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Abstract: The wind power industry continues to experience rapid growth worldwide. However, the
fluctuations in wind speed and direction complicate the wind turbine control process and hinder
the integration of wind power into the electrical grid. To maximize wind utilization, we propose to
precisely measure the wind in a three-dimensional (3D) space, thus facilitating the process of wind
turbine control. Natural wind is regarded as a 3D vector, whose direction and magnitude correspond to
the wind’s direction and speed. A semi-conical ultrasonic sensor array is proposed to simultaneously
measure the wind speed and direction in a 3D space. As the ultrasonic signal transmitted between the
sensors is influenced by the wind and environment noise, a Multiple Signal Classification algorithm
is adopted to estimate the wind information from the received signal. The estimate’s accuracy is
evaluated in terms of root mean square error and mean absolute error. The robustness of the proposed
method is evaluated by the type A evaluation of standard uncertainty under a varying signal-to-noise
ratio. Simulation results validate the accuracy and anti-noise performance of the proposed method,
whose estimated wind speed and direction errors converge to zero when the SNR is over 15 dB.

Keywords: wind measurement; ultrasonic sensor array; 3D vector; MUSIC algorithm

1. Introduction

As wind energy is considered one of the most promising renewable energies, it is widely used
for electric power generation [1,2]. However, despite the continuing increase in installed capacity
of wind power worldwide, the wind power that is actually utilized is much less than would be
expected, because of the unstable, intermittent, and highly volatile nature of wind. Furthermore, due
to the characteristics of randomness and fluctuation, the electricity generated by the wind will be
excessive or insufficient, making it difficult to integrate into the power grid [3,4]. On one hand, one
possibility aiming at the redundant electricity is to simply abandon the fluctuating wind power [5,6].
However, that would come with not only a huge loss of electricity but also a mass waste of wind
resources and wind power equipment. According to a report from the National Energy Administration
of China [7], the national average rate of wind abandonment in 2018 is ~7%, which is equivalent
to 27.7 billion kWh, resulting in an enormous loss of about US $2.1 billion. On the other hand, a
solution for overcoming the deficiency of wind power generation is to store the wind energy. Hybrid
wind/compressed air energy storage (CAES) systems are used to transform the intermittent wind
resources into a constantly available power supply in Germany, the USA, and even remote Arctic
areas [8]. However, the underground geology may bring risks to practical applications of CAES [9]. In
contrast, accurate wind measurement in a 3D space can provide data that can be used to control wind

Sensors 2020, 20, 523; doi:10.3390/s20020523 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9438-9683
http://www.mdpi.com/1424-8220/20/2/523?type=check_update&version=1
http://dx.doi.org/10.3390/s20020523
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 523 2 of 16

turbines, which further maximizes wind utilization efficiency [10]. In addition, wind measurement can
be used to estimate the corresponding power generation, thus contributing to the system scheduling
and energy dispatching, and, ultimately, the integration of wind power in the grid [11]. In summation,
precise wind speed and direction measurements in a 3D space are of vital importance to wind energy
utilization and the wind power industry.

Light detection and ranging (LIDAR) technology is one of the most popular wind
measurements [12]. However, LIDAR can only measure the wind speed component along the
line of sight, a disadvantage known as “the Cyclops dilemma” [13,14]. Therefore, the wind distribution
measurement in a 3D space would require the very costly installment and deployment of several
LIDARs in the wind farm. In contrast, wind measurement sensors are much cheaper and could
be deployed around the wind field in distances of miles to provide information for previewing
wind measurement. Several types of wind measurement sensors have been employed by researchers,
including cup anemometers [15–17], thermal anemometers [18–20], and ultrasonic anemometers [21–23].
However, measurements from cup anemometers often suffer from errors caused by wear and tear on
the internal rotating bearings, and frequent inspection or calibration is required to ensure measurement
accuracy [24,25]. The performance of cup anemometers can also be affected by the measuring
environment. For example, cup anemometers are prone to jamming in humid environments, since
water vapor can penetrate their bearings [26]. Thermal anemometers also have difficulties coping with
harsh environments. In addition, their sensitivity to changes in the velocity field decreases as the wind
speed increases, which results in the limited application of thermal anemometers [27]. Unlike cup
and thermal anemometers, ultrasonic anemometers incur relatively little maintenance cost due to the
absence of mechanical rotating parts [28]. Furthermore, ultrasonic anemometers have high sensitivity
and can perform well in harsh environments [29]. Finally, the high precision and wide measuring
range of ultrasonic anemometers make them the first choice for wind measurement [30].

