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Abstract: Doppler Radar Tomography (DRT) relies on spatial diversity from rotational motion of a
target rather than spectral diversity from wide bandwidth signals. The slow-time k-space is a novel
form of the spatial frequency space generated by the relative rotational motion of a target at a single
radar frequency, which can be exploited for high-resolution target imaging by a narrowband radar
with Doppler tomographic signal processing. This paper builds on a previously published work and
demonstrates, with real experimental data, a unique and interesting characteristic of the slow-time
k-space: it can be augmented and significantly enhance imaging resolution by signal processing. High
resolution can reveal finer details in the image, providing more information to identify unknown
targets detected by the radar.

Keywords: slow-time k-space; spatial frequency; Doppler radar tomography; radar imaging; k-space
augmentation; high-resolution narrowband radar

1. Introduction

Tomography is a general imaging technique that is based on lower-dimensional projections of an
object from different spatial aspects, which are then processed using the projection-slice theorem [1]
to reconstruct an image of the object. Radar tomography uses reflective scattering phenomenology
and radar waveforms for the measurements, which may be wideband or narrowband. Wideband
waveforms exploit spectral diversity as system resources to facilitate radar imaging and have probably
been the most exploited resources in practical applications in the last few decades. The well-known
synthetic aperture radar (SAR) and inverse SAR (ISAR) imaging techniques may be described as
two special forms of wideband tomography, in which another system resource—spatial diversity—is
exploited only minimally [2]. Range-Doppler ISAR imaging, and stripmap SAR in particular, typically
involve aspect angle changes of a few degrees [3–5]. This constraint of small rotation angles in the
linear phase regimes allows the image inversion processing to take advantage of the computationally
efficient fast Fourier transform (FFT) without needing signal interpolation onto rectangular grids.

Spotlight SAR makes use of wider angles [6], while circular SAR [7] may coherently process up to
a complete cycle of target aspect rotation, with sophisticated and precise motion compensation in range.
More notably, in the associated spatial frequency spaces, also known as k-spaces [2], traditionally
intensive interpolation processing prior to image inversion processing may be necessary. Nevertheless,
these forms of SAR and ISAR rely on the bandwidth resource to achieve high down-range resolution,
and so can be considered as belonging to the category of ‘wideband radar tomography’.

Radar tomographic imaging with ultra-narrowband or single-frequency waveforms relies on
spatial diversity as the only system resource for image formation [8–11]. Spatial diversity may be
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realized by: (i) having a radar with multiple receivers looking at the target from diverse angular
locations, the received signals from which are processed coherently, or (ii) using a single receiver
looking at a target undergoing relative rotational motion, i.e., changing target aspect. Both cases widen
the angular extents of the measurement support of the received signal in the k-spaces.

Previous work [2] showed that narrowband radar tomography can be most effectively formulated
in the slow-time k-space in conjunction with the classical Doppler processing and Doppler radar
tomography (DRT) [12,13]. The DRT algorithm applies the projection-slice theorem in which the inputs
of the target’s cross-range projections are formed from Doppler profiles. The slow-time k-space is not
only convenient for describing the DRT algorithm, it is also a natural tool to formulate high-resolution
DRT imaging with an augmentation of its measurement support. Augmentation is the process of
significantly enlarging the support of the slow-time k-space by using longer coherent processing
intervals (CPI) in the DRT algorithm and correcting for nonlinear phase effects due to strong rotational
motion. This ‘augmentability’ is a unique characteristic of the slow-time k-space.

The introduction of nonlinear phase terms in the k-space augmentation causes a blurring effect in
the resulting image. Spectral compression techniques for chirped signals can be used to address this
problem using bilinear transforms such as the Wigner-Ville Distribution (WVD), the Cohen’s class and
the time-frequency distribution series (TFDS) as discussed in [14]. The problem with these techniques
is the presence of undesirable cross terms when instantaneous component frequencies may overlap,
which is the case for DRT imaging [13]. The combination of the fractional Fourier transform and
S-method was used to overcome the problem of cross terms in [13], which demonstrated the slow-time
k-space augmentation with DRT. The current work is extended to a more novel technique based on the
orthogonal matching pursuit (OMP) technique, inspired by related work in compressive sensing.

