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Abstract: This article presents a novel and reliable low-cost data acquisition solution for high
frequency and real-time applications in vehicular dynamics. Data acquisition systems for highly
dynamic systems based on low-cost platforms face different challenges such as a constrained data
retrieval rate. Basic data reading functions in these platforms are inefficient and, when used, they limit
electronics acquisition rate capabilities. This paper explains a new low-cost, modular and open
platform to read different types of sensors at high speed rates. Conventional reading functions are
avoided to speed up acquisition rate, but this negatively affects data reliability of the system. To solve
this and exploit higher data managing rates, a number of custom secure layers are implemented to
secure a reliable acquisition. This paper describes the new low-cost electronics developed for high
rate acquisition applications and inspects its performance and robustness against the introduction
of an increasing number of sensors connected to the board. In most cases, acquisition rates of the
system are duplicated using this new solution.

Keywords: DAQ; data acquisition system; acquisition rate; low cost; reliability; Arduino; high
dynamics; vehicle applications

1. Introduction

Data acquisition systems (DAQ) acquire signals from different types of sensors in contact with
the physical world. These systems acquire an analog signal and convert it to digital values for
further processing. Basically, a DAQ is composed of one or several sensors that send an electrical
signal to a circuitry to be conditioned and, subsequently, converted to digital values through an
analog-digital converter.

There are innumerable data acquisition systems available in the market. Some of them are based
on high priced proprietary systems (hardware and software). The physical magnitude that one wishes
to measure significantly conditions the acquisition system to be used. It is important to determine if
the measure you want to acquire changes over time and at what frequency. There are physical systems
with magnitudes that change slowly with time (for example the temperature) and other systems in
which they vary many times per second. The physical system to be measured, therefore, determines
the characteristics of the acquisition system that can be used to provide reliable data.

In this article, we focus on a very demanding application, the measurement of dynamic magnitudes
in vehicular systems. This application needs to quickly process high frequency signals coming from the
sensors installed in the vehicles (displacement sensors, acceleration sensors, GPS sensors, inclination
sensors, etc.) in front of external solicitations (inertias, vibrations, change of position, speeds,
accelerations, etc.). The configuration of an acquisition system compatible with these requirements
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causes the price of the data acquisition system to skyrocket. Additionally, the final price depends on
the number and quality of the sensors used, as well the refresh and data acquisition rates must be high
which means that the processors integrated in the circuitry must have a powerful and quick processor.
At the same time, the system should store and record the acquired data without delay.

Given this situation, we recently introduced an alternative low-cost acquisition system based on
the Arduino platform [1]. In that study, we validated the low-cost system presented with a professional
data acquisition system for vehicular dynamics applications. The results were promising, validating
the use of an Arduino-based system for this type of applications with high reliability at a reasonably
high sampling rate when a reduced number of sensors were installed.

The idea of using a data acquisition system based on a low-cost platform is not new. In [2],
Arduino had already been presented as a possible low-cost laboratory equipment and its accuracy was
analyzed, although an investigation of its performance and capacity was not studied or taken to the
limit. Other acquisition systems based on low-cost platforms, such as Raspberry Pi, have also been
presented, as in [3], where the system was used as a data acquisition and storage system where large
amounts of sensor data on low-cost servers was stored.

The relevant literature shows that these low-cost platforms have been applied to countless
situations. Most of these applications do not need high frequency of acquisition or do not apply to
very demanding dynamic situations. For example, in [4], a low-cost system was developed based on
an Arduino Mega platform that deployed a variable gain amplifier circuit increasing the efficiency,
resolution, and measuring range of the system. In this case, the system was also connected to a
Raspberry Pi with the calculation of basic electrical parameters in real time. Another recent example was
the development of an automated calorimeter for determining soil-specific heat using a microcontroller
based on Arduino [5]. It was also used for acquisition of environmental data, as in [6], where a system
based on an Arduino Leonardo system was used for continuous monitoring of air quality. Another
significant example was the use of a KdUINO DIT system to estimate water quality through the study
of its transparency through the diffuse attenuation coefficient [7] that was recorded on an SD card for
further study.

Some applications can be found in which these low-cost systems have been applied to
high-frequency dynamic systems. For example, in [8], a low cost acquisition system was developed for
a single axis vibration shaker table for civil engineering applications. In this case, the shaker table
was used to simulate horizontal acceleration data recorded during earthquakes and was based on an
Arduino DUE for control of the table and an Arduino MEGA for the verification of the acceleration
obtained. Another study obtained dynamic data in a low-cost platform to study the lateral displacement
of railway bridges through the use of low-cost accelerometers transmitting the data wirelessly [9].
Another recent example is found in [10], where a real-time electronic system was presented to monitor
the integrity of structures, continuously monitoring data such as acceleration, inclination, position,
and temperature that are transmitted wirelessly using the harvested energy in the system. It is also
possible to find applications in which these low-cost systems are used to condition the operation
of a machine. For example, in [11], a low-cost system was developed to monitor a bearing in a
mechanical system through a MEMS accelerometer, transmitting the information to a computer for
further processing in Matlab. Other applications have used multipurpose equipment (such as National
Instuments DAQ) [12] to lower the cost of high dynamics (and higher priced proprietary systems),
such as photoacoustic computed tomography [13].