The main wind measurement methods used in ultrasonic sensors are the vortex [31,32] and
the time-of-flight (TOF) [29,33,34]. The vortex method determines wind speed by measuring the
frequency of the vortex, based on the proportional relationship between the average flow velocity
and the eddy current frequency. However, measuring the wind direction using the vortex method
is complex [33,34]. The TOF method is easier to implement, and can obtain both the wind speed
and direction simultaneously. The wind speed is calculated by the transit time of ultrasonic signals
between the transmitter and receiver, whereas the wind direction can be determined according to
the obtained speed components and positional relationship between the sensors [33]. As a result,
the accuracy of wind measurement thoroughly depends on the obtained transmission time, which is
difficult to measure precisely, particularly in the case of low signal-to-noise ratio (SNR). To overcome
the limitations of the TOF method, Li et al [35] proposed a novel wind measurement method. The
method combined the multiple signal classification (MUSIC) algorithm proposed by R. O. Schmidt [36]
and an arc ultrasonic sensor array to measure the wind speed and horizontal direction in the 2D space.
The MUSIC algorithm is a typical representative of array signal processing, which transforms the time
measuring problem to spectrum searching, and it employs spectrum search to estimate the direction of
arrival (DOA) of the array signal. Due to the transformation, the MUSIC algorithm can effectively
suppress the noise existing in complex environments [35]. Therefore, the measurement proposed by Li
et al in [35] can precisely measure the wind in a 2D space even in a low SNR case.

Although the method in [35] can measure the wind speed and horizontal direction in the 2D space,
it fails to consider the vertical wind direction information. The vertical direction has a significant
influence on certain industrial applications. For example, by studying the performance of a small
vertical axis wind turbine, Lee et al found that the performance of the generator is significantly
improved when the vertical wind direction is less than or equal to 45◦, generating more than 90% of the
power [37]. This is undoubtedly an important discovery for the wind power industry. To fully utilize
the natural wind in the 3D space, we measure the wind as a 3D vector, whose direction and magnitude
correspond to the direction and speed of the wind. In addition, the wind direction is decomposed into
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horizontal and vertical components, namely, the azimuth and pitch angles, respectively. We adopted
the MUSIC algorithm for wind measurement due to two advantages: the first is that the MUSIC
algorithm makes the measurement accuracy independent of the precision of the signal transmission
time in the wind. In addition, the environment noise and the sampling noise are suppressed, which
reduces the influence of noise on the accuracy of measurement results [35]. The second advantage is
that the MUSIC algorithm can be combined with a variety of sensor arrays and applied to different
scenarios. Except for the arc array mentioned by Li et al. [35], the MUSIC algorithm can also be used
on a uniform circular array [38], which estimates the dual angle of azimuth and pitch angle of the
incident signal. In addition, other array structures, such as the uniform linear (ULA) [39], L-shaped
array [40], and conformal array [41], can be combined with the MUSIC algorithm for diverse scenarios
and purposes. To measure these components simultaneously, especially adding the measurement of
the pitch angle, we propose a novel semi-conical ultrasonic sensor array in 3D space, which is different
from the planar array proposed by Li et al. [35]. The array consists of six ultrasonic sensors, where the
transmitting sensor is on the peak of the cone, and the five receiving sensors are evenly positioned on
the undersurface arc of the cone. According to the spatial relationship between the transmitter and
the receiver, we simulate a 3D wind vector, and calculate the theoretic transmission time of ultrasonic
signal. The theoretic transmission time is then used to determine the array manifold matrix, which
is critical for the implementation of the MUSIC algorithm. After receiving the true ultrasonic signal,
the MUSIC algorithm divides the covariance matrix of the received information into signal and noise
subspaces. Under ideal conditions, the signal and noise subspaces are completely orthogonal, and can
be used to calculate the spectral function. By searching for the peak value of the spectrum with the
speed searching step of 0.1 m/s and the direction searching step of 1º, we can obtain the corresponding
information of wind speed, pitch angle, and azimuth angle simultaneously. Simulation results indicate
that the proposed method can measure the azimuth angle in (0◦, 360◦), the pitch angle in (0◦, 90◦).
Furthermore, the proposed method demonstrates better performances than the state-of-the-art method
in terms of convergence speed, estimation error, and variance.