Radar imaging naturally is suited to compressive sensing techniques, given that real targets often
resemble a sparse collection of discrete point scatterers [5,15]. OMP is fundamentally a technique
for parameter estimation by matching a given signal to a dictionary of possible elemental functions
spanning a finite parameter space. The dictionary is designed for the particular application and has
been applied to the area of DRT imaging in varying contexts [16–18]. The particular application in
this work is to estimate the non-linear phase term in the radar signal to reduce the image blurring for
improved resolution. The main contribution of the paper is two-fold: to highlight the augmentability
of the slow-time k-space as a fundamentally useful characteristic for narrowband radar imaging, and to
present a novel application of the OMP technique to such augmentation processing.

The slow-time k-space processing technique as presented in this paper provides a complimentary
approach to traditional high-resolution ISAR imaging. The dependence of wide bandwidth signals
for high resolution in ISAR imaging is not always readily achievable within the confines of the
available spectrum and limitations at lower frequency bands [9,19]. The proposed high-resolution
imaging scheme can lead to improved target recognition despite an absence of wide bandwidth signals,
provided sufficient spatial diversity is available. This is an important capability of great interest to the
radar research community [20].

The rest of the paper is organized as follows. The next Section summarizes the fundamental
theory: system geometry and signal model, cross-range bandwidth and resolution, and DRT. Section 3
describes the slow-time k-space and its augmentation with OMP processing. Section 4 describes the
experimental setup using simple point scatterers on a rotating turntable with imaging results for both
standard and augmented DRT processing. The final Section presents some relevant discussion points
and concluding remarks.

2. Background

This Section defines the signal model, the fundamental concept of cross-range bandwidth
and resolution, and summarizes the known theory of Doppler radar tomography (DRT) in its
standard version.
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2.1. Signal Model

Consider a monostatic radar system geometry as illustrated in Figure 1. Without loss of generality,
an inertial local target reference frame, denoted as Tx with origin O at the target’s nominal centre of
rotation, is chosen to have the the x2 (‘down-range’) axis aligned with the radar line of sight (LOS),
with x1 axis denoting cross-range. The plane (x1, x2) is often known as the image projection plane (IPP,
or just ‘image plane’). The axis orthogonal to the IPP is denoted as the x3-axis (sometimes referred
to as ‘height’). The target’s effective rotation vector Ωe is defined as the projection of the target’s total
rotational velocity vector Ω along the x3-axis.

Figure 1. Imaging system geometry: The (x1, x2, x3) coordinates are defined in the local target frame,
Tx. For clarity, a single point scatterer is shown at xm, which rotates around origin O with velocity Ω.
Targets are modeled as a discrete, distributed collection of similar point scatterers.

Using the definition above, the total rotational velocity vector can be written in Tx as

Ω = (0, Ω2, Ωe). (1)

Physically, Ωe introduces cross-range dependent Doppler shifts in the radar backscatter and is
the principal reason that motion-based target imaging is possible. In comparison, Ω2 has minimal
(sometimes deleterious) impact on radar imaging. For non-cooperative targets, neither Ωe nor Ω2, or
the orientation of the IPP itself, are known a priori. In this paper, we further assume that Ω2 = 0, and
Ωe is approximately constant during a coherent processing interval (CPI).

