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Abstract: This study presents a new real-time calibration algorithm for three-axis magnetometers
by combining the recursive least square (RLS) estimation and maximum likelihood (ML) estimation
methods. Magnetometers are widely employed to determine the heading information by sensing the
magnetic field of earth; however, they are vulnerable to ambient magnetic disturbances. This makes
the calibration of a magnetometer inevitable before it is employed. In this paper, first, a complete
measurement error model of the magnetometer is studied, and a simplified model is developed.
Then, the real-time RLS algorithm is introduced and discussed in detail, and the unbiased optimal
ML is utilized to improve the accuracy of the parameter estimation. The proposed algorithm is
advantageous in correcting the parameters in real time and simultaneously obtaining unbiased
parameter estimation. Finally, the simulation and experimental results demonstrate that both the
accuracy and computational speed of the proposed algorithm is better than those of the widely used
bath-processing method. Moreover, the proposed calibration method can be adopted for calibrating
other three-axis sensors.

Keywords: magnetometer calibration; real-time; recursive least square estimation; maximum
likelihood estimation

1. Introduction

With the rapid development of micro electromechanical system (MEMS) technology, developing
accurate long-term positioning systems based on the MEMS inertial devices without any external
signals may become possible. Currently, most magnetic and inertial measurement units (MIMU)
based on the MEMS technology integrate three accelerometers, gyroscopes, and magnetometers each,
assembled in three orthogonal directions. Due to the weak yaw observation of the conventional
navigation systems, magnetometers are widely utilized for heading estimation based on the principle
that the local magnetic field points to the north [1–4].

Nevertheless, the yaw information obtained by the magnetic sensor is usually vulnerable to
magnetic field disturbances [5]. Further, the result obtained is sometimes worse with magnetometers
than those without magnetometers, if the local magnetic field is contaminated. The magnetic
disturbances can be classified into hard iron and soft iron disturbances. The hard iron disturbances
are caused by ferromagnetic materials with a permanent magnetic field, e.g., magnets and speakers,
which are time-invariant, whereas the soft iron disturbances are deflections or alterations in the
existing magnetic field, which are caused by magnetized materials such as steel shield and batteries [2].
Moreover, magnetometers inherently possess non-orthogonality, scaling, and bias errors. Thus,
magnetometer calibration is indispensable in realizing accurate orientation estimation.

The conventional magnetometer calibration methods assume that a reference sensor, which can
provide accurate heading information, is available [6–8]. A well-known example of such an approach
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is compass swinging [7]. However, this method requires external equipment for assistance, making it
expensive and impractical for a wide range of applications. Thus, magnetometer calibration using the
information provided only by the MIMU has been increasingly popular. Magnetometer calibration
without the aid of external equipment can generally be grouped to two categories: one that uses the
data from only the magnetometer, and the other that performs calibration along with inertial sensors.
In the first category, a classical method is used to formulate the calibration problem as an ellipsoid fitting
problem based on the least-square (LS) method, similar to mapping an ellipsoid data to a sphere [9,10].
This approach has the advantage that solving an ellipsoid fitting problem is simple. However, it
has some clear drawbacks: sufficient measured data must be available to avoid the emergence of
singular matrix for the least-squares solution; determining the required volume of measured data
is difficult. Another class is the TWOSTEP batch method designed by Gebre-Egziabher et al. and
Zhang et al. [11,12], which is based on the differences between the actual and the measured unit
vectors. In this method, first, the centering approximation is utilized to yield a good initial estimation
based on the LS method. Second, the non-orthogonality and the scaling and bias errors are estimated
using the bath Gauss-Newton method. However, the estimation result is not an optimal solution
because of the existence of noise in the least square coefficient matrix. Furthermore, the magnetometer
calibration problem can be formulated as a suboptimal maximum likelihood estimation (called NM)
by considering the smallest parameter dimension [13,14]. This derivation is based on the fact that the
magnitude of the calibrated measurements must be constant in a homogeneous magnetic field; further,
the Gauss–Newton method is utilized to address the NM problem. However, this method has the
following limitations: first, this method yields biased results because of the quadratic item of the noise,
which has an imperative effect on the estimation. Second, the objective function of the NM is quartic in
parameters, which complicates the calibration with multiple minima and maxima, thus necessitating a
good estimation for the nonlinear solver. Wu et al. [15] proposed the use of quadratic unbiased optimal
maximum likelihood (ML) estimation, which is superior to the conventional quartic suboptimal ML
estimation both in accuracy and stability. It must be noted that all the above-mentioned methods are
batch-processing methods. Many studies in the literature propose a real-time calibration algorithm for
magnetometers, specifically the filtering algorithm, to address the problems in the above-mentioned
methods [16,17]. Although the real-time calibration algorithm can estimate the parameters in real time
and reduce computational loads, the filtering algorithm is still a biased estimation.