The rest of the study is organized as follows. Section 2 describes the structure of the proposed
sensor array and the wind measurement principle. Section 3 discusses the simulations and a comparison
with the state-of-the-art method, which analyzes the accuracy and anti-noise performances of the
methods. Section 4 includes our conclusions and suggestions for further research.

2. 3D Wind Measurement

2.1. The Ultrasonic Sensor Array

Wind measurements can be based on several types of ultrasonic sensor array structures, of which
the arc ultrasonic sensor array and the ULA structure are the most prominent [35,39]. When combined
with the MUSIC algorithm, the arc array structure takes precedence over the ULA structure in terms of
estimate variance [39]. However, these experiments were performed in the 2D space. To measure the
natural wind in the 3D space, we propose a novel semi-conical structure sensor array based on the arc
array structure. The sensor array consists of six ultrasonic sensors, numbered 0–5, wherein Sensor
0 is used for transmitting ultrasonic signals, and Sensors 1–5 are receiving sensors. Figure 1 depicts
the semi-conical structure in the 3D space. The transmitting ultrasonic sensor (Sensor 0) is located on
the vertex of the cone, with height H. The five receiving ultrasonic sensors (Sensors 1–5) are evenly
positioned on the undersurface arc of the cone. To clearly display the positional relationship of the
five receiving sensors on the horizontal plane, we plot the undersurface of the cone in Figure 2. As
illustrated in Figures 1 and 2, the five receiving sensors are evenly located on the semi arc with the center
O and the radius R, where the angle between every two adjacent receiving sensors is α. The distance D
between the transmitting sensor and each receiving sensor can be deduced by D =

√
R2 + H2.
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Sensors 2020, 19, x FOR PEER REVIEW 4 of 15 

 

 
Figure 1. Structure of the ultrasonic sensor array in the 3D space. 

 
Figure 2. Structure of the receiving ultrasonic sensors on the horizontal plane. 

2.2. Measuring Principle 

2.2.1. Premise Assumptions 

The transmission of signal through wireless channel is complicated, which makes it difficult to 
completely describe the physical environment and establish a rigorous mathematical model. As 
mentioned in the literature [35], the arrival signals of the wavefront in the array system can be 
considered a spherical wave. Therefore, the propagation time of the signal to each sensor is not only 
related to the direction, but also to the distance of the signal travels. In this case, the wind speed and 
wind direction information can be estimated with the MUSIC algorithm on the grounds that the 
output data matrix of the sensor array is only related to the wind speed and wind direction. 

Although the wind speed and direction can be regarded as continuous signals, we discretize 
them by the sampling frequency of 100 MHz, resulting in the short sampling period of 10 ns. 

X

X

Y

O

Sensor 5

Sensor 4

Sensor 3

Sensor 2

Sensor 1

Sensor 0

α

H

Z

V5

β

θ

θ

V

Vh

Vt

R

Y

D

V1

XO

Y

Sensor 1 

Sensor 2

Sensor 3

Sensor 4

Sensor 5

θ

Vh

α

R

Vh3

Vh1
Vh2

Vh4

Vh5

Figure 2. Structure of the receiving ultrasonic sensors on the horizontal plane.

2.2. Measuring Principle

2.2.1. Premise Assumptions

The transmission of signal through wireless channel is complicated, which makes it difficult
to completely describe the physical environment and establish a rigorous mathematical model. As
mentioned in the literature [35], the arrival signals of the wavefront in the array system can be
considered a spherical wave. Therefore, the propagation time of the signal to each sensor is not only
related to the direction, but also to the distance of the signal travels. In this case, the wind speed and
wind direction information can be estimated with the MUSIC algorithm on the grounds that the output
data matrix of the sensor array is only related to the wind speed and wind direction.
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Although the wind speed and direction can be regarded as continuous signals, we discretize them
by the sampling frequency of 100 MHz, resulting in the short sampling period of 10 ns. According
to the validity of Taylor’s hypothesis of frozen turbulence [42], we assume that the amplitude of the
wind speed and direction are approximately constant throughout a sampling period. The propagation
speed of the signal on each path is only affected by the component of the wind vector parallel to the
propagation path as in transit-time Ultrasonic Flowmeter [43,44]. The key to adopting the MUSIC
algorithm is to build the array manifold matrix, which implies the information of wind speed and
direction. Ultimately, the measured wind information can be regarded as the average ones over the
sampling period.

