (
k∑

j=1
τy, jτz, j)

2
+

k∑
j=1

τ2
x, j(

k∑
j=1

τy, jτz, j)

2

+
k∑

j=1
τ2

y, j(
k∑

j=1
τx, jτz, j)

2

+
k∑

j=1
τ2

z, j(
k∑

j=1
τx, jτy, j)

2

−

k∑
j=1

τ2
x, j

k∑
j=1

τ2
y, j

k∑
j=1

τ2
z, j − 2

k∑
j=1

τx, jτy, j
k∑

j=1
τx, jτz, j

k∑
j=1

τy, jτz, j

(31)

g11 =
k∑

j=1

τ2
j

k∑
j=1

τ2
x, j +

k∑
j=1

τ2
y, j

k∑
j=1

τ2
z, j − (

k∑
j=1

τy, jτz, j)

2

, (32)

g22 =
k∑

j=1

τ2
j

k∑
j=1

τ2
y, j +

k∑
j=1

τ2
x, j

k∑
j=1

τ2
z, j − (

k∑
j=1

τx, jτz, j)

2

, (33)

g33 =
k∑

j=1

τ2
j

k∑
j=1

τ2
z, j +

k∑
j=1

τ2
x, j

k∑
j=1

τ2
y, j − (

k∑
j=1

τx, jτy, j)

2

. (34)

From the inequality
k∑

i=1
x2

i

k∑
i=1

y2
i ≥ (

k∑
i=1

xiyi)

2

, we know

g11 ≥ 0, g22 ≥ 0, g33 ≥ 0, (35)
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where equality is achieved if and only if τx, j = τy, j = τz, j = 0, which is equivalent to the situation
that any centralized targets pi+1

jc in Scan i + 1 satisfy (R + I3)pi+1
jc = 0, namely, the following three

situations are true:

1. All targets are in the plane xioyi of Scan i’s coordinate system, and R =


−1

−1
1

;
2. All targets are in the plane xiozi of Scan i’s coordinate system, and R =


−1

1
−1

;
3. All targets are in the plane yiozi of Scan i’s coordinate system, and R =


1
−1

−1

.
From the inequality

k∑
i=1

x2
i

k∑
i=1

y2
i ≥ (

k∑
i=1

xiyi)

2

, we also know

k∑
j=1

τx, jτy, j

k∑
j=1

τx, jτz, j

k∑
j=1

τy, jτz, j ≤

k∑
j=1

τ2
x, j

k∑
j=1

τ2
y, j

k∑
j=1

τ2
z, j. (36)

Combined with Equations (31) and (36), we can get

|Gk| ≥
k∑

j=1
τ2

x, j

 k∑
j=1

τ2
x, j

k∑
j=1

τ2
y, j +

k∑
j=1

τ2
x, j

k∑
j=1

τ2
z, j − (

k∑
j=1

τx, jτy, j)

2

− (
k∑

j=1
τx, jτz, j)

2
+

k∑
j=1

τ2
y, j

 k∑
j=1

τ2
x, j

k∑
j=1

τ2
y, j +

k∑
j=1

τ2
y, j

k∑
j=1

τ2
z, j − (

k∑
j=1

τx, jτy, j)

2

− (
k∑

j=1
τy, jτz, j)

2
+

k∑
j=1

τ2
z, j

 k∑
j=1

τ2
x, j

k∑
j=1

τ2
z, j +

k∑
j=1

τ2
y, j

k∑
j=1

τ2
z, j − (

k∑
j=1

τx, jτz, j)

2

− (
k∑

j=1
τy, jτz, j)

2
(37)

where equality is achieved if and only if τx, j = γxyτy, j = γxzτz, j, which is equivalent to the situation
that all targets lay on the same line.

From Equation (37), we know that “the value of |Gk| is smaller when the TGD is closer to a straight
line, the value of rDOP is larger, and the precision of the rotation parameters solution is worse, while if
all targets lay on the same line, |Gk| = 0”. Therefore, the existence condition of rDOP is that all targets
are not on the same line, or the above three situations are not satisfied, which theoretically proves
the experience that “the TLS targets should be distributed evenly over the overlapped space and
should not lie on the same line or be close” [2,17].

