
Supplementary Materials 

Use of a Novel Resistive Strain Sensor Approach in an Experimental and Theoretical Study 

Concerning Large Spherical Storage Tank Structure Behavior During its Operational Life 

and Pressure Tests 

FEM computational approach - Theory of Elasticity basic knowledge 

FEM analysis has been performed using a commercial software solution – Dassault Systèmes 

SolidWorks1.  Dassault Systèmes SolidWorks authors do not disclose the FEM mathematical apparatus on 

which their software is based. However, to give a glimpse of the FEM theory, we present classical 

equilibrium equations on which FEM simulations are usually based. 

 As described in Theory of Elasticity (Solid Mechanics) [1, 2] in the case of a plane problem (related to a 

polar coordinate reference system r,  ), the displacement components u, v  are (figure S1, S2): 

 

 
Figure S1 The stress components 

Plane discrete element under equilibrium state, related 

to a polar coordinate reference system 

 

 
Figure S2 The displacement components  

Displacement components in case of a plane discrete 

element under equilibrium state 

Therefore, strain  ,  / displacement  u,v relations are: 
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1 https://www.cadworks.ro/ 

https://www.cadworks.ro/


where 
   r r, ,  are strain components with respect to polar coordinate system; r ,    are normal stress 

components and r r,    shear stress components, with respect to polar coordinate system. 

The strain / stress equations will maintain a plane problem (Cartesian coordinate reference system) 

structure, with specific strain and stress notation indexes, therefore: 
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with  - Poisson’s ratio (the ratio of transverse contraction strain to longitudinal extension strain, in the 

direction of axial force) . 

If both loads and boundary conditions can be described as axisymmetric (figure S3), static study 

equations become: 

 
Figure S3 The loads and boundary conditions 

Example of an axisymmetric equilibrium state plane element 

                                                                        


   r
r

d 1
0,

dr r
                                                                 (S3) 

or, in strain terms point of view: 
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where: 
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The axisymmetric plane state of stress (figure S4), has a significant effect on the stress/strain matrix 

equation, therefore the generalized Hooke’s law is: 



 
Figure S4 The axisymmetric plane state of stress 

Example of an axisymmetric equilibrium state volume element, with respect to a polar coordinate system 
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where   represents the stress array,    the strain array and  D  the elasticity matrix, in polar 

coordinate system symbols: 
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the matrix equation system (S7) being used by finite element method based software packages. 

As mentioned before, we did our FEM simulations using SolidWorks software, SolidWorks Simulation 

Linear Static “analysis calculates displacement, strains, stresses and reaction forces under the effect of applied loads 

– the sequence of calculation is composed by several compulsory steps such as construction and solving a system of 

linear simultaneous finite element equilibrium equations (mesh, material properties, restrains and loads), in order to 

obtain displacement components at each node. Three direct solvers and one iterative solver are available for the 

solution of the set of equation. In FEM analysis, a problem can be represented by a set of algebraic equations that 

must be solved simultaneously. There are two classes of solution methods, direct and iterative; direct methods solve 

the equations using exact numerical techniques. Iterative methods solve the equation using approximate techniques 

where in each iteration, a solution is assumed and the associated errors are evaluated; the iterations continue until 

the errors become acceptable. Based on displacement field one can reach the strain components and finally, the 

program uses the strain results and the stress/strain relationships to calculate the stresses. Gauss-Legendre 

computational approach is used in finite element code. Stress results are first calculated at special points (Figure 5), 

called Gaussian points or Quadrature points, located inside each element. In numerical analysis, a quadrature rule 



is an approximation of the definite integral of a function, stated as a weighted sum of function values at specified 

points within the domain of integration. 

 
Figure S5 – Gaussian points versus nodal points placement 

These points are selected to give optimal numerical results. The program calculates stresses at the nodes of each 

element by extrapolating the results available at the Gaussian points. After a successful run, nodal stress results at 

each node of every element are available in the database” (SolidWorks Simulation user manual). 

One can assess the scatter plot of F.E.M. specific mathematical apparatus output measurements 

(D’Assault Systemes SolidWorks particular case) versus traditional computing approach, as suggested by 

a number of comparative study cases [3, 4, 5], for instance stiffness-related structural optimisation [5], 

Figure S6. 

 
a. Support and loading scheme for a statically indeterminate plane frame structure 



 
b. Vertical displacement component field – AxisVM vs.traditional approach 

 
c. Vertical displacement component field – SolidWorks 2014 vs.traditional approach 

Figure B6 The output measurements versus traditional computing approach 

In Figure S6 one can assess the excellent scatter plot of output measurements (vertical displacement 

component field), obtained via a dual-approach example concerning traditional calculus method [5], 

versus Finite Element Method (FEM) analysis for a statically indeterminate plane frame structure. 

 
References 
1. N.I. Bezuhov, Theory of Elasticity and Plasticity (in Romanian), Editura Tehnica , Bucuresti, 1957; 

2. St. Mocanu, Complements to the Theory of Elasticity (in Romanian), University of Civil Engineering 

of Bucharest, 2007, http://fem.utilajutcb.ro/auxiliare/complemente-de-Teoria-Elastici/complemente-de-

teoria-elasticitatii.html; 

3. St. Mocanu, Short Comment with Reference to the Balance and Strain/Stress State for a Straight Rod of 

Circular Section Subjected to Torsional Load (in Romanian). In Syntheses of Theoretical and Applied 

Mechanics, pp. 69-73, vol.5, no.1, Bucureşti: Ed.MatrixRom., 2014, ISSN 2068 – 6331. 

4. St.Mocanu, Aspects Regarding the Use of Numerical Methods when Modeling the Behavior of the 

Structures Required for Lateral Buckling (in Romanian). In Syntheses of Theoretical and Applied 

Mechanics, pp. 5-14, vol. 4, no.1, Bucureşti: Ed.MatrixRom, 2013, ISSN 2068 – 6331. 

5. St. Mocanu, Mechanical Stiffness as an Optimization Parameter for a given Structure (in Romanian). In 

Syntheses of Theoretical and Applied Mechanics, pp. 335-342, vol.7, no.4, Bucureşti: Ed.MatrixRom, 

2016, ISSN 2068. 

 

http://fem.utilajutcb.ro/auxiliare/complemente-de-Teoria-Elastici/complemente-de-teoria-elasticitatii.html
http://fem.utilajutcb.ro/auxiliare/complemente-de-Teoria-Elastici/complemente-de-teoria-elasticitatii.html