2.2.2. Signal Model

In general, when M narrowband signals are incident on an array containing N array elements, the
received signal can be expressed by the following complex envelope form,{

si(t) = ui(t)e j(ω0t+ϕ(t))

si(t− τ) = ui(t− τ)e j(ω0(t−τ)+ϕ(t−τ)) , i = 1, 2, · · · , M, (1)

where ui(t) represents the amplitude of the signal. ϕ(t) denotes the phase of signal. ω0 is the angular
frequency of signal and ω0 = 2π f , where f is the frequency of signal.

According to the narrowband assumption, we can obtain:ui(t− τ) ≈ ui(t) and ui(t− τ) ≈ ui(t),
where i = 1, 2, · · · , M [45]. Combined with Equation (1), it can be derived that

si(t− τ) ≈ si(t)e− j2π fτ. (2)

Therefore, it can be obtained that the expression of all signals received by the kth array element in
the array is as follows; xk(t) =

∑M
i=1 gkisi(t− τki) + nk(t), k = 1, 2, . . . , N, where nk(t) is the noise of kth

array element at time t, τki denotes the transmission time when the ith signal reaches the kth array
element, and gki is the gain of ith signal on the kth array element. Based on the assumption that all array
elements are isotropic and the coupling between them can be negligible, the gki can be averaged to
1. Combined with Equation (2), the signal received by kth array element can be expressed as follows:
xk(t) =

∑M
i=1 si(t)e− j2π fτki + nk(t), k = 1, 2, . . . , N.

Because there are five receiving sensors and only one signal resource in this paper, that is,
N = 5, M = 1, we use S(t) = s(t) to denote the original signal transmitted by the Sensor 0. The
received signal xk(t) at the kth sensor can be expressed as follows,

xk(t) = S(t) ∗ e− j2π fτk + nk(t), (3)

where k = 1, 2, · · · 5, and τk denotes the transmitting time. nk(t) denotes the noise on the kth receiving
sensor, which is assumed to be an independently and identically distributed (i.i.d.) AWGN.

To speed up signal processing, we vectorize the received signal as follows.
x1(t)
x2(t)
x3(t)
x4(t)
x5(t)


=


e− j2π fτ1

e− j2π fτ2

e− j2π fτ3

e− j2π fτ4

e− j2π fτ5


S(t) +


n1(t)
n2(t)
n3(t)
n4(t)
n5(t)


(4)

Equation (4) can be further rewritten in the matrix form:

X(t) = A·S(t) + N(t), (5)
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where N(t) is the noise matrix and A is the array manifold matrix described by Equation (6):

A =
[
e− j2π fτ1 , e− j2π fτ2 , e− j2π fτ3 , e− j2π fτ4 , e− j2π fτ5

]T
. (6)

It is obvious that the key to obtaining array manifold matrix A is to obtain the transmission time
of the ultrasonic signal to each receiving sensor. The transmission time can be calculated by analyzing
the structure of the sensor array and the influence of natural wind on the signal propagation. As a
result, the wind measurement problem is transformed into an identification problem of wind speed V,
azimuth angle θ, and pitch angle β from the array manifold matrix A. The influence of the natural
wind on the ultrasonic signal is thus reduced to the signal transmitting time τ in matrix A. In the case
of no wind, τ should be identical at all five receiving sensors, which is

τ =
D
c
=

√
R2 + H2

c
, (7)

where c = 340 m/s is the propagation speed of ultrasonic wave. When the transmission of the ultrasonic
signal is influenced by the wind, τi would be different for each receiving sensor, resulting in a more
complex calculation. To simplify the calculation, we decompose the natural wind speed V into a
vertical wind speed Vt and a horizontal wind speed Vh by vector decomposition, accordingly