3.3. The Relationship Between tDOP and the Number of Targets

If more targets are considered (over k), the At(k) can be successively augmented by adding row
vectors. For example, if there are k + 1 targets considered, then

At(k+1) =

[
At(k)
βk+1

]
, (38)

in which we assume that At(k) is nonsingular and βk+1 is a nonzero vector, and

βk+1 =
[

lx,k+1 my,k+1 nz,k+1

]
=

[
xi

k+1−tx,0

di
k+1,0

yi
k+1−ty,0

di
k+1,0

zi
k+1−tz,0

di
k+1,0

]
. (39)
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Yarlagadda et al. [27] proved that increasing the number of satellites will reduce the DOP in GPS
applications. Here, we take the same derivation method described by Yarlagadda et al. [27] to prove its
effectiveness in tDOP. With Equation (38), we can get

AT
t(k+1)At(k+1) = AT

t(k)At(k) + βT
k+1βk+1. (40)

By using the inversion formulas of matrix [2], we can get

H−1
k+1 = (Hk + βT

k+1βk+1)
−1

= H−1
k −

H−1
k βT

k+1βk+1H−1
k

1 + βk+1H−1
k βT

k+1

. (41)

It is clear that H−1
k is a positive definite symmetric matrix, which can be denoted as H−1

k = UTU,
and U is the upper triangular matrix. Let η = βk+1H−1

k and µ = βk+1UT, where η and µ are 1 × 3
real-valued vectors, ηηT

≥ 0, and µµT
≥ 0. Through using the property of the matrix trace, we can write

tr(H−1
k+1) = tr(H−1

k ) −
ηηT

1 + µµT . (42)

Then, we can get tr(H−1
k+1) < tr(H−1

k ), which means that increasing the number of targets will
reduce the value of tDOP and improve the registration precision, which theoretically proves the
experience that “the more targets, the higher the registration precision” [2,17–20,27].

3.4. The Relationship Between rDOP and the Number of Targets

Similar to tDOP, if more targets (over k) are considered, matrix Ar(k) can also be successively
augmented by adding row vectors. For example, if there are k + 1 targets considered, then

Ω1 =

[
Ar(k)
αk+1(1)

]
, Ω2 =

[
Ω1

αk+1(2)

]
, Ar(k+1) =


Ar(k)
αk+1(1)
αk+1(2)
αk+1(3)

, (43)

where 
αk+1(1) =

[
0 −τz,k+1 τy,k+1

]
αk+1(2) =

[
τz,k+1 0 −τx,k+1

]
αk+1(3) =

[
−τy,k+1 τx,k+1 0

] and


τx,k+1 = xi

k+1,c + xi+1
k+1,c

τy,k+1 = yi
k+1,c + yi+1

k+1,c
τz,k+1 = zi

k+1,c + zi+1
k+1,c

. (44)

Assume that Ar(k) is nonsingular and αk+1(1), αk+1(2), and αk+1(3) are nonzero vectors. By taking
the same derivation method of Equations (38)–(42), we can get

tr(G−1
k+1) < tr((ΩT

2 Ω2)
−1
) < tr((ΩT

1 Ω1)
−1
) < tr(G−1

k ). (45)

Therefore, increasing the number of targets will reduce the value of rDOP and improve the
registration precision, which also theoretically proves the experience in Section 3.3.

3.5. tDOP Bounds

To find the optimum position of scanner i + 1, we need to analyze the bounds of tDOP, namely,
the minimum of tDOP.
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Denoting the three eigenvalues of Hk are λt,1, λt,2, and λt,3, and using the property of matrix
eigenvalues, we know that 1

λt,1
, 1
λt,2

, and 1
λt,3

are the three eigenvalues of H−1
k . Then, the tDOP can be

rewritten as

tDOP =
√

tr(H−1
k ) =

√
1
λt,1

+
1
λt,2

+
1
λt,3

. (46)

With Equations (13) and (24), we can get

λt,1 + λt,2 + λt,3 = tr(Hk) =
k∑

j=1

(l2x, j + m2
y, j + n2

z, j) = k. (47)