For this paper, we use an idealized point-scatterer model for the target: it is adequately modeled
as an ensemble of M point scatterers with reflectivity coefficients σm, located in the far field of the
radar. The approximate range to the mth point-scatterer on the target with position vector xm, defined
relative to O, can be defined as

R(xm) ≈ R(xm) · iLOS = R0 + rm, (2)

in which R(xm) is the range vector to the mth scatterer, R0 is the radar range to O, the scatterer’s local
down range is

rm = xm · iLOS, (3)

and iLOS = (0, 1, 0) is the unit vector along the radar LOS in the Tx frame.
Formulation in the Tx frame is appropriate in traditional ISAR imaging where the change of

aspect is small (a few degrees), or for signal analysis within a relatively short CPI. In contrast, radar
tomography exploits spatial diversity through wide changes of target aspect. For this formulation,
a second, dynamic local target frame denoted as Ty, is needed. This frame rotates with the target
and coincides with Tx at a reference time, usually assumed to be tk = 0. By the Ω2 = 0 assumption,
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it follows also that Tx and Ty share the same x3-axis. The reason for choosing Ty frame is that its axes
are aligned with those of the underlying k-spaces and thus preserves angles across the Ty frame and
the k-spaces.

Let
sT(tk; f ) ∝ exp{j2π f tk}

denote the simple transmit continuous waveform at a single frequency f , where only the slow time
tk is involved; there are no pulses and hence no ‘fast time’ spanning a pulse. The slow-time index is
k = 0, 1, 2, . . . , K− 1, and we assume a total of K time samples in a CPI. The received signal sR(tk; f ) is
a delayed version of sT(tk; f ), summed over all scatterers,

sR(tk; f ) ∝ exp
{
−j4π f

R0(tk)

c

} M

∑
m=1

σm exp
{
−j

4π f
c

rm(tk)

}
. (4)

Here, we have also assumed that radar hardware perfectly removes the carrier frequency term
exp{j2π f tk}. The first factor in (4) describes translational motion of the target as a whole; the second
factor captures the target geometry and scattering reflectivities to be processed for imaging.

Furthermore, we shall assume a linear translational motion model for the target,

R0(tk) = R0(0) + ν tk, (5)

where ν is the velocity, assumed known prior to DRT processing, and R0(0) is target range at a reference
time tk = 0.

2.2. Cross-Range Bandwidth and Resolution

The position of each scatterer executing rotational motion with rotation vector Ω is described to a
second order approximation by

x(tk) = x0 + (Ω× x0)tk −
1
2
[Ω2x0 − (Ω · x0)Ω]t2,

where x0 ≡ x(0) for convenience. Relative to Tx, the local down range rm in (4) can be expressed as

rm(tk) = xm2 + xm1 Ωe tk −
1
2

xm2 Ω2
e t2

k + · · · , (6)

where xm1 , xm2 are the initial (tk = 0) cross range and range, respectively, of the m-th scatterer in Tx.
The CPI duration is denoted by TCPI . As has been thoroughly discussed in [2], although x2 (dropping
the subscript m for brevity) cannot be directly estimated with a zero-bandwith signal, the first-order
term of (6) suggests that a so-called cross-range bandwidth,

B⊥ = f ΩeTCPI = f ∆θ, (7)

can be used to estimate cross range x1. In other words, the target’s rotation generates an effective
bandwidth which allows for the resolving cross-range measurements, as long as the rotation angle
through TCPI ,

∆θ = Ω TCPI ,

is sufficiently small such that higher-order terms (quadratic and above) in (6) can be ignored. In practice,
the ∆θ is limited to a few degrees, which is consistent with wideband ISAR imaging. Note that the
presence of the (unknown) zeroth-order term xm2 means x1 cannot be directly estimated from the
time-domain signal. Doppler tomography, as formulated below, overcomes such constraints to achieve
target imaging.
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Consider a segmented CPI of the received signal sR(tk, l) as illustrated in Figure 2. Taking
a Fourier transform over tk produces a Doppler profile SR( fd) = F{sR(tk, l)}, with zero Doppler
( fd = 0) corresponding to the centre of rotation at O (ignoring any residual translational motion after
preprocessing). For a segment of duration TCPI , the achievable Doppler resolution is

∆ fd =
1

TCPI
=

f Ωe

B⊥
. (8)

Figure 2. Illustration of the DRT narrowband imaging algorithm. ks2- and ks1 are the components of
the slow-time k-vector ks aligned with the target’s initial range and cross-range directions, respectively.
Each radial line represents the slow-time k-space samples obtained from one segmented CPI.