Vh = V sin β
Vt = V cos β

. (8)

Similarly, the original propagation speed c of ultrasonic wave is decomposed into ch and ct, which are
as follows,

ch = c R
D

ct = c H
D

. (9)

However, under the influence of wind, the actual speed of the ultrasonic signal is changed. We use Vi
to denote the ultrasonic signal speed received at the ith sensor. The value of Vi is calculated based on
the principle of vector decomposition and the positional relationship of the sensors in the 3D space.
Accordingly, the horizontal components of Vi are as follows,

Vh1 = Vh cos(θ+ 2α) + ch
Vh2 = Vh cos(θ+ α) + ch

Vh3 = Vh cosθ+ ch
Vh4 = Vh cos(θ− α) + ch
Vh5 = Vh cos(θ− 2α) + ch

. (10)

The vertical components Vti are identical for all the receiving sensors, which can be calculated by

Vti = Vt + ct. (11)

Therefore, we can infer Vi by synthesizing Vhi and Vti as follows,

Vi =

√
Vhi

2 + Vti
2 cos

∣∣∣∣∣∣tan−1
(

Vhi
Vti

)
− tan−1

( R
H

)∣∣∣∣∣∣. (12)

Accordingly, the transmission time τi of the signal at the ith receiving sensor can be represented
as follows,

τi =
D
Vi

, i = 1, 2, · · · 5. (13)
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By combining Equations (8)–(13), we can obtain the relationship between the wind and the transmission
time τ of the ultrasonic signal. However, it is not easy to retrieve the wind information V, θ, and β
directly from the transmission time. Therefore, the MUSIC algorithm is used to identify the wind
speed V, azimuth angle θ, and pitch angle β, as implied in the matrix.

2.3. Wind Measurement Based on MUSIC Algorithm

The process of the MUSIC algorithm is to first calculate the covariance matrix RX of the received
signal X(t); next, perform eigenvalue decomposition on the obtained covariance matrix RX, resulting
in a signal subspace US and noise subspace UN; and finally, based on the orthogonality of the array
manifold matrix A and the noise subspace UN, the corresponding V, θ, and β can be obtained by
performing spectral peak searching.

Specifically, the covariance matrix RX of the signal matrix X(t) can be obtained by Equation (14):

RX = E
[
X(t)XH(t)

]
= E

[
(A·S(t) + N(t))(A·S(t) + N(t))H

]
= AE

[
S(t)SH(t)

]
AH + E

[
N(t)NH(t)

]
= ARSAH + RN

= ARSAH + σ2I,

(14)

where H denotes the conjugate transpose. RS and RN are the correlation matrices of signal and noise,
respectively. σ2 is the variance of noise, and I is the unit matrix.

As RX is symmetric, we can conduct eigenvalue decomposition on it, resulting in

RX = UΣUH = USΣSUH
S + UNΣNUH

N , (15)

where U = [US, UN], Σ =

[
ΣS

ΣN

]
=


λ1

λ2
. . .

λN

, where λ1 ≥ λ2 ≥ · · · ≥ λM > λM+1 =

· · · = λN = σ2. Therefore, σ2 is the smallest eigenvalue of RX, which corresponds to N−M eigenvectors.
These N −M eigenvectors comprise the noise subspace UN. The other M eigenvalues are relevant to the
signals, whose eigenvectors constitute US, the signal subspace. RX is a Hermitian matrix, thus the signal
subspace US and noise subspace UN are orthogonal, namely, UH

S UN = 0. We can further infer that

RXUN = [US, UN]Σ
[

UH
S

UH
N

]
UN = [US, UN]

[
ΣS

ΣN

][
0
I

]
= σ2IUN. However, referring to Equation

(14), we can also get RXUN = ARSAHUN + σ2IUN. Therefore, ARSAHUN = 0. We left multiply the

equation by UH
N , resulting to UH

NARSAHUN =
(
AHUN

)H
RSAHUN = 0. Since A , 0, RS , 0, we can

derive that AHUN = 0.
In practical applications, RX cannot be directly obtained, while only the sampled covariance R̂X

can be calculated by

R̂X =
1
L

L∑
i=1

X(t)X(t)H, (16)

where L is the number of samplings. Theoretically, when L→∞ , R̂X and RX are consistent. In our
experiment, we set L = 1000 to provide the best possible approximation of RX.