In the second category, the magnetometer calibration is performed with assistance from inertial
sensors [18–23]. This approach has the advantage that it can perform an alignment estimation of the
sensor axes between the inertial sensors and the magnetometer. However, it increases the complexity of
the system and may introduce unnecessary errors from the inertial sensors (gyroscope/accelerometer).
In actual inertial navigation systems, the alignment error between the sensor axes can be ignored by
comparison with the other errors. Thus, magnetometer calibration using only the information itself is
the main objective of this research.

To address the above-mentioned problems, this research proposes a combination of the recursive
least square (RLS) estimation method and the optimal ML estimation algorithm to successfully realize
magnetometer calibration utilizing only the magnetometer information. The proposed algorithm can
estimate the parameters in real time and simultaneously obtain unbiased optimal estimation results.
Moreover, this algorithm can adaptively detect the calibration implementation, which is discussed
in detail in the following section. Notably, because of its similar measurement model, the proposed
calibration algorithm can be applied to other three-axis sensors.

The following sections are organized as given below. In Section 2, a detailed description of our
proposed RLS algorithm is presented. In Section 3, the quadratic optimal ML estimation is discussed
in detail to further improve the accuracy. In Section 4, the results of numerous simulations and
experiments performed in this study are provided and discussed. Finally, the conclusions are provided
in Section 5.
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2. Sensor Model and Initial Estimation

2.1. Sensor Model

Based on previous studies [13,18,24], the complete error model of the magnetometer is given by,

m̃b = SMCNO
(
CSICb

nmn + bHI
)
+ bM + nm

= ‖mn
‖SMCNOCSICb

nmn + SMCNObHI + bM + nm

= PCb
nmn + hm + nm

(1)

where P = mnSMCNOCSI , hm = SMCNObHI+bM =
[

h1 h2 h3
]T

, and mn = mn/‖mn
‖. m̃b =[

m̃b
x m̃b

y m̃b
z

]T
∈ R3 denotes the measured magnetic field vector, nm ∈ R3 denotes the zero-mean

Gaussian noise, mn
∈ R3 is the local geomagnetic field vector in the navigational frame, whose

magnitude is constant when the external magnetic field does not change over time, and mn is the unit
vector obtained by normalizing mn. The attitude matrix Cb

n ∈ SO(3) transforms the magnetic field
vector from the navigational frame (n-frame) to the body frame (b-frame), where SO(3) denotes a set
of 3 × 3 orthogonal matrices. SM ∈ D(3) represents the scaling matrix, where D(3) denotes a set of
3 × 3 diagonal matrices and CNO is a non-orthogonal error matrix. mSI is given as mSI = CSICb

nmn,
where CSI ∈ R3×3 is the soft iron transformation matrix. mSI and bHI denote the soft and hard iron
effects, respectively, and bM is the null-shift of the magnetometer. In this paper, the navigational frame
is defined as East-North-Up and the body frame is defined as Right-Forward-Up.