In regards to the low-cost acquisition for applications related to vehicles, in [14], a low-cost system
was used to assess the comfort of travelers in the public transport system while evaluating vehicle
accelerations in a determined route by urban route. This system used a compact system obtaining
data from a GPS sensor and an accelerometer. In [15], a DAQ and a driving operation process was
designed for a dynamic vehicle simulation system, where data of the path of the three driving pedals
were obtained through linear displacement sensors and a sensor of angular displacement to obtain the
steering angle of the steering wheel. In [16], it was possible to classify the type of behavior behind the
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wheel of public transport drivers using of a single low-cost triaxial accelerometer. The same idea was
applied in [17] using an inertial sensor and the CAN bus. In addition, in [18], an analysis of cyclists
data obtained by sensors was carried out through an Arduino-based system, using an ultrasonic sensor
and a GPS to evaluate the type of roadway. The system connected to a smartphone via Bluetooth to
record the data on a server. Recently, a low-cost system was presented, in this case based on Raspberry
Pi, to assess road surface friction [19]. In this case, the deceleration from the braking of the vehicle was
measured and compared with the geolocation of the vehicle to calculate the corresponding coefficient
of friction.

The examples cited so far prove that it is possible to use low-cost acquisition systems in increasingly
demanding situations. However, the specific applications in which Arduino- or Raspberry Pi-based
systems have been used for vehicular dynamics applications are still limited. In the system presented
in a previous article [1], we already have shown that it was possible to dynamically use a system based
on an Arduino microcontroller to perform dynamic measurements in vehicles. However, little attention
has been given in the relevant literature to improving the sampling frequency and the reliability of
these low-cost systems. The articles consulted are limited to highlighting the feasibility of acquiring,
analyzing, or sending data through low-cost platforms in specific applications, but little is explained
about reliability or how to increase the acquisition rate on these systems.

In reality, to implement a low-cost acquisition system in these platforms, it must be taken into
account that the system’s control, the testing, and the error checking are not implemented by default.
In addition, no information is given about the reliability of the obtained data or on how to improve the
acquisition rate of the system. Addressing the available functions in a low-cost acquisition system in
order to further speed it up forces the user to be prepared to deal with different types of errors. The
transmission of the data could have errors that should be monitored for a reliable acquisition. If the
DAQ do not have an integrated and adequate error checking system, the costly experimental results
would have to be repeated and, consequently, with a waste of time and money. In applications such
as dynamic acquisitions in vehicles, this is especially relevant, since the availability of these systems
to carry out tests is usually limited. In professional acquisition systems, many of these errors are
controlled and the system automatically corrects for them. In low-cost platforms, this control system is
usually not available, and one has to program for it.

A low-cost acquisition system for high dynamic applications must not only guarantee obtaining
proven reliable data, but it must also assure high acquisition rates. In addition, it is desirable that
the system is easy to use and configure, modular, and reusable in different vehicle configurations.
Unfortunately, little attention has been given to improving acquisition rates and the errors that can be
generated in these Arduino-based acquisition systems and how the data should be treated to ensure
fast, continuous, nonstop, and reliable operation.

Taking the system used in dynamic applications described in [1] as a reference, it would be
desirable to increase the already high acquisition rate provided. In addition, communication through
the serial ports between the system of Arduino (that provides the measure of the real time) and the
central computer (that can be based on a Raspberry Pi in case of wanting to maintain the cost low) can
have transmission errors that one has to monitor.

As a result of the analysis of the revised literature, we concluded that the development of
applications based on low-cost electronic platforms is increasing and is very popular. However, the
use of these platforms for the acquisition of high-frequency dynamic data is limited. Applications
that use these platforms for data acquisition in dynamic vehicle applications are much more restricted.
In addition, to the best of our knowledge, none has directly addressed the improvement and optimization
of the speed of data transmission on these platforms to improve their operation.

Therefore, the scientific novelty of this paper is centered on the development of a novel DAQ,
based on affordable electronics for real-time applications in vehicular dynamics that, apart from
allowing the open installation of a wide variety of sensors, multiplies by two the acquisition rate
of the system presented in [1] and assures consistent reliability of the acquired data, checking and
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automatically correcting the detected errors. Specifically, this new system includes the configuration of
new hardware, with a redesigned shield adapted to be modular and open to innumerable types of
analog and digital sensors (position sensors, accelerometers, GPS, etc.). In addition, the transmission of
reliable (and time-marked) data from the sensors to the central operating system is assured. Optionally,
the system can work autonomously recording the acquired data in a local SD card. The reliability
of the data acquisition system is completed with a real-time data analysis module that detects and
corrects situations in which errors occur, making the system functional and fault tolerant. Therefore, a
robust acquisition system is proposed, which allows reliable professional acquisitions at a low cost. In
addition, the system is easy to install and very small, aimed at use for dynamic applications in different
vehicle sizes.

This article is divided into different sections. Section 2 details the characteristics of the new
acquisition system. In this section, first, the hardware configuration is described and, secondly, it deals
with the study and improvement of the reliability of the operation of the low-cost hardware used and
the protocols that must be implemented to ensure the quality of the data and its transmission at a high
refresh rate. Section 3 focuses on the validation tests of the system and presents the system functioning
in a real application, as well as a discussion of the results obtained. Section 4 presents our conclusions
and future paths.

2. The Low-Cost Data Acquisition (LC-DAQ) System

The low-cost data acquisition system presented in this research is aimed to conform an open,
flexible, robust and low-cost system which acquires data at high frequency from a large number of
sensors simultaneously, providing high accuracy on the data acquired.