Each Doppler profile contains contributions from all scatterers, with the down ranges coordinates
xm2 encoded as constant phase terms. Since the cross-range of a scatterer is directly proportional to its
Doppler frequency fd, namely

x1 =
λ

2 Ωe
fd, (9)

it follows that the magnitude of the Doppler profile,

pθ(x) = |SR( fd)|,

represents a cross-range projection of the target’s reflectivity function at angle θ, the average aspect
angle over the CPI. The achievable cross-range resolution is

∆x1 =
λ

2Ωe
∆ fd =

c
2B⊥

. (10)

This expression is exactly analogous to the down-range resolution ∆x2 = c/2B for wideband
imaging with spectral bandwidth B.

2.3. Doppler Radar Tomography (DRT)

The Projection-Slice Theorem (PST) states that the Fourier transform Pθ( fs⊥) of projection pθ(x) is
a slice of the 2D FT of the target’s reflectivity function at aspect angle θ. This theorem can be used
to invert the cross-range profiles accumulated from a range of aspect angles θl to recover the target
reflectivity function, i.e., estimate the scatterer coordinates xm1 and xm2 in Ty frame. For this to be
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effective, the target’s rotation must subtend a significant change in aspect angles; the 1D cross-range
projections are computed in the frequency domain as discussed above, after which the target reflectivity
function (image) can be reconstructed by a 2D inverse FT.

2.3.1. The Monostatic DRT Algorithm

To perform radar imaging using the DRT method, it is necessary to populate the slow-time k-space
from the radar backscatter. The algorithm to generate the slow-time k-space samples consists of the
following steps:

a. Data segmentation: Partition the N samples of the received signal sR(tn) into L overlapping CPIs
of K samples, sR(tk, l), k = 0, 1, . . . , K− 1; l = 1, 2, . . . , L. These are referred to as ‘segmented CPIs’
below. Denote the overlap factor η with 0 ≤ η < 1. At the midpoint of each segment, the target
aspect angle (relative to Tx) is denoted as θl ;

b. Translational motion compensation (TMC): this step shifts the Doppler component induced by
translational motion to zero Doppler frequency by modulating the segmented CPI by exp(j2πνtk),
where ν is the target’s translational velocity as noted in (5). This quantity is assumed to be known
or estimated by other methods. A discrete Fourier transform is then applied to the modulated
segments to obtain the Doppler spectrum. The magnitude of the output,

pθl (x) = |F{sR(tk, l) exp(j2πνtk)}| , (11)

is the cross-range (which is proportional to Doppler) profile for the target at an angle θl from its
original orientation. Accumulate all such cross-range profiles for all the corresponding aspect
angles θl , i.e., for all L segmented CPIs.

c. Populating the k-space: The spatial Fourier transform of pθl (x)

Pθl ( fs⊥) = F{pθl (x)} (12)

at target aspect angle θl are then used as the ‘measurement samples’ in the slow-time k-space.
As the target rotates, the measurements sweep out a region of support in slow-time k-space as
indicated in Figure 2. Due to our choice of reference frames, the measurement population always
starts close to the ks1-axis because pθ1(x) is the initial cross-range profile.

d. Image inversion: An inverse Fourier transform is applied to the populated support of the k-space to
yield the target image. Other works have either used filtered back projection, or interpolated the
samples onto a rectangular grid to utilise a standard 2D inverse Fourier transform, for this task
applied [12,13]. In this paper, we use the non-uniform Fast Fourier transform (NUFFT) [21–24].