Similarly, we can also perform eigenvalue decomposition on R̂X:

R̂X = UŜΣŜUH
Ŝ
+ UN̂ΣN̂UH

N̂
, (17)
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where UŜ indicates the signal subspace consisting of the signal eigenvectors and UN̂ represents
the noise subspace. However, due to the deviation between R̂X and RX, AHUN̂ , 0. To retrieve
the wind information V, θ, and β from the matrix A, the MUSIC algorithm constructs a spectral
estimation formula:

Pmusic =
1

AH
(V, θ, β)

UN̂UH
N̂

A(V, θ, β)
. (18)

The maximum value of Pmusic, namely the spectrum peak, corresponds to the smallest value of
AHUN̂. According to Equations (4), (6), and (18), we calculate the theoretical maximum value of Pmusic
by searching through the measuring range of V, θ, and β. The corresponding values of V, θ, and β
that generate the spectral peak are the measured results of the wind speed and direction information.
Therefore, the wind speed V, azimuth angle θ, and pitch angle β of the natural wind in the 3D space
are simultaneously obtained.

3. Simulations and Results

3.1. Simulations

Simulations are conducted using the ultrasonic sensor array shown in Figure 1, where the radius
R and the height H are both set to 1 m, and the angle α between every two adjacent receiving sensors
is 30◦. The propagation speed c and frequency f of the transmitted ultrasonic signal are 340 m/s and
40 kHz, respectively. The snapshot number L is 1000. With respect to the spectral search, we set the
azimuth angle searching range to (0, 360◦), the pitch angle range to (0, 90◦), and the searching step
length to 1◦. The searching range of the wind speed is (0, 60) m/s with the searching step length of 0.1
m/s for the MUSIC algorithm.

Based on the above experimental parameters, we performed the simulations. The noise on the
receiving sensor was simulated by an AWGN with zero-mean, whose variance is the average power
of noise. Figure 3 depicts the spectral searching result of SNR at 20 dB. As illustrated in Figure 3,
the darkest red color is concentrated at the position corresponding to the peak value of the spectral
function. In this case, the wind speed V = 35.7 m/s, wind azimuth angle θ = 146◦, and wind pitch
angle β = 82◦. Figure 3b–d shows the slice results in the direction of wind speed, wind azimuth angle,
and wind pitch angle, which demonstrate the estimation results of these components. These results are
consistent with those in Figure 3a.
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result in the direction of wind pitch angle.

To evaluate the stability of the proposed method, we performed 100 independent simulations
with SNR ranging from 0 to 40 dB. The measurement deviation was quantitatively analyzed using the
type A evaluation of standard uncertainty in Figure 4. As can be seen in Figure 4, the measurement
uncertainty decreases with higher SNR. Specifically, the measurement uncertainty of wind speed V is
0.69 in the case of SNR at 0 dB, which sharply decreases to 0.09 at SNR of 5 dB, then drops to zero
when the SNR is higher than or equal to 15 dB. The measurement uncertainty of pitch angle β shows a
similar pattern, which begins at 2.35 at SNR = 0 dB, then falls to 0.42 at SNR = 5 dB and reaches zero at
SNR ≥ 15 dB. However, the trend of the measurement uncertainty of wind azimuth angle θ is slightly
different from those of the wind speed and pitch angle. The biggest uncertainty value of it is 2.41 when
SNR = 0 dB, which then steeply falls to and remains at zero, since SNR is over 5 dB.
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(a) Measurement uncertainty of the wind speed, (b) measurement uncertainty of the wind pitch
angle, and (c) measurement uncertainty of the wind azimuth angle.