On the one hand, Arduino is a good platform for the development of such a system. It is fully open
source, and the development boards that are compatible with it are electrically reliable and available at
a low cost. Furthermore, there is wide flexibility in terms of connections and digital protocols that can
be achieved with this platform. Thus, this becomes a suitable choice to develop the hardware of the
LC-DAQ system.

On the other hand, the serial communication protocol between the Arduino boards and external
computers becomes a bottleneck in terms of sampling frequency in real-time acquisitions applications.
The Arduino’s built-in functions for communicating with the controlling PCs are robust but do not
focus on efficiency. In order to increase the acquisition frequency and to optimize the robustness of the
system, a custom communication protocol is developed and introduced as part of the LC-DAQ system.

2.1. Hardware

The proposed low-cost system, namely low cost data acquisition system (LC-DAQ) is a modular
system with a high capacity for personalization. It is optimal for vehicle data acquisition applications
where compact and reliable systems are necessary. The LC-DAQ is composed of an Arduino Due card.
The board performs the processing of the data. An acquisition Shield (developed in the present work)
simplifies the connections between the sensors, modules, and the acquisition card. Data can be stored
directly on the SD card allocated in the shield, or it can be sent online to an external computer. The
system is protected by a housing made of methacrylate.

Arduino Due has a powerful Atmel SAM3 × 8E ARM Cortex-M3 with a 32-bit CPU. This provides
a faster calculation and acquisition speed than boards based on AVR architecture. Arduino Due is a
device far superior to previous models. It has 54 digital inputs and outputs, of which 12 can be used
as pulse-width modulation (PWM) outputs. It has 12 analog inputs and two analog outputs with a
voltage range between zero and 3.3 V. Four serial ports through the hardware (UARTs) establish several
serial connections at the same time. It also has pins dedicated to the I2C (inter-integrated circuit) and
SPI (serial peripheral interface) protocols. Table 1 shows the characteristics of the Arduino Due card as
compared with other Arduino compatible systems. As it can be observed, the Arduino Due sports
the highest clock frequency and finest analog resolution. Along with its low supply voltage (3.3 V),
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these two features represent fundamental advantages over other systems to fulfill the requirements of
the LC-DAQ.

Table 1. Arduino Due characteristics.

Name Arduino
Due

Arduino
Zero

Arduino
Mega2560

Arduino
Leonardo

Arduino
Uno

Arduino
Nano

Arduino
Pro Mini

Format Mega Arduino Mega Arduino Arduino minimal Mini

Processor ATSAM3X8E
(Cortex-M3)

ATSAMD
21G18A

Atmega
2560

Atmega
32U4

Atmega
328P

Atmega
328

Atmega
328P

Frequency 84 MHz 48 MHz 16 MHz 16 MHz 16 MHz 16 MHz 8 (3.3 V)

Digital I/O (pins) 54 14 54 20 14 14 14

Analog output pins 2 1 0 0 0 0 0

Analog input (pins) 12 6 16 12 6 8 6

Analog Signal
Range 0–3.3 V 0–3.3 V 0–5 V 0–5 V 0–5 V 0–5 V 3.3 V

Analog signals
resolution 12 bits 10 bits 10 bits 10 bits 10 bits 10 bits 10 bits

Analog signals
resolution 0.81 mV 3.22 mV 4.88 mV 4.88 mV 4.88 mV 4.88 mV 3.22 mV

A customized shield (Figure 1) is easily installed on the Arduino Due board. The shield connects
the different modules and the external sensors. Optional SD card, GPS and real-time clock (RTC)
modules can be installed on the system. The shield has female pins to directly connect modules
to the acquisition system. It is a Plug and Play system. External sensors such as accelerometers
and displacement sensors are connected by terminals. The acquisition shield connects the output
and input pins of the Arduino Due board to external terminals. The terminals have a screw fixing
system. The external sensor cables are connected to these terminals and thanks to this, system reliable
connections between the elements are guaranteed. This construction allows the data acquisition to be
easily embarked in the vehicle. Connection problems due to vibration are avoided. In addition, it is
a customizable system with fast assembly. The available pins are shown in Figure 1. The optional
modules are installed depending on the application and the available budget.
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The shield has four different optional modules. The first module, the microSD module Catalex
v1.0, is used when acquisitions are made using the acquisition system individually, that is, without an
external computer. The module is connected through the SPI protocol and the SD acquisition allows a
compact system but limits acquisition frequency to 70 Hz [1]. The second module, the RTC module
DS3231, is connected through I2C and the watch allows us to have control of the time for long-term
acquisitions. In short acquisitions the clock of the microcontroller is used. The third module has a GPS
module Adafuit Ultimate V3 which allows the position and speed of the vehicle to be known with
frequencies in the range of 1 to 10 Hz. Its speed accuracy is ± 0.1 m/s and the position accuracy is ± 1.8
m. Finally, the fourth module is a logical converter for the I2C protocol. This is needed to use sensors
that operate at 5 V in the LC-DAQ. The LC-DAQ system is shown in Figure 2.

The acquisition system supports three forms of connections for external sensors (Table 2). Analog,
I2C (inter-integrated circuit) and SPI sensors can be used. The voltage range of the analog pins is from
0 to 3.3 V. Negative voltages cannot be measured. Any sensor able to either communicate through one
of these protocols or to return an analog signal within the voltage limit is compatible with the system.

Table 2. LC-DAQ external connections.