Let f =
√

1
λt,1

+ 1
λt,2

+ 1
λt,3

+µ(λt,1 +λt,2 +λt,3 − k), and using the method of Lagrange multipliers

as described in [15], we can get

tDOP =
√

tr(H−1
k ) ≥

3
√

k
. (48)

The equality of Equation (48) is achieved if and only if λt,1 = λt,2 = λt,3 = k
3 , which is equivalent

to
k∑

j=1
l2x, j =

k∑
j=1

m2
y, j =

k∑
j=1

n2
z, j =

k
3 ; that is, “the polyhedron pi

1pi
2 · · · p

i
k is regular” and “the position of

scanner i +1 is the barycenter of all targets”. This characteristic theoretically proves the experience
that “the best setting position of scanner i + 1 is the barycenter of all targets” [12].

Furthermore, from Equation (48), it can be seen that the minimum value of tDOP is 3
√

k
, which

shows that increasing the number of targets will reduce the minimum value of tDOP.

3.6. rDOP Bounds

To find the optimum TGD, we need to analyze the bounds of rDOP, namely, the minimum of
rDOP.

Denoting the three eigenvalues of Gk are λr,1, λr,2, and λr,3, and using the property of matrix
eigenvalues, we know that 1

λr,1
, 1
λr,2

, and 1
λr,3

are the three eigenvalues of G−1
k , so with Equations (19)

and (23), we can get

λr,1 + λr,2 + λr,3 = tr(Gk) = 2
k∑

j=1

τ2
j , (49)

rDOP =
√

tr(G−1
k ) =

√√√√ 3∑
j=1

1
λr, j
≥

3√
2

k∑
j=1

τ2
j

, (50)

where equality is achieved if and only if λr,1 = λr,2 = λr,3 = 2
3

k∑
j=1

τ2
j , which is equivalent to

k∑
j=1

τ2
x, j =

k∑
j=1

τ2
y, j =

k∑
j=1

τ2
z, j.

Denoting the distance between the barycenter of all targets and the jth target in Scan i or Scan i +
1 are di

jc or di+1
jc , respectively, so

(di
jc)

2
= (pi

jc)
T

pi
jc = (Rpi+1

jc )
T

Rpi+1
jc = (pi+1

jc )
T

pi+1
jc = (di+1

jc )
2
. (51)
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Based on the inequality equation (x + y)2
≤ 2(x2 + y2), we know

k∑
j=1

τ2
j ≤ 2

k∑
j=1

((di
jc)

2
+ (di+1

jc )
2
) = 4

k∑
j=1

(di
jc)

2
, (52)

where equality is achieved if and only if xi
jc = xi+1

jc , yi
jc = yi+1

jc , and zi
jc = zi+1

jc , which is equivalent to
the rotation matrix R being the identity matrix I3.

With Equations (50) and (52), we can then get

rDOP =
√

tr(G−1
k ) ≥

3√
8

k∑
j=1

(di
jc)

2

, (53)

where equality of Equation (53) is achieved if and only if R = I3 and
k∑

j=1
x2

jc =
k∑

j=1
y2

jc =
k∑

j=1
z2

jc.

Equation (53) indicates that the minimum value of rDOP is inversely proportional to the sum
of the distances di

jc from the targets to the barycenter of all targets. Therefore, without considering
the precision of target extraction, the more targets disperse, the smaller the minimum rDOP and the
higher the registration precision. This theoretically proves the experience that “the more dispersive
the targets, the higher the registration precision” [3,17,18].

4. Experimental Verification

In practical applications, we might calculate all the registration parameters together (while the
above model is deduced by separating translation and rotation parameters), so we need to analyze
the applicability of the quantitative evaluation model of the TGD without separating translation and
rotation. For these reasons, we first introduce the method of calculating the registration precision
without separating translation and rotation, then design two experiments to verify the quantitative
evaluation model of the TGD, and finally analyze the experiments’ results.