It is worth noting that the image resolution is inversely proportional to the diameter of the span
of the k-space samples which is dependent on the cross range bandwidth B⊥ as defined in (10). The
resulting supportable size of the image is then determined from the image resolution cell multiplied
by a factor of K being the number of samples spanning the diameter of the k-space. Although limited
amounts of target rotation can reduce image resolution in the sparsely populated direction, here we
focus on the case where a half cycle of the target scatterers is visible to the radar to completely populate
the k-space. Under this assumption, the angular sampling density of the k-space samples drives the
image contrast and is a trade off with computational cost [25].

2.3.2. Standard DRT

By standard DRT, we refer to the case where the input cross-range profiles, as defined by (11), are
Doppler migration free (DMF), and the rotation angle corresponding to each profile formed under
this condition is said to be within the linear limit (of phase variation). The DMF condition can be
satisfied when the segmented CPI lengths are sufficiently short such that the nonlinear phase terms
in (6) are negligible and hence compensation is not necessary, or when |xm| is small. The former case is
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particularly sensitive for scatterers at larger radial distances from the centre of rotation, while the latter
case applies more to scatterers sufficiently close to the centre of rotation whose Doppler frequencies
are small and Doppler migration effects (if any) are also small.

As derived in the Appendix A, the standard DRT constraint on CPI rotation angle is

∆θ ≤ min {∆θDM, ∆θLM} , (rad) (13)

where ∆θDM = (λ/2 rmax)1/2 is an effective rotation angle required to induce a Doppler migration
(DM) of one bin, ∆θLM is the ‘linear limit’, while DRT image resolution, in both range and cross
range, is

∆x1 = ∆x2 ≥
(

λ rmax

2

)1/2
. (m) (14)

Here, rmax is the maximum radial dimension of the target. Note that ∆θ and ∆x are independent
of rotation rate and signal sampling rate, but only on radar wavelength and the dimension of the
target (through maximum radial dimension rmax to any scatterer). ∆θLM is roughly 10 degrees;
Equations (13) and (14) can be used as a guide to predict the expected imaging performance or
applicability of standard DRT for a specific radar wavelength and target size.

The limitations imposed by these nonlinear effects at wider rotation angles can be compensated
by a processing technique described in the next Section. For differentiation from standard DRT, such
cases are referred to as ‘Augmented DRT’.

3. The Slow-Time k-Space and Its Augmentation

While it is possible to formulate the problem and solution entirely in terms of the spatial frequency
space of fs⊥, we shall keep up with tradition and formulate it in terms of a ‘k-space’, with

ks = 2π fs⊥.

3.1. The Slow-Time k-Space

In basic Fourier analysis, for signal with a pulse repetition interval PRI, the Doppler frequency
extent of the signal is PRF = 1/PRI, which spans the interval (−PRF/2, PRF/2). Analogously,
from the spatial (cross-range) resolution ∆x1 as given in (10), the values of spatial frequency fs⊥ spans
the interval (−B⊥/c, B⊥/c). It follows from (7) that the interval for ks is

ks ∈
(
−2π f

c
∆θ,

2π f
c

∆θ

)
.

These limits are illustrated by extents of the radial dashed lines in Figure 2. Since the cross-range
profiles are computed from FFT, both the discretized time and frequency domain vectors have K
samples. That is, the slow-time k-vectors ks corresponding to each cross-range projection contains
samples given by

ks = k′
2π f

c
(Ωe TPRI) i⊥, (15)

where k′ = −K,−K + 2, . . . ,−2, 0, 2, . . . , K− 2; TPRI = TCPI/K, and i⊥ is the cross-range unit vector
(perpendicular to LOS) along the x1-axis of the Ty frame.