Characteristic Connection

Power 5 V, 3.3 V, 2Xgnd
Digital input/output 13

Analog inputs 12
Analog output 2

I2C SDA 3.3 V, SCL 3.3 V, SDA 5 V, SCL 5 V

SPI RESET, SCK, MISO, GND, MOSI, 5 V, 4 D
I/O

LCD 5 V, GND, SDA 5 V, SCL 5 V
Others IOREF, RESET

The analog digital converter of Arduino Due has 12 bits. Therefore, the resolution is 0.806 mV for
a voltage range of 0 to 3.3 V. This obliges to condition the signal from sensors that do not meet these
characteristics using voltage dividers.

The sensors that are used (MPU-6050 triaxial accelerometers) communicate through the I2C
protocol which is preferred because it connects up to 255 sensors using only two cables. These two
cables are the serial clock line (SCK) and the serial data line (SDA). Both lines are connected to all the
devices that are using the data bus. The devices that use this protocol can be masters or slaves. In this
case, the LC-DAQ is the master and the external sensors are the slaves. The LC-DAQ system controls
the clock line and data transfer is only started by the LC-DAQ. The system supports connecting I2C
sensors powered at 5 V or 3.3 V. An example of the sensors that use this connection are MPU6050
accelerometers, the LCD screen, and the RTC.

Finally, there are sensors that communicate through the SPI protocol. This communication protocol
is characterized by being faster than I2C. In addition, it does not need a dedicated address to identify
each sensor. It uses four wires, a serial clock (SCLK), a master output slave input (MOSI), a master
input slave output (MISO), and a selection pin (SS). The microSD Catalex V1.0 module uses SPI for the
data storage.

The power consumption of the LC-DAQ is 80 to 90 mA plus 4 mA for each connected sensor.
Therefore, without additional modules, the consumption of the LC-DAQ together with eight triaxial
accelerometers MPU-6050 is approximately 112 to 122 mA.
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2.2. Firmware and Communication Protocol

The firmware installed into the LC-DAQ is developed taking advantage of Arduino IDE. The
LC-DAQ is meant to be a robust and affordable acquisition system that is able to deliver a high enough
sampling frequency in a real-time scheme. This means that LC-DAQ must be connected to a master
computer through a reliable and fast communication protocol. Serial over USB is the most commonly
used communication protocol between Arduino boards and computers. Arduino IDE provides defined
functions to send and read data packages through the serial port. One of these functions is Serial.print.
It becomes very convenient to send data in a structured and reliable manner. In a previous version of
LC-DAQ, Serial.print was the default function used to communicate with the external computer [1].
Serial.print function is a regular and reliable communication function. However, it does not allow high
sampling frequencies, especially when several sensors are connected to one board.

The speed in the serial communication can be improved in two ways. On the one hand, the
serial port can be configured to operate at different baud rates. On the other hand, the communication
protocol defines the number of bytes that are needed to send the acquisition information. The volume
of these bytes directly impacts the communication speed and the sampling rate. By improving the
communication protocol, the communication speed can be significantly improved. This research
focuses on improving the serial communication protocol to enhance the acquisition frequency. In order
to test the improvements of the new protocol, the baud rate was set to a commonly used value of
250,000 bps.

A qualitative explanation can be provided observing how Serial.print works. This function takes
the variable specified by the user and converts each of its characters into ASCII code and, then, sends a
byte containing this code for each of the character in the variable. This is reasonable for sending text.
However, sending numbers under this scheme becomes totally inefficient for LC-DAQ, which is meant
to read numerical values from different sensors and timers and transmit them to a master computer in
real time. As an example, consider that one of the values is the number 255 in base 10. In Hexadecimal
this data is represented as 0 x FF and in binary it becomes the single byte 11111111. Using Serial.print
(255) this value, first, is split into its three characters [2, 5, 5]. Then they are converted into ASCII code,
which in Hexadecimal is written as [0x32, 0x35, 0x35] and in binary as [00110010, 00110111, 00110111].
Then, these three characters are sent individually as three bytes embedded into the communication
protocol used by the function to guarantee the data synchronism and reliability. Under this scheme,
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the number of bytes that must be sent is multiplied by three. Furthermore, the user has no control of
the communication protocol that runs every time that a Serial.print command is invoked.

In order to overcome the data size disadvantages of using Serial.print, this work embodies the
integration of a communication protocol over serial port that drastically reduces the volume of data
that has to be sent and notably increases the acquisition frequency obtained with the LC-DAQ system.
However, avoiding the use of Serial.print, which is reliable, means that the control and reliability of the
communication rely on the user. This protocol pivots on one of the functions provided by Arduino
IDE (Serial.write) which sends bytes individually and grants full control to the user. This protocol is
assembled adding different control layers to improve the speed and robustness of communication.
These layers have been tested individually to isolate their effects on the transmission speed and data
accuracy. Statistical analyses were performed at each step of the study tracking all the different errors
appearing on the communication to ensure the reliability of data and to observe the pros and cons of
each control layer added to the protocol as follows:

• Data framing Increases transmission speed by sending bytes instead of ASCII characters;
• Checksum Increases robustness by detecting errors in the byte chain;
• Time resolution reduction Increases transmission speed by reducing the number of bytes in

time variables;
• Bytes stuffing Increases robustness by including control bytes to prevent interpretation errors in

the receiving algorithm.

2.2.1. Data Framing

This first layer uses Serial.write instead of Serial.print. It also implements data framing to
synchronize the data flow in the transmission. Serial.write receives the following two arguments: The
address of the variable to be sent (pointer to the variable’s first memory address) and the number of
bytes to be sent (number of memory positions to be read and send through serial port starting at the
memory address introduced in the first argument). The variable that has to be transmitted is stored
in the memory as a sequence of bytes. If the number of bytes indicated in the second argument of
Serial.write exceeds the length of that variable, Serial.write would continue sending those bytes stored
into the contiguous memory addresses. Consequently, data must be stored carefully structured into
the microcontroller memory, and therefore the program has full control on the data location.