4.1. Calculation Method of Registration Precision

The precision of target-based registration can be evaluated by the root mean square errors of
rotation parameters (RMSEr) and translation parameters (RMSEt). The specific experimental processes
are as follows:

Step 1: Input the coordinate true values of target p̃i
j( j = 1, 2, · · · , k) and the true values of

transformation parameters r̃a, r̃b, r̃c, t̃x, t̃y, and t̃z;
Step 2: Calculate the target coordinates in Scan i + 1:

p̃i+1
j = R̃(p̃i

j − T), j = 1, 2, · · · , k, (54)

where

R̃ =
1

1 + r̃2
a + r̃2

b + r̃2
c


1 + r̃2

a − r̃2
b − r̃2

c 2(̃rc + r̃ãrb) 2(̃rãrc − r̃b)

2(̃rãrb − r̃c) 1− r̃2
a + r̃2

b − r̃2
c 2(̃ra + r̃br̃c)

2(̃rb + r̃ãrc) 2(̃rbr̃c − r̃a) 1− r̃2
a − r̃2

b + r̃2
c

, (55)

T̃ =


t̃x

t̃y

t̃z

; (56)

Step 3: Assume j0 = 1 and the unit weight variance σ0 = 5mm;
Step 4: If j0 > 1000, go to Step 10; if not, continue;
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Step 5: Add random noise to the coordinates:

pi
j = p̃i

j + normrnd(0, σ0, 3, 1), j = 1, 2, · · · , k, (57)

pi+1
j = p̃i+1

j + normrnd(0, σ0, 3, 1), j = 1, 2, · · · , k, (58)

where normrnd(0, σ0, 3, 1) returns a 3× 1 array of random numbers chosen from a normal distribution
with the mean and standard deviation as 0 and σ0;

Step 6: Calculate the approximate values of rotation parameters ra,0, rb,0, and rc,0 by Equations (8)
and (9);

Step 7: Calculate the approximate values of translation parameters by Equation (1):

T0 =


tx,0

ty,0

tz,0

 = 1
k
(

k∑
j=1

pi
j −R

k∑
j=1

pi+1
j ), (59)

where

R0 =
1

1 + r2
a,0 + r2

b,0 + r2
c,0


1 + r2

a,0 − r2
b,0 − r2

c,0 2(rc,0 + ra,0rb,0) 2(ra,0rc,0 − rb,0)

2(ra,0rb,0 − rc,0) 1− r2
a,0 + r2

b,0 − r2
c,0 2(ra,0 + rb,0rc,0)

2(rb,0 + ra,0rc,0) 2(rb,0rc,0 − ra,0) 1− r2
a,0 − r2

b,0 + r2
c,0

; (60)

Step 8: Calculate the estimated transformation parameters [3]:

r̂a, j0
r̂b, j0
r̂c, j0
t̂x, j0
t̂y, j0
t̂z, j0


=



ra,0

rb,0
rc,0

tx,0

ty,0

tz,0


+ (BTB)

−1
BTL, (61)

where

B =


B1
...

Bk

, B j =
[
∂R
∂a pi+1

j
∂R
∂b pi+1

j
∂R
∂c pi+1

j I3×3
]
, (62)

L =


l1
...
lk

, l j = pi
j −R0pi+1

j − T0; (63)

Step 9: If j0 = j0 + 1, go to Step 4;
Step 10: Calculate the root mean square errors of transformation and rotation parameters [3]:

RMSEr =

√√√√
1

1000

1000∑
j=1

[
(r̂a, j − r̃a)

2 + (r̂b, j − r̃b)
2 + (r̂c, j − r̃c)

2
]
, (64)

RMSEt =

√√√√
1

1000

1000∑
j=1

[
(t̂x, j − t̃x)

2
+ (t̂y, j − t̃y)

2
+ (t̂z, j − t̃z)

2
]
. (65)
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4.2. Experiment I

Since the precision of target-based registration is related to the number of targets, we simulated
six targets (see Figure 1) and designed four scenarios: Case A: using three targets

{
p̃i

1, p̃i
2, p̃i

3

}
; Case

B: using four targets
{
p̃i

1, p̃i
2, p̃i

3, p̃i
4

}
; Case C: using five targets

{
p̃i

1, p̃i
2, p̃i

3, p̃i
4, p̃i

5

}
; and Case D: using six

targets
{
p̃i

1, p̃i
2, p̃i

3, p̃i
4, p̃i

5, p̃i
6

}
). We then calculated the rDOP, tDOP, RMSEr, and RMSEt of Case A, B, C,

and D with different target distributions and locations of scanners. The specific experimental processes
are as follows:
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Step 1: Assume T0 =