The estimation errors are measured by Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) in Figures 5 and 6, respectively. Both of these figures illustrate quite consistent and similar
patterns. The average errors of the wind speed V and pitch angle β converge to zero when SNR ≥ 15
dB, and these trends are consistent with those of the measurement uncertainty indicated by Figure 4a,b.
Similarly, the RMSE and MAE of wind azimuth angle θ achieved zero, as SNR at 5 dB, whose variation
under different SNRs is in line with what is shown in Figure 4c. Therefore, we can conclude that the
proposed method is more reliable and more accurate with higher SNR, which is greater than 15 dB, to
be precise.
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3.2. Comparison with State-Of-The-Art Method

The measurements of natural wind based on the MUSIC algorithm are widely performed in
the 2D space. One of the representative methods for wind speed and direction measurement in the
2D space (WSDM2D) was proposed in [35], based on an arc ultrasonic sensor array. To compare
the proposed method with WSDM2D, we set the pitch angle β to 90◦ to simulate the wind on the
horizontal plane. The wind estimation problem was thus relegated to the 2D space in this case. We
randomly simulated 100 groups of wind speed and direction to perform our estimates, where the
former was uniformly distributed within 0–60 m/s, and the latter was uniformly distributed within 0 ∼
360◦. Figure 7 illustrates this distribution of the wind speed and direction data.
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Monte Carlo simulations of 100 runs were carried out to compare the two methods with SNR
ranging from 0 dB to 40 dB. Similar to the results in Section 3.1, the errors in the wind estimates
of both the proposed method and WSDM2D converged to zero when SNR ≥ 15 dB. To perform a
comprehensive comparison of the accuracy and anti-noise performance of the proposed method with
WSDM2D, we calculated RMSE and MAE of speed and direction at SNR varying from 0 to 20 dB, the
results of which are presented in the Table 1. Three findings can be deduced from Table 1:
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1. The trends of RMSEs and MAEs are consistent, which all decrease with higher SNR.
2. Accordingly, the biggest RMSE and MAE of wind speed and direction occur at SNR of 0 dB. The

biggest wind speed RMSE of the proposed method is slightly bigger than that of WSDM2D, while
the biggest direction RMSE is smaller.

3. The speed and direction RMSEs of proposed method tend to zeros as SNR of 5 dB, outperforming
the WSDM2D method, which converges to zero since SNR = 15 dB. Wind speed and direction
MAEs of two methods have similar patterns with those of RMSEs.

Table 1. Comparison with WSDM2D.

SNR
(dB)

RMSE MAE

Speed Direction Speed Direction

Proposed WSD
M2D Proposed WSDM2D Proposed WSDM2D Proposed WSDM2D

0 6.023 3.150 4.970 13.506 0.824 0.337 0.820 1.420
5 0 0.020 0 0.141 0 0.004 0 0.020

10 0 0.010 0 0.100 0 0.001 0 0.010
15 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

Figure 8 depicts the errors in wind speed and direction of the two methods under the condition of
SNR = 5 dB, where the red line represents the error of the proposed method and the blue line that of
WSDM2D. It is obvious that the estimation errors of wind speed and direction are consistent and equal
to zeros for the proposed method, whereas those of WSDM2D fluctuate.
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In conclusion, the proposed method is more accurate and has better anti-noise performance than
WSDM2D in wind speed and direction measurements, even in the 2D case.

4. Conclusions

We propose to measure the natural wind in the 3D space using an ultrasonic sensor array in the
context of fluctuations in wind speed and production. More precisely, by building a novel semi-conical
ultrasonic sensor array and using the MUSIC algorithm, we measure the wind speed V, azimuth angle
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θ, and pitch angle β simultaneously and accurately. The measurement deviation is quantified by the
type A evaluation of standard uncertainty, and the estimation errors are evaluated using RMSE and
MAE, respectively. The measurement errors of wind direction are within 1º, and those of wind speed
within 0.1 m/s when the SNR is greater than 10 dB. Simulations show that the proposed method has
better performance and higher accuracy when the SNR is greater than 15 dB, where errors are nearly
zero. The measurement uncertainty and the estimation error illustrate similar patterns under the
influence of varying SNRs, which further proves the consistency of the proposed method. Furthermore,
we compared the accuracy of the proposed method with the state-of-the-art method in the 2D space.
Monte Carlo simulations show that our method has higher accuracy and stronger noise immunity.
Note that the structure of the sensor array is not limited to the one proposed in this study, and the
accuracy of the measurement has room for improvement. To further verify the validity of the theory,
we will perform practical experiments in the next step.
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