In order to control the data, different structured variables are defined for two kind of sensors, i.e.,
analogic and digital. The variable for analogic sensors stores the following two variables: the time
count read from the timer at each measure and the digitalized value of the voltage returned by sensors’
transducer. The variable for digital sensors can store several values, i.e., the time value (uint32_t) and
as many digital values (uint16_t) as the sensor is able to send at each measurement. For example,
the MPU6050 used in this study is configured to return up to three accelerations from the sensor.

On the one hand, with a resolution of microseconds, 32 bits allow the sensor to register continuously
up to 1.19 h. This time is enough to carry out most of the experimental tests for which this LC-DAQ
system was conceived. On the other hand, the analog to digital converter (ADC) of Arduino DUE has
a native resolution of 10 bits. This can be increased up to 12 bits of real resolution and extended up
to 16 bits by interpolation. In addition, all the digital sensors used with our LC-DAQ system have a
resolution of 16 or less bits.

This approach stores all the data of one sensor in a single structure which is allocated sequentially,
byte-by-byte, in the memory of the system. Being so, the stored information of one sensor can be send
just by calling the function Serial.write with the pointer to the structure defined for that sensor and the
total length of the data stored on it (six bytes in the case of an analogic sensor) as arguments.

Framing characters are used to create a data frame within the string of bytes transmitted which
synchronizes the data flow between the LC-DAQ and the master PC. These characters are represented
by the start of transmission byte (STX) and the end of transmission byte (ETX), typically 0x02 and
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0x03, respectively. Figure 3 shows the sequence of bytes sent through the serial port to transmit the
information of one analogic sensor and one digital sensor with two variables.

Data is sent from the LC-DAQ enclosed within the framing bytes. That information is received in
the PC, where a Python program monitors the serial port and classifies the incoming bytes. Once it
reads a STX byte it stores the following bytes in its memory until an ETX byte is received. Then, it
counts the number of bytes received and if it is equal to the number of bytes expected, it reconstructs
the values of the variables from the bytes received and performs the conversion of those values into
the equivalent physical quantities. If the number of bytes stores does not coincide with the expected
one, those bytes are discarded, and a new chain of bytes is read.

Therefore, framing drastically reduces the number of bytes in the serial transmission for each set
of measures performed by the system, increasing the sampling frequency (see the Results section).
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2.2.2. Checksum

The checksum layer is intended to improve the consistency of the data transmitted. It performs a
checksum operation on the byte string before it is sent (in the LC-DAQ side) and after it is received (in
the PC side). Then, both values are compared, and data is approved if they coincide.

The checksum performed at both sides (LC-DAQ and computer) consists in a byte-by-byte XOR
logical operation. In this way, the probability of errors cancellation is reduced, obtaining eight parity
bits for the full string. Figure 4 is presented as an example in which the information of an analog sensor
is transmitted. Figure 4a shows the string of bytes, whereas in Figure 4b a numerical example of the
bytes contained in the string is presented along with the result of performing a XOR checksum on the
six bytes corresponding to the data.
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2.2.3. Time Resolution Reduction

This layer is meant to further reduce the number of bytes to be sent in the string of bytes for each
communication. Initially, the resolution of the time value for both analog and digital sensors is 32 bits.
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These four bytes allow the sensor to codify up to 71.5 min in intervals of 1 microsecond. By reducing
the time resolution to 24 bits (3 bytes) the maximum time period that can be codified reduces to 16.7 s.
This time span becomes too short for most of the experiments for which LC-DAQ is designed, but it is
long enough to allow the execution of several hundreds and thousands of program’s main loop in the
Arduino side, depending on the number of sensors to be read.

To ensure the integrity of the time count, a time-correction routine is included in the PC side that
stablishes the initial time and sequentially adds the time increments detected at each step, by reading
the raw data provided by the Arduino timer. In the first reading, this routine stores the initial value of
time received on the serial port, and therefore it can subtract this value from the consecutive values
of time and set the time of the initial measure as zero. At each reading, the time-correction routine
compares the value of time received in the current reading with that received in the previous reading.
Then, it adds this difference to the previous value of time computed. At a certain number of readings,
the maximum value of time that can be stored in the 24 bits variable is reached and the time’s count is
reset. Then, the value of time received on the serial port is lower than that in the previous reading.
When this circumstance is detected, the comparison between the current value of time received with
the previous one becomes a negative value. The actual time interval that elapsed between these two
measures is found by adding the maximum value reachable in the time variable (224 = 16.777.216 µs)
to the times difference. By this approach, the maximum time achievable at any experiment becomes
virtually infinite.

It would be possible to further reduce the number of bytes used to encode the timer count. For a
timer count with 2 bytes of resolution with sampling times of 1 microsecond, the maximum time that
can be encoded is about 65 ms. However, as far as the number of sensors is incremented, the time
taken for the Arduino program to perform a single main loop becomes closer to this value. At a certain
point this circumstance could produce aliasing on the different measures, therefore, we set the time
resolution in 3 bytes as a compromise between performance and robustness. Figure 5 shows how the
data string would be sent at this stage.
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variable, and the checksum byte. The time resolution has been set to 3 bytes (24 bits) for both sensors.