Clearly, the purpose of the three-axis magnetometer calibration is to obtain the optimal parameters
P and hm. We assume P−1 = QR based on the orthogonal-triangular (QR) decom-position, where
Q and R denote the orthogonal and upper triangular matrices with positive diagonal entries [15].
The first item in Equation (1) can be written as,

PCb
nmn = R−1QTCb

nmn = Tmb′ , (2)

where T = R−1, which is an upper triangular matrix, and mb′ = QTCb
nmn, which is a unit vector. Finally,

the magnetometer sensor model can be expressed as,

m̃b = Tmb′ + hm + nm, (3)

and the calibrated magnetometer measurement can be expressed as,

mb′ = T−1
(
m̃b
− hm

)
. (4)

2.2. Proposed Initial Estimation Method

The most popular method to achieve a good initial estimation is the method based on the
batch-processing LS [15,25,26]. This method requires a batch of data, which cannot correct the
parameters in real time to improve the accuracy.

In this paper, a real-time initial estimation method based on the RLS is proposed. With the
increase in the number of iterations, the state vector tends to converge, which indicates a good initial
estimation. Moreover, to address the above-mentioned drawbacks of the LS method, the RLS can
develop a real-time parameter estimation, which is implemented once the state covariance matrix
converges well.
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By performing a transformation and a modulus operation, Equation (3) can be written as,

‖mb′
‖

2
= ‖R

(
m̃b
− hm − nm

)
‖

2

= ‖R
(
m̃b
− hm

)
‖

2
− 2

(
m̃b
− hm

)T
RTRnm + nT

mRTRnm

= ‖R
(
m̃b
− hm

)
‖

2
+ v

(5)

where v = −2
(
m̃b
− hm

)T
RTRnm + nT

mRTRnm, which is not the exact Gaussian noise because it contains
a quadratic item of nm. By expanding Equation (5), the following equation is obtained:

z = Hx + v , (6)

where H =
[
m̃b2

y m̃b2

z m̃b
x ·m̃

b
y m̃b

x ·m̃
b
z m̃b

y·m̃
b
z −m̃b

x −m̃b
y −m̃b

z 1
]
, z = −m̃b2

x . Assuming A = RTR,

which is a symmetric matrix, the state vector x can be expressed as,

x =
[ a22

a11

a33
a11

2a12
a11

2a13
a11

2a23
a11

k1 k2 k3 k4
]T

=
[

x1 x2 x3 x4 x5 x6 x7 x8 x9
]T

,
(7)

where ai j(i, j = 1, 2, 3) denotes the element in the ith row and jth column of matrix A, xi(i = 1, 2, · · · , 9)
denotes the ith element of state vector x, and ki(i = 1, 2, 3, 4) denotes the expression consisting of ai j
and hi(i = 1, 2, 3). ki(i = 1, 2, 3, 4) can be written as,

k1 = 2h1 + 2 a12
a11

h2 + 2 a13
a11

h3

k2 = 2 a12
a11

h1 + 2 a22
a11

h2 + 2 a23
a11

h3

k3 = 2 a13
a11

h1 + 2 a23
a11

h2 + 2 a33
a11

h3

k4 = h2
1 +

a22
a11

h2
2 +

a33
a11

h2
3 + 2 a12

a11
h1h2 + 2 a23

a11
h2h3 + 2 a13

a11
h1h3 −

1
a11
‖mb′
‖

2

(8)

Then, the RLS method is utilized to update the state vector x. The updated equation is as follows:
K = Pk−1HT

k

(
HkPk−1HT

k + δk
)−1

x̂k = x̂k−1 + K(zk −Hkx̂k−1)

Pk = (Ik −KHk)Pk−1

(9)

where K is the gain matrix, δk is the covariance value for measurement noise, and Ik is a unit matrix of
dimension 9 × 9. Remarkably, the diagonal elements of P tend to be stable when the state vector is
convergent, based on the basic theory of filter. Therefore, by comparing the defined parameter s with
an experienced threshold associated with the used sensor, we can detect whether the state vector has
converged, as follows:

s =
∑9

i=1
√

Pii< γ i = 1, 2, · · · , 9 . (10)

It must be noted that the experienced threshold γ in this paper can be obtained by experiments,
which is introduced in Section 4.
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Using Equations (7) and (8), âi j and ĥi can be obtained from the iteration estimation results of the
state vector, as follows: 

ĥ2 =
(x̂4x̂6−2x̂8)(x̂3x̂4−2x̂5)−(x̂3x̂6−2x̂7)(x̂2

4−4x̂2)
(x̂3x̂4−2x̂5)