The slow-time k-space arises naturally out of DRT: its radial support determined by the cross-range
bandwidth B⊥ and its populating samples are Pθl (ks) given by (12); as the target rotates, the slow-time
k-space support is swept out in fan-like shapes around the k-space origin. Also, for a given B⊥,
the number of ks points is a processing design parameter not necessarily fixed to K; its chosen value
however would affect only the sidelobes of the impulse response, and hence image contrast, not
image resolution.
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An important and useful characteristic of the slow-time k-space is it can be augmented. As implied
by (7), B⊥ can be increased by using a wider rotation angle ∆θ, providing processing can effectlively
correct for the nonlinear terms in the phase function of (6). In Section 3.2 below, we discuss one
typical technique to correct for the second-order term, i.e., linear chirp components. In other words,
augmentation of the k-space enhances resolution by permitting the CPI to be lengthened to the limit
where rotational motion of all point scatterers can be modelled as linear chirps.

By comparing a standard CPI T(s)
CPI and corresponding rotation angle ∆θ(s) in the conventional

linear limit of narrowband imaging to a longer CPI we define an ‘augmentation factor’

κ =
∆θ

∆θ(s)
=

TCPI

T(s)
CPI

, (16)

where TCPI is the lengthened CPI and corresponding larger rotation angle ∆θ. The augmentation factor
of κ describes the expansion of the cross range bandwidth B⊥ or equivalently the radial span of the
slow-time k-space described in (7) and (15). The DRT image resolution is inversely proportional to
B⊥ defined in (9), hence, an improvement in resolution can be achieved with adequate compensation
of the linear chirps which is described further in Section 3.2. The concept of the slow-time k-space is
illustrated in Figure 3. The DRT algorithm based on an augmented k-space is called augmented DRT.

Figure 3. An illustration of the augmentation of the slow-time k-space to generate longer segmented
CPIs for cross-range profile formation, which compensates for nonlinear effects of rotation arising from
wider angles. The circle indicates the boundary of support in standard DRT imaging.

3.2. Augmented DRT with Orthogonal Matching Pursuit (OMP)

This technique shares the same objective as the FrFTS-based technique [13] but instead makes use
of a popular tool in the more modern approach of sparse signal approximation, OMP. Again, TMC is
assumed to have been perfectly processed prior to this processing.

3.2.1. Sparse Representation

With reference to (4) and (6), the segmented CPI signal received is represented in vector form as

sR = Ψσ + ε, (17)
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where Ψ is the dictionary matrix of size K× Nσ; σ is a length-Nσ column vector of (complex-valued)
atom coefficients; and ε is a length-K column vector of noise and/or clutter components. The columns
of Ψ are the chirp atoms, of the form

g(k) = exp
{
−j2π

(
fgtk +

1
2

cgt2
k

)}
, (18)

where k = 0, 1, . . . , K− 1, and the parameters

fg =
2 x1 Ωe

λ
, and cg = −2 x2 Ω2

e
λ

(19)

respectively represent the Doppler frequency and chirp rate of a scatterer due to rotation, at reference
time tk = 0 of the current segmented CPI, which define the atom g(tk). Furthermore, let fg and cg,
or equivalently x1 and x2, be discretized as vectors of expected or possible values, of lengths N f and
Nc respectively, then Nσ = N f Nc.

Different options for discretizing ( fg, cg) lead to different definitions of the dictionary Ψ.
The above option in terms of (x1, x2) uses rectangular scatterer coordinates. Another option is by polar
coordinates (d, α) with

x1 = d cos(α), x2 = d sin(α), (20)

which may be useful when prior knowledge about the expected scatterer locations is available.
It is desirable to use a coordinate grid for ( fg, cg) in such a way that the grid points efficiently
spans the target while keeping the total number of grid points (the dictionary size) to a minimum.
A demonstration of these options is shown in Section 4.2.4.

The OMP algorithm itself is well-known, hence will not be described here (see [26] for
example). In fact, OMP is only one of several sparse approximation techniques that could be used in
this algorithm.