2.2.4. Stuffing

The flags (STX and ETX) are special characters that identify the start or end of transmission and
are codified with a single byte. Table 3 presents the codification used for some special characters.

Table 3. Codification of special characters including their hexadecimal and binary values.

Byte Hexadecimal Binary

STX 0x02 0000 0010
ETX 0x03 0000 0011
ESC 0x06 0000 0110

The data framing layer (see Section 2.2.1) is effective when the bytes within the data string are
different from the special characters. However, if some of te bytes that codify either the times or the
measurements takes the same value as one of those special characters, the system which receives the
data string (the master PC in our case) could misinterpret the framing structure of the message and



Sensors 2020, 20, 524 11 of 21

result in a reading error. To prevent the system failure, a byte stuffing technique is used. This is an
extended technique in serial communications which consists of introducing an extra character (ESC)
before those data bytes which coincide with other special characters. When the receiving system
reads an ESC byte it knows that this character must not be saved and that the following byte must be
treated as data instead of as a special character. Figure 6 shows an example in which some of the bytes
contained in the data string coincide with the special character and how the communication protocol
modifies the string by stuffing the ESC byte.
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The four techniques presented above develop a communication protocol which provides full
control of the data transmitted, highly increases the communication speed by reducing significantly
the volume of bytes sent, and provides a high level of robustness on the data transmission.

In the following sections, the effects of introducing such control layers into the communication
protocol are experimentally studied observing the sampling frequencies achieved by LC-DAQ
(configured with different number of sensors), as well as the time regularity obtained in the measures.

3. Methods, Tests, and Results

For the evaluation of the different data transmission methods, 5 trials were carried out.
The LC-DAQ system was used together with low-cost triaxial accelerometers. Measurements were
taken with different numbers of sensors and 1 to 8 sensors were connected. A time measurement was
taken for each acquired sensor and 1, 2, or 3 axes were measured at the same time for each sensor.
Only one “time” value was acquired per sensor. Therefore, the number of time bytes sent in each
cycle depended on the number of sensors and not on the number of axes sampled. The maximum
acquisition frequency was analyzed for the different test methods. Errors produced in each test were
recorded. The study was divided into 5 tests as shown below.

Test 1 was the baseline. It consisted in the acquisition of acceleration values provided by a different
number of MPU6050 triaxial sensors. The test was divided according to the number of axes acquired at
the same time (1, 2, or 3) and 1 to 8 sensors were acquired simultaneously. The transmission of the data
was implemented with the Arduino’s Serial.print function. On the receiving PC, a Python program
was executed to monitor and record the time at which the data was received. In this test, only the
maximum acquisition frequency is obtained. It is not possible to register the number of communication
errors. The relative standard deviation (RSD) of the frequency is used as a representation of the number
of errors. When there was an error in a measurement cycle, the sensor data was not recorded. With a
bigger number of errors there are more frequency drops. The test was performed in static way. In this
situation, the value of bits sent by the sensors was constant.

In Test 2, the same tests were carried out implementing data framing. This reduced the number of
bytes sent and kept track of the errors produced in the transmission. The test was performed following
the same methodology as in the first test. With the data framing method, it is possible to know if there



Sensors 2020, 20, 524 12 of 21

are errors in the structure of the data sent. Therefore, a record of the errors was taken in a .log file
and 1 to 8 sensors with 1 to 3 simultaneous axes were sampled. The maximum frequency values and
errors were recorded. This method sends the same number of bytes regardless of the value sent by
the sensors. Therefore, tests could be made static or dynamic without varying the deviation from the
frequency of acquisition. This behavior is different with the Serial.print method.

In Test 3, checksum was integrated to increase the robustness of communication between the
LC-DAQ and the PC. The same procedure was followed as Test 2. Data acquisition frequency and
structure string errors were recorded. The introduction of checksum allowed the byte corruption errors
to be known. The addition of one byte per string sent was studied.

In Test 4, time resolution reduction was included, reducing the number of bytes of the time
variable (3 bytes instead of 4). This change was implied by sending one less byte for each acquired
sensor. The methodology followed was the same as the two previous trials. Acquisition rates were
sampled, as well as the error log.

Finally, in Test 5 the stuffing layer was implemented. The experiment followed the same procedure
as the previous tests. Acquisition frequency and string structure errors were logged. The results
obtained in the experimental trials using the LC-DAQ low cost acquisition system are shown below.

Figure 7 shows the results obtained in Test 1. In Figure 7a the acquisition frequency is represented
versus the number of sensors sampled by the Serial.print data acquisition method. In the ordinate
axis, the acquisition frequency is shown in each test. The number of sensors acquired at the same
time is represented on the abscissa axis. The three curves represent the I2C triaxial accelerometer
sampling 1, 2, or 3 axes at the same time. The nonlinearity of the acquisition frequency can be observed.
The maximum frequency reached is 1666 Hz for a sensor acquiring on a single axis. The minimum
acquisition frequency is 127 Hz for 8 accelerometers acquiring on 3 axes. The greater the number of
axes sampled, the lower the acquisition frequency. The speed decreases between 23% and 18% when
an additional axis is included. Figure 7b shows the relative standard deviation (RSD). The RSD is a
standardized measure of dispersion of a frequency distribution. In this case, it is directly influenced by
the number of errors in communication. Each error represents a discarded measure and implies that a
new program cycle is necessary to obtain a correct measurement. This doubles the acquisition time
when there is an error. With this method we obtain a deviation of up to 0.8%. Therefore, it is observed
that Serial.print has some errors filtered but it is not possible to identify them.
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Figure 8 shows the difference in results obtained between Test 1 and Test 2. In this Test,
data communication between the LC-DAQ and the computer is done by sending byte string and not
by the Serial.print method. Figure 8a shows the evolution of the acquisition frequency as a function of
the number of sensors and axes acquired at the same time. The frequency is increased by 1458 Hz in
the best case. Figure 8c shows the increase in the relative acquisition frequency between Test 2 and Test
1. Very significant improvements in the acquisition frequency from 80% to 140% are obtained. The
increase in the sampling rate is due to a reduction in the sent bytes. It is observed that the increase
in speed is greater when the number of sensors or axes acquired simultaneously is increased. This
happens because the number of bytes sent is greater in each data string, the improvement of the new
method is proportionale to the numer of bytes sent. The relative deviation in the acquisition frequency
is shown in Figure 8d. We can see that the measures discarded by this method are greater than in Test
1. Figure 8e shows the errors found in the .log file.