2
−(x̂2

4−4x̂2)(x̂2
3−4x̂1)

ĥ3 =
(x̂3x̂6−2x̂7)(x̂2

3−4x̂1)ĥ2

(x̂3x̂4−2x̂5)

ĥ1 =
x̂4x̂6−x̂4ĥ2−x̂2

4ĥ3
2x̂4

â11 = ‖mb′
‖

2

ĥ2
1+x̂1ĥ2

2+x̂2ĥ2
3+x̂3ĥ1ĥ2+x̂4ĥ1ĥ3+x̂5ĥ2ĥ3−+x̂9

â22 = â11x̂1

â33 = â11x̂2

â12 = â11x̂3
2

â13 = â11x̂4
2

â23 = â11x̂5
2

(11)

where the hatted quantities denote the final parameters of the estimated results; thus, Â and
^
h can be

obtained. Further, R̂ = chol
(
Â
)
, where chol(·) denotes the matrix Cholesky factorization.

Using the proposed RLS, the state vector and the state covariance matrix converge well to produce
a good estimation result.

3. Performing Magnetometer Calibration

Although a good initial estimation can be obtained using the RLS method, it is important to note
that this method is a biased estimation method because it contains a quadratic item of the noise in
Equation (5). Thus, a quadratic optimal ML estimation is adopted to address the above-mentioned
problems, which can be regarded unbiased estimations. The objective function can be described as,

f = min
θml

∑N

k=1
‖m̃b

k − Tmb′
k − hm‖

2
+ λk

(
‖mb′

k ‖
2
− 1

)
, (12)

with variables θml =
{
T, hm, mb′

k , λk
}
, where λk is the Lagrangian coefficient for the norm constraint

mb′
k . Due to its good initial estimation characteristic, the Gauss–Newton method is adopted in this

paper. The updated equation can be written as,

xk+1 = xk −
[
∇

2 f
∣∣∣
x

]−1
∇ f

∣∣∣
x

, (13)

where ∇ f and ∇2 f denote the Jacobian vector and Hessian matrix, respectively. The state vector is
given by x =

[
vecT(T) hT mb′

1 · · · mb′
N λ1 · · · λN

]
, and the Jacobian vector by,

∇ f
∣∣∣
x =

[
∇ f

∣∣∣T
T ∇ f

∣∣∣T
h
∇ f

∣∣∣T
mb′

k
∇ f

∣∣∣T
λk

]
k = 1, 2, · · · , N. (14)

Let Vk = m̃b
k −Tmb

k − hm; then

∇ f
∣∣∣T
T = −2

∑N
k=1 mb′

k ⊗ vk,∇ f
∣∣∣T
h = −2

∑N
k=1 vk

∇ f
∣∣∣T
mb′

k
= −2TTvk+2λkmb′

k ,∇ f
∣∣∣T
λk

= ‖mb′
k ‖

2
−1.

(15)
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In addition, the Hessian matrix becomes,

∇
2 f |x =



HTT HTh HTmb′
k

· · · 09×1 · · ·

HT
Th Hhh Hhmb′

k
· · · 03×1 · · ·

HT
Tmb′

k

HT
hmb′

k

Hmb′
k mb′

k
· · · Hλkmb′

k
· · ·

...
...

...
. . .

...
. . .

0T
9×1 0T

3×1 HT
λkmb′

k

· · · 0 · · ·

...
...

...
. . .

...


. (16)

Further,
HTT = 2

∑N
k=1

(
mb′

k mb′
k

T
)
⊗ I3, HTh = 2

∑N
k=1 mb′

k ⊗ I3,
Hhh = 2NI3, HTmb′

k
= 2

((
mb′

k ⊗ I3
)
T− I3 ⊗ vk

)
,

Hmb′
k mb′

k
= 2TTT + 2λkI3, Hhmb′

k
= 2T, Hλkmb′

k
= 2mb′

k ,
(17)

where ⊗ denotes the Kronecker product, and A⊗B denotes the Kronecker product of A and B excluding
the corresponding lower triangular rows and columns, i.e., the 2th, 3th, and 6th rows and columns are
removed from the result of A⊗B. For an optimal ML estimation, Tinit = R−1

init, which can be obtained
by the initial estimation; the initial Lagrangian coefficient λinit = 0, and the initial mb′

k can be obtained
from Equation (4).