3.2.2. The OMP-Based Augmented DRT Algorithm

The augmented DRT algorithm is modified from standard DRT by simply lengthening the
segmented (and overlapping) CPIs with an augmentation factor κ, as defined by (16); the target signal
in each CPI can then be represented as a sum of linear chirp components. The aim is then to estimate
such a representation and to correct for the chirps, i.e., focusing the range profile, before applying
them to remaining steps of the DRT algorithm.

For each augmented CPI, suppose the output of the OMP processing is a (sparse) representation
{ f (m)

g , c(m)
g } of size M with corresponding atoms {gm(tk)} and coefficients {σm}, then a dechirped

version for the segmented receive signal is

s̃R(tk) =
M

∑
m=1

σm gm(tk)→
M

∑
m=1

σm g̃m(tk). (21)

The right arrow → above denotes a replacement of the gm(tk) atom with a corresponding
monotone signal

g̃m(tk) = exp
{
−j2π f (mid)

g tk

}
, (22)

with Doppler frequency

f (mid)
g = f (m)

g +
1
2

c(m)
g tmid, (23)

so defined as the instantaneous frequency at tmid–the middle time of the segmented CPI. The operation

pθl (x) = |F{s̃R(tk)}| (24)
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then would give a focused cross-range projection for tomographic processing.
The augmentation algorithm, applied to each CPI of the augmented DRT algorithm, can thus be

summarized as follows.

0. Initialize:

– define or select expected intervals of Doppler frequency fg and chirp rate cg;
– define the corresponding chirp atoms and set up the dictionary Ψ;
– input segmented CPI data sR(tk);

1. Compute the OMP-based sparse solution;
2. Replace all chirp atoms in the sparse solution with single-tone sinusoid functions with Doppler

frequency at the mid-point of the segmented CPI;
3. Compute the focused cross-range profile pθl as given by (24).
4. Compute NUFFT on the populated slow-time k space to produce the output image.

4. Experimental Results

We present two different datasets using simple point-like scatterers on a rotating turntable to
represent a target. This scenario is analagous to rotating components on a target such as a helicopter
rotor blade tips [20,25,27]. The first dataset is a target with a small dimension and small scatterers
to showcase improvements in resolution. The second dataset is representative of a much larger
target which highlights the effect of blurring in the image that we aim to remove for improved
image resolution.

4.1. Small Target

4.1.1. Experimental Setup

The data was collected in the Mumma Radar Laboratory at the University of Dayton, Ohio, USA.
Although the aim of the study is narrowband imaging, a wideband waveform at X-band was used
with stepped-frequency pulses between 8 GHz and 12 GHz, over 101 regular frequency steps. Only
the measured data from one of the available discrete frequencies fk was used to study narrowband
tomographic radar imaging.

The transmit and receive horn antennas were mounted on separate robotic arms which could
be oriented and positioned with high precision. The measurements were conducted in a controlled
laboratory environment with some Radar Absorbing Material (RAM) reducing the radar reflections
from the floor and walls. The experimental target consisted of two vertical metallic rods, separated
by 19 cm (approximately), emulating two point scatterers which rotated around a vertical pedestal,
as illustrated in Figure 4. The maximum radial distance is 11 cm. The antennas were kept stationary
whilst the target was rotated through 360◦, at 0.1◦ steps. At each step, the stepped-frequency waveform
was transmitted and sampled, one sample for each frequency.

Figure 4. An example of an antenna mounted on a robotic arm at the Mumma Radar Laboratory with
the two vertical metallic rods secured to the rotating pedestal.
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4.1.2. System Requirements

Successful imaging is not dependent on shifts in relative velocity of the target from pulse to pulse,
in fact the target could completely stop at each sampled rotation angle [28]. This is the case when a
target rotates on a turntable with a very slow rotation rate during which the Doppler frequency is
derived from the change in phase in time from the different target perspectives. Therefore we describe
the system parameters such as target rotational speed and radar sampling rate based on the angular
sampling rate.