Sensors 2020, 20, x FOR PEER REVIEW  13 of 21 

Figure 8 shows the difference in results obtained between Test 1 and Test 2. In this Test, data 
communication between the LC-DAQ and the computer is done by sending byte string and not by 
the Serial.print method. Figure 8a shows the evolution of the acquisition frequency as a function of 
the number of sensors and axes acquired at the same time. The frequency is increased by 1458 Hz in 
the best case. Figure 8c shows the increase in the relative acquisition frequency between Test 2 and 
Test 1. Very significant improvements in the acquisition frequency from 80% to 140% are obtained. 
The increase in the sampling rate is due to a reduction in the sent bytes. It is observed that the increase 
in speed is greater when the number of sensors or axes acquired simultaneously is increased. This 
happens because the number of bytes sent is greater in each data string, the improvement of the new 
method is proportionale to the numer of bytes sent. The relative deviation in the acquisition 
frequency is shown in Figure 8d. We can see that the measures discarded by this method are greater 
than in Test 1. Figure 8e shows the errors found in the .log file.  

 

 

 

Figure 8. (a) Acquisition frequency depending on the number of sensors and axis read at the same time
with data framing method, (b) total variation of the data acquisition frequency between Test 1 and
Test 2, (c) percentage increase of the data acquisition frequency between Test 1 and Test 2, (d) acquisition
frequency RSD depending on the number of sensors and axis read with data framing method, and (e)
total error rate in Test 2.



Sensors 2020, 20, 524 14 of 21

The result of Test 3 is shown in Figure 9. Figure 9a shows the acquisition frequency versus the
number of sensors acquired. A decrease in the acquisition frequency is observed as compared with
Test 2. This difference is observed in Figure 9b and in Figure 9c, where the absolute and relative
difference of the acquisition frequency are, respectively, represented. The acquisition frequency
decreases to a lower extent when the number of sensors or measurements is smaller. This is because the
sending of the checksum byte has a greater influence on time when the number of bytes of data sent is
smaller. The acquisition frequency for 1 MPU6050 measuring 1 axis is 2770 Hz. With 8 sensors taking a
measurement the frequency decreases to 490 Hz. The relative standard deviation of the frequency
(RSD) is between 10% and 20% and is represented in Figure 9d. Finally, the errors recorded are shown
in Figure 9e. Under laboratory conditions no checksum errors were found during the tests. The most
frequent error is still sending byte strings that are too short.
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Figure 9. (a) Acquisition frequency depending on the number of sensors and axis read at the same
time with Checksum method and 4 bytes of time, (b) total variation of the data acquisition frequency
between Test 2 and Test 3, (c) percentage increase of the data acquisition frequency between Test 2
and Test 3, (d) acquisition frequency RSD depending on the number of sensors and axis read with
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Figure 10 shows the result of Test 4. Figure 10a shows the acquisition frequency for different
numbers of sensors and axes at the same time. Figure 10b shows the absolute difference in the
acquisition frequency between Tests 4 and 3, whereas Figure 10c shows the relative increase. There is
an increase in the acquisition frequency thanks to the reduction of one byte of the time variable. In this
case, the increment on the acquisition frequency achieved becomes linear with the number of sensors
connected to the system. This new layer reduces one byte on the string for each sensor, and therefore
the string is reduced in length proportionally to the number of sensors, in contrast with the previous
layer, for which an extra checksum byte is included in the data string no matter the number of bytes
that were being sent (number of sensors connected). Therefore, in that case, a logarithmic trend was
found. The time needed to calculate the checksum is very small, and therefore its influence on the
acquisition frequency is small. The acquisition frequency is mainly determined by the number of bytes
sent. The standard deviation of the frequency is shown in Figure 10d where a variation between 7%
and 20% is observed. The errors found are mostly short chain. These results are shown in Figure 10e.
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Figure 10. (a) Acquisition frequency depending on the number of sensors and axis read at the same
time with Checksum method and 3 bytes of time, (b) total variation of the data acquisition frequency
between Test 3 and Test 4, (c) percentage increase of the data acquisition frequency between Test 3 and
Test 4, (d) acquisition frequency RSD depending on the number of sensors and axis read with 1 byte of
time reduction, and (e) total error rate in Test 4.