4. Simulation and Experimental Results

4.1. Simulation Results

The performed simulations and their results are provided in this section to study the
performance of the proposed algorithm. The parameters such as the geomagnetic field unit vector

mn =
[
−0.0695 0.6720 −0.7373

]T
in Suzhou city, and P and hm, used in the simulation for the

measurement model (1) are given by,

P =


0.7 −0.8 0.4
1.1 0.3 −0.1
−0.3 0.6 0.7

 hm =


0.5
1.7
2.6

 . (18)

Moreover, the standard deviation of the measurement noise is σ = 0.003; the attitude matrix Cb
n

can be expressed as,

Cb
n =


cosφcosψ− sinφsinθsinψ cosφsinψ+ sinφsinθcosψ −sinφcosθ

−cosθsinψ cosθcosψ sinθ
sinφcosψ+ cosφsinθsinψ sinφsinψ− cosφsinθcosψ cosφcosθ

, (19)

where φ, θ, and ψ denote the roll, pitch, and yaw angles, respectively, and are taken as,
φ = 20

◦

sin(20πk/N + π/2)
θ = 20

◦

sin(20πk/N)

ψ = 360
◦

k/N ,
(20)

where k = 1, 2, · · · , N.
The ellipsoid and sphere fitting results obtained from 300 simulations of the measurement model

(1) are shown in Figure 1. Moreover, the changes in the state vector x with or without noise are plotted

in Figure 2. The initial state vector x0 =
[

1 1 0 0 0 0 0 0 −1
]T

by assuming zero external
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magnetic field interference, i.e., A is assumed as a unit matrix; hm is the zero vector in Equation (7).
The initial covariance matrix for the state vector P0 must be set sufficiently large to achieve a better
estimation. If P0 is very small, the state vector may converge well earlier. Thus, an optimal estimation
may not be achieved in the following recursive algorithm. In this paper, the value is selected as
P0 = diag

([
1 1 2 2 2 6 6 6 1

]
× 10, 000

)
. In Figure 2, the red, blue, and green lines

represent the order of parameters, and the dotted line represents the real value. For example, in the top
image in Figure 2a, the red, blue, and green lines denote X1, X2, and X3, respectively. A comparison
of Figure 2a,b indicates that the state vector without noise is almost equal to the real vector calculated
using the given parameters, whereas the state vector with noise is not equal to the real vector. This
result clearly demonstrates that the RLS method is a biased estimation method.
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Figure 3a plots the changes in the square root of the diagonal elements of the covariance matrix
√

Pii with noise, which clearly converges well after 200 iterative operations. Thus, the parameter s at
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the 200th iteration can be considered the threshold γ to detect if the state vector has converged. To
obtain γ sufficiently and reasonably, 80 Monte Carlo (MC) runs were performed. The variation curves
of the MC runs were concurrent, as shown in Figure 3b. Further, this result agreed well with the
expected results. Finally, the threshold is selected as the mean for all the 80 MC simulations.
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Figure 3. (a) Parameters of the covariance matrix and (b) result of 80 Monte Carlo simulations.

Figure 4 plots the magnitudes of all the data points before and after the application of the iterative
calibrated algorithm. The convergent point in the proposed estimation method is x̂195, which was used
to calculate the magnitudes of all the data points. As shown in Figure 4, the magnitude of the data
points of the proposed algorithm wavers near 1 with a small error, which corresponds well with the
theory above (shown in Equation (4)). Moreover, it must be noted that although the later 105 data
points were not used in the calibration, their magnitudes were steady, which clearly demonstrates the
superiority of the proposed algorithm.
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To evaluate the performance of the algorithm better, 80 MC runs were adopted in the experiments
below. The objective function value for each iteration in ML is presented in Figure 5. Further, the
number of applied data points in ML is determined by the RLS, which has already been discussed
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above in detail. The estimation converges well within five iterations, and the ML initial objective value
is zero because the initial mb′

k is determined by Equation (4) and λinit = 0.
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Moreover, the normal error metrics [15] were adopted in this paper. The non-orthogonal and scale
factor matrices of the three-axis magnetometer could be obtained by decomposing R = MΛ, where Λ

is a diagonal matrix that makes the diagonal elements of M be all 1. Several physical error metrics
are defined as follows: average scale factor error, es = 1