0
0
0

 and the coordinate true values of targets are

p̃i
1 =


10
0
0

, p̃i
2 =


0

10
0

, p̃i
3 =


0
0

10

, p̃i
4 =


0
−10

0

, p̃i
5 =


−10

0
0

, p̃i
6 =


0
0
−10

; (66)

Step 2: Let p̃i
1(1, 1) = 10 + 2 j1 and j1 ∈ {0, 1, · · · , 25}. Calculate rDOP1, tDOP1, RMSEr,1, and

RMSEt,1 of Case A, B, C, and D with different locations of target p̃i
1 from Equations (19), (20), (24), (25),

(64) and (65) (see Figure 3);
Step 3: Let p̃i

1(1, 1) = 10 + 2 j1, p̃i
2(2, 1) = 10 + 2 j1, and j1 ∈ {0, 1, · · · , 25}. Calculate rDOP2,

tDOP2, RMSEr,2, and RMSEt,2 of Case A, B, C, and D with different locations of targets p̃i
1 and p̃i

2 from
Equations (19), (20), (24), (25), (64) and (65) (see Figure 4);

Step 4: Let p̃i
1(1, 1) = 10 + 2 j1, p̃i

2(2, 1) = 10 + 2 j1, p̃i
3(3, 1) = 10 + 2 j1, and j1 ∈ {0, 1, · · · , 25}.

Calculate rDOP3, tDOP3, RMSEr,3, and RMSEt,3 of Case A, B, C, and D with different locations of
targets p̃i

1, p̃i
2, and p̃i

3 from Equations (19), (20), (24), (25), (64) and (65) (see Figure 5);

Step 5: Let T0 =


− j1
− j1
− j1

 and j1 ∈ {0, 1, · · · , 100}. Calculate rDOP4, tDOP4, RMSEr,4, and RMSEt,4

of Case A, B, C, and D with different locations of scanner T0 from Equations (19), (20), (24), (25), (64)
and (65) (see Figure 6).

4.3. Experiment II

To further verify the quantitative evaluation model of the targets’ geometry distribution, we
designed another experiment with realistic targets drawn from previous studies [3,23] using an RIEGL
VZ-400 laser scanner with different target distributions (see Table 1) and different locations of scanners
(see Figure 2). The specific experimental processes are as follows:
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Table 1. Different target distributions.

The Name of Distribution Including Targets The Name of Distribution Including Targets

Case A1 p1, p2, p3, p4, p5 Case C1 p1, p2, p3
Case B1 p1, p2, p3, p4 Case C2 p1, p2, p4
Case B2 p1, p2, p3, p5 Case C3 p1, p2, p5
Case B3 p1, p2, p4, p5 Case C4 p1, p3, p4
Case B4 p1, p3, p4, p5 Case C5 p1, p3, p5
Case B5 p2, p3, p4, p5 Case C6 p1, p4, p5

Case C7 p2, p3, p4
Case C8 p2, p3, p5
Case C9 p2, p4, p5

Case C10 p3, p4, p5
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Step 1: Assume the locations of scanner T0 =


tx

ty

−10

, tx, ty ∈ {−50,−40, · · · , 40, 50};

Step 2: Input the coordinates of targets:

p̃1 =


32.135
11.435
0.076

, p̃2 =


−22.478
16.356
0.127

, p̃3 =


−35.665
−30.837
−0.494

, p̃4 =


−9.061
−29.255
−0.504

, p̃5 =


11.995
−43.692
−0.4

; (67)

Step 3: Calculate rDOP5, tDOP5, RMSEr,5, and RMSEt,5 of Case A1 and B1–5 with different
locations of scanner T0 from Equations (19), (20), (24), (25), (64) and (65) (see Figure 7);

Step 4: Calculate rDOP6, tDOP6, RMSEr,6, and RMSEt,6 of Case C1–10 with different locations of
scanner T0 from Equations (19), (20), (24), (25), (64) and (65) (see Figure 8).