The results of Test 5 are shown in Figure 11. Figure 11a shows the absolute values of acquisition
frequency versus the number of sensors and acquired axes. Figure 11b shows the absolute frequency
difference between Test 5 and Test 4. It is observed that the frequency of acquisition is reduced
moderately due to the stuffing calculation. As the number of bytes sent does not increase, there are no
significant changes in the acquisition speed as compared with Test 4. Figure 11c shows the relative
difference in the acquisition frequency between both tests. The relative deviation of the frequency is
shown in Figure 11d. Deviation has been significantly reduced due to a decrease in errors. No errors
were detected during the tests. We obtain a frequency of 3125 Hz for 1 MPU6050 sensor acquiring with
an axis.
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stuffing method and 1 byte of time reduction.

4. Discussion and Conclusions

Figure 12a shows the acquisition frequency variation for different number of sensors obtained
when the different layers are included in the communication protocol. It can be observed that as soon
as the Serial.print function (labeled as 1) is replaced by the data framing approach (labelled as 2) the
sampling frequency is drastically increased. This is due, on one hand, to the fact that the number of
bytes needed to transmit the information with the new approach is significantly reduced. On the other
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hand, the conversion of the actual value of a sensor‘s measure into the ASCII code transmitted by
Serial.print is not needed anymore. Consequently, the time needed to send the information over the
serial port is reduced.
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Figure 12. (a) Variation of acquisition frequency according to the method used, (b) variation of
data transmission errors according to the method used, and (c) RSD of the acquisition frequency by
method used.

When the second layer is introduced into the protocol, a checksum operation is performed in
the side of the LC-DAQ and an extra byte is sent within the bytes’ string. The checksum operation
increases the time that the microcontroller takes to perform a loop of its program and the extra byte
increases the time needed to transmit the information. Both times impact negatively on the sampling
frequency, as can be observed in the line labeled as 3.

Up to this point, the resolution of the time variables was set as 32 bits (4 bytes). In order to
improve the frequency, this resolution is reduced to 3 bytes. For each sensor measure, this implies
that the number of bytes is reduced in one byte. Line number 4 shows how the sampling frequency is
increased notably with this approach.

With the previous three layers, it can be observed that the number of errors produced on the
serial communication increases with the number of sensors connected to the system (see Figure 12b).
Similarly, as it is shown in Figure 12c, the variation in the frequency achieved tends to increase with
the number of sensors. However, as soon as the stuffing layer is included in the protocol this trend
disappears and the number of errors is reduced to practically zero. In the light of the results, it can be
inferred that the vast majority of errors are due to the misinterpretation of one data byte as an end of
transmission byte (ETX). Once the stuffing strategy is adopted the errors are fully avoided and the
variation on the acquisition frequency is reduced, as shown in Figure 12c.
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With the new communication protocol over the serial bus, including the four layers described in
Section 2, higher acquisition frequencies can be obtained maintaining the robustness of the system.
As a result of these improvements, a reliable low-cost data acquisition system that is capable of
high acquisition frequencies is ready to be used in real-time vehicular dynamics. This system can
be connected to a remote computer to transmit the data acquired in real time. The ready-to-use
communication functions provided by a conventional low-cost platform such as Arduino present
some drawbacks in terms of speed and error tracking in the communication process. The results
presented in this paper depict a custom communication protocol that is able to increase the acquisition
frequency by more than 200% as compared with that obtained by conventional protocols. It is based
on serial bus and it has been built in different steeps. At each step a different layer is added and tested
to observe the impact on the performance. Some layers aim to increase the communication speed,
whereas other layers are implemented to guarantee the robustness and data consistency. Layers are
added alternatively, increasing speed in one step and improving robustness in the next one.

The standard deviation of the acquisition frequency is considered as a measure of the performance
of the protocol in terms of robustness. Aleatory data losses imply larger variability on the time needed
for a data string to be correctly delivered to the remote PC. Furthermore, the errors detected in the
transmission are logged in order to identify which kinds of errors are more recurrent for each layer.

The new protocol is developed to send raw data bytes over the serial port in a framed structure
which includes byte stuffing and 8 bits checksum. Furthermore, the resolution of time variables could
be reduced to 24 bits by the inclusion of a time-correction routine that maintains the time coherence for
virtual infinite measuring times.

The systematic analysis of the performance of this new protocol shows that the amount of
information sent over serial ports are the bottleneck on the acquisition process when low-cost platforms
are used. Reducing the number of bytes on the data strings becomes crucial to increase the acquisition
frequency. On the other hand, it was observed that the error with a higher recurrence received a byte
string shorter than expected. It is produced when the stuffing layer was not implemented and a data
byte with similar pattern of an ETX byte was mistaken by the serial reading program in the PC as
the end of transmission sequence. However, once the stuffing layer was included, these errors were
reduced to zero.

Finally, an LC-DAQ acquisition system featuring this new protocol can double the acquisition
frequency obtained with the baseline protocol. The number of errors in the transmission is reduced to
practically zero and the variability on the communication times (acquisition frequency) takes very low
values, similar to those obtained with the baseline protocol. Therefore, we conclude that this research
supports the development of a powerful and suitable low-cost system for multisensor data acquisition
in experiments where high frequency dynamics is involved.

The system, as it is currently conceived, needs to be connected to a computer for real-time
acquisition applications. Further steps in the research are being taking in order to improve the system
with a long-range wireless connection, and therefore a robust and high frequency capable telemetry
system can be developed. For future research, we plan to analyze different technologies to replace
the physical connection with the master computer with a wireless connection capable of operating
over a long range (more than 500 m) with an acquisition frequency similar to that achieved in this
investigation. These technologies could be based on 2.4 Ghz WiFi or LPWAN (low-power wide-area
networks) more oriented to IoT [20], such as LoRa, NB-IoT, or Lte Cat-M1.
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