3‖diag
(
Λ−1Λ̂ − I

)
‖ × 100% (in percentage),

average sensor orthogonal error, eo =
180
3π ‖vec

(
M̂−M

)
‖ (in degree), and average hard-iron effect error,

eo =
1
3‖ĥ− h‖ (in Gauss). The hatted quantities denote the final estimation. The means and standard

deviations of the RLS and the ML methods are provided in Table 1. From the table, it is seen that the
ML method was slightly superior to the RLS method, especially in the average sensor orthogonal error,
which indicates that utilizing the unbiased ML is essential to perform the estimation. Moreover, a
comparison of the execution times of the conventional LS/ML [15] and the proposed RLS/ML using
MATLAB is shown in Figure 6. With the increase in the number of data samples, the variation in the
execution time of the proposed algorithm was less than that of the conventional method. This result
demonstrated that the proposed method effectively shortens the computational time.

Table 1. Mean (standard deviation) of three error metrics.

Methods es (%) eo (deg) eh (Gauss)

RLS 0.0119 (0.0053) 0.4845 (0.2127) 0.0093 (0.0039)
RLS + ML 0.0047 (0.0030) 0.2035 (0.1140) 0.0040 (0.0023)

4.2. Experimental Results

To further evaluate the performance of the proposed algorithm, calibration experiments
were conducted, which are discussed in this section. The algorithm was implemented in the
ADIS16488BMLZ platform (ADI Inc.), which comprised of a triaxial gyroscope, triaxial accelerometer,
triaxial magnetometer, and pressure sensor. The dynamic range, sensitivity, and noise density
of the magnetometer are ±2.5 Gs, 0.1 mGs/LSB, and 0.042 mgauss/

√
Hz, respectively. Further,

the magnetometer signals were sampled at 246 Hz. To validate the proposed algorithm, the sensor was
placed in an environment amidst multiple magnetic disturbances from sources including a laptop and
a ferromagnetic stair railing, and by the current carried by the sensor, as shown in Figure 7. Moreover,
the experiment was conducted by the rotation of the magnetometer around central point because any
change in the magnetometer positioning could affect the local magnetometer field.
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Figure 7. Devices used to include magnetic disturbance.

The sensor measures 3000 data points for the experiments. Good calibration results were achieved
when the magnetometer rotates fully in all directions, because it carries sufficient information about
the ellipsoid surface. However, if the measured data do not sufficiently cover most of the ellipsoid
surface, the calibration results may be poor. The proposed algorithm effectively addresses this problem.
Thus, to demonstrate the performance of the proposed algorithm better, the measured data points
were distributed on only a little part of the surface of the ellipsoid in this experiment, and not on most
of the surface, as shown in Figure 8.
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The real-time state vector estimation results and the parameters of the covariance matrix are
shown in Figures 9 and 10, respectively. The final number of data points was set as 1835, according to
the above-mentioned condition. Moreover, the state vector and the covariance matrix tended to be
stable after 1835 iterations, which agreed well with the simulation results above.
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Figure 9. Changes in state vector x.

After obtaining the optimal parameters by applying the RLS method, the calibrated magnitude
results could be obtained using Equation (4). Figure 11 plots the normalized magnitude result of the
measured data, and the magnitude results of LS, LS/ML, and the proposed RLS and RLS/ML. It is
clearly seen that all of the algorithms performed the calibration well because RLS and LS all could
provide good initial estimation. In fact, it is usual that a good initial estimation could be obtained when
the magnetic field was not destroyed heavily. In this test, even if only 1835 samples were required
to perform the calibration, it was important to analyze the accuracy of the calibrated data in the
whole 3000 samples. The magnitude results utilizing all of the 3000 points by RLS/ML was plotted
in Figure 12. It is obvious that the range of the magnitudes was between 0.98 and 1.02, which also
met the calibration requirement perfectly. Further, the corrected sphere fitting result by the proposed
RLS/ML algorithm was plotted in Figure 13.
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Finally, to compare the accuracy of the algorithms, the parameters of the reference method were
utilized as the standard values. The reference calibrated parameters were obtained by utilizing all the
data points, covering most of the ellipsoid surface in the same test environment. The LS/ML method
was adopted to obtain the reference parameters, which has already been demonstrated to exhibit a
reliable performance [15]. The reference calibrated parameters in the test are as follows:

Rref =


2.3415 −0.0053 −0.0259

0 2.3613 −0.0255
0 0 2.3938

 href =


0.0165
0.0245
0.2061

 . (21)

In order to evaluate the proposed algorithm sufficiently and reasonably, 20 experiments were
conducted in many locations, including stairs, laboratory, open area, and so on. Table 2 lists the means
and standard deviations of the 20 experiments by applying different algorithms. A decrease in the
mean of all the error metrics could be seen from the table, especially of the average sensor orthogonal
error, after applying the proposed RLS/ML method. It is clearly seen that the standard deviation of
the error metrics was a little large generally. The reason for the situation was that the accuracy of the
calibrated data varied greatly in different locations. In other words, the accuracy of the calibration is
associated with the degree of magnetic field disturbance. For example, the calibration results of flat
land were better than the stair surrounded by the ferromagnetic material. However, the maximum
three error metrics (es, eo, and eh) by applying RLS/ML in the 20 experiments are 0.0657, 1.3860, and
0.0242 respectively, which were all acceptable.

Table 2. Mean (standard deviation) of three error metrics in the 20 experiments.

Methods es (%) eo (deg) eh (Gauss)

LS 0.0388 (0.0402) 0.9062 (0.7369) 0.0134 (0.0134)
RLS 0.0269 (0.0244) 0.8019 (0.5461) 0.0115 (0.0098)

LS + ML 0.0310 (0.0301) 0.7314 (0.5830) 0.0111 (0.0105)
RLS + ML 0.0309 (0.0300) 0.7280 (0.5803) 0.0111 (0.0105)

Moreover, RLS/ML was slightly better than LS/ML in the table, not obvious, because RLS and LS
all could provide good initial estimation in most experiments. In this situation, the proposed RLS/ML
could effectively shorten the computational time due to the iterative operations of RLS, as is presented
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in Figure 6. This was also one of the main superiority of the proposed algorithm. For example, in the
test above, the LS/ML performing the calibration including 3000 samples needed 282.1227 s, while the
RLS/ML only needed 46.1559 s.

5. Discussion

Based on the analysis of the simulation and experimental results above, the proposed RLS/ML
could perform the magnetometer calibration in many different locations surrounded by magnetic field
disturbance. Compared with the traditional LS algorithm, the advantages of the proposed RLS/ML can
be listed as:

1O Shortens the computational time due to the iterative operations of RLS;
2O Detects the calibration implementation adaptively by the parameter s in Equation (10);
3O Improves the accuracy of the calibration by utilizing ML algorithm.

Although LS/ML was almost equal to RLS/ML in the accuracy, RLS/ML could effectively shorten
the computational time and save memory space, which is beneficial to the engineering application.
This is also one of the main advantages of the proposed algorithm.

6. Conclusions

A real-time magnetometer calibration algorithm based on the RLS/ML method was proposed in
this paper. First, a simplified model was derived from the measured error model of the magnetometer,
and an observation equation was constructed by transformation. Then, real-time parameter estimation
was performed using the proposed algorithm. Finally, numerous simulations and experiments were
conducted to demonstrate the efficiency of the proposed algorithm. The proposed method was not
only more accurate than the conventional batch-processing method, but also reduced greatly the
computational time. Moreover, the estimation results were detected in real time by state covariance
matrix analysis, which improved the flexibility of the system. Due to the simplicity of the proposed
measurement model of the three-axis sensor, the proposed method could be adopted for calibrating
other three-axis sensors.
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