4.4. Results Analysis

From Figures 3–8, it may be concluded that

(a) The change of tDOP is basically the same as the change of RMSEt; the size of tDOP and RMSEt is
related to the location of scanner i+ 1 (see Figures 6–8) and the number of targets (see Figures 3–5),
not the location of targets (see Figures 3–5);

(b) The farther away the location of scanner i + 1 (with respect to different T0), the greater the tDOP
and RMSEt in Figure 6;

(c) When the number and position of targets change, but the location of the scanner is unchanged,
the value of tDOP is a constant, the RMSEt is around a constant, and different numbers of targets
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(with respect to Case A, B, C, and D) have different constant valued of tDOP and RMSEt; the more
targets (with respect to Case A, B, C, and D), the smaller the tDOP and RMSEt (see Figures 3–5);

(d) The change of rDOP is also basically the same as the change of RMSEr; the size of rDOP and
RMSEr is related to the number and position of targets (see Figures 3–5), not the location of
scanner i + 1 (see Figures 6–8);

(e) The more dispersive the targets (with respect to different locations of targets p̃i
1, p̃i

2, p̃i
3), the smaller

the rDOP and RMSEr in Figures 3–5;
(f) When the location of the scanner changes, but the number and position of targets are unchanged,

the value of rDOP is a constant, the RMSEr is around a constant, and different numbers of targets
(with respect to Case A, B, C, D, A1, B1–5, and C1–10) have different constant values of rDOP
and RMSEr; the more targets there are (with respect to Case A, B, C, D, A1, B1–5, and C1–10), the
smaller the rDOP and RMSEr (see Figures 6–8);

(g) The differences between the RMSEt and the RMSEt minimum values in cases A1, B1–5, and C1–10
with the minimum tDOP are −0.5, −1.6, −1.8, 0.9, −2, −1.7, −1.5, −1.8, −2.1, −1.5, −1.5, −1.6, −1.3,
−1.5, −2.0, and −0.8 mm, respectively, which are all less than 0.5σ0 (half the observation variance,
2.5 mm), so we can use the RMSEt minimum value with the minimum tDOP to represent the
RMSEt minimum value;

(h) We can use rDOP and tDOP to assess the impact of the targets’ geometry distribution on the
rotation parameters and translation parameters, respectively, and use rDOP and tDOP to help
determine the optimal placement location of targets (with respect to the minimum rDOP) and the
best location of scanner i + 1 (with respect to the minimum tDOP).
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5. Conclusions

This research proposes a new evaluation model of TGD (namely, rDOP and tDOP) for the first
time, and quantitatively verifies that the model can be used to assess the impact of TGD on the
registration precision by experiments, which show that “the change of rDOP/tDOP is basically the
same as the change of the registration precision”. In addition, this research also mathematically proves
the existing experiences of TGD by the proposed model, such as “The more targets, the higher the
registration precision (corresponding to the smaller rDOP and tDOP)”, “The best setting position of
the Scanner i + 1 is the barycenter of all targets (corresponding to the minimum tDOP value)”, “The
more dispersive the targets, the higher the registration precision (corresponding to the smaller rDOP
values)”, “The targets will be not too close to a straight line where bigger rDOP exists”, and “The
targets will be not too close on the same plane where bigger tDOP exists”.

If the targets are considered as control points or satellites, we can use the model to help design
the optimal control network in engineering surveying and geodetic surveying or the optimal satellite
constellation in GNSS. Therefore, we conclude that the proposed rDOP and tDOP model can be
considered a unified evaluation model of the TGD, control point distribution, and satellite constellation.

However, it should be noted that “we only theoretically analyze the equal weight model of
rDOP and tDOP”, “we also do not use the real TLS field data collection and the actual cases to
analyze the application effect of the rDOP and tDOP model”, “the experiments do not consider
targets’ positioning precision that are affected by many factors (such as the height of scanner/targets,
scanning distance, incident angel, material type of targets, etc. [28])”, and “our experiments do
not consider other applications such as the engineering surveying, the geodetic surveying, aerial
photogrammetry and so on”. In the future, we will conduct more experiments and simulations to
verify our model’s applications.
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