While the full theoretical details are included in the Appendix A, the key requirements are
summarized as follows.

• fk: we choose the lowest and highest frequencies available in this experiment, 8 and 12 GHz,
corresponding to λ = 3.75 or 2.5 cm. With rmax ≈ 0.11 m, ∆θDM ≈ 23.7◦ or 19.3◦, respectively. We
also choose ∆θLM = 10◦; the system is thus ∆θLM-limited and poor imaging performance can be
expected from standard DRT;

• Inequality (A1) is the Doppler ambiguity free condition; PRF should be designed such that the
angular sampling rate PRFa = PRF/ω (in samp/rad) is greater than (4 rmax/λ) (11.7 or 17.6 for
this setup), but with as small a margin as possible, to ease hardware requirement.

• The angular sampling interval of 0.1◦ per sample in the experiment translates to a PRFa =

573 samp/rad. Over the chosen ∆θLM value, 100 samples are available. To reduce computational
cost while retaining a reasonable FFT length and satisfying the Doppler ambiguity free condition,
we use a down sampling ratio of 3:1, leading to K = 33 samples per CPI, and PRFa ≈ 191
(samp/rad). This choice also automatically satisfies the constraint in (A8).

Realistic values for PRF and ω can also be chosen such that PRF/ω = 191, however, this is not
necessary for DRT processing.

For each of the selected frequencies, an elliptic filter with a very narrow stop band is also applied
to the signal as a pre-processing for clutter removal. Results are shown in Sections 4.2.3 and 4.2.4.

4.1.3. Standard DRT Imaging

To demonstrate k-space augmentation and the usefulness of sparse signal approximation, some
typical results of standard DRT imaging is now shown. Figure 5 shows a spectrogram of the signal at
8 GHz and Figure 6 shows the corresponding slow-time k-space support and standard DRT image. We
have used an overlapping factor η of 0.99 in the segmentation step to provide a very smooth angular
coverage of the k-space. However, standard DRT imaging performance is poor; the k-space support is
small; the two scatterers (metallic rods) are not distinguishable in the image.

If longer CPIs are used with the standard DRT algorithms, image blurring occurs. Suppose κ as
defined by (16) is set to 6, the Doppler resolution in the spectrogram of the signal becomes higher,
as shown in Figure 7. When the corresponding cross-range profiles (with Doppler bin migration effects
present) are applied to standard DRT, the resulting image is in Figure 8.

Figure 5. Spectrogram using standard DRT processing for f = 8 GHz.



Sensors 2020, 20, 513 12 of 22

Figure 6. The slow-time k-space support (left) and corresponding standard DRT image (right), at f = 8 GHz.

Figure 7. Signal spectrogram with augmented CPIs, κ = 6, at f = 8 GHz.

Figure 8. The slow-time k-space support (left) and image (right) for standard DRT with κ = 6,
at f = 8 GHz.

For a better insight into the electromagnetic scattering effects in this experiment, similar results
using the highest frequency (12 GHz) available are shown in Figures 9 and 10. From Figures 7 and 9
it is clear that in addition to direct (specular) scattering off the inner side of a metallic rod, creeping
waves around the rods are the most likely cause of the twin sinusoidal traces for each of the rods [29].
The effects are more pronounced with the shorter wavelength of 2.5 cm, which is more comparable to
the rod diameter of approximately 2 cm. The double scattering effects are highlighted in the DRT image.

Note that image blurring in standard DRT imaging is only in the azimuthal direction; image
focusing is still generally achieved in the radial direction.
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Figure 9. Signal spectrogram with augmented CPIs, κ = 6, at f = 12 GHz.

Figure 10. The slow-time k-space support (left) and image (right) for standard DRT with κ = 6,
at f = 12 GHz.

4.1.4. Augmented DRT Imaging with OMP

To apply OMP for image focusing, the dictionary Ψ is set up with chirp atoms as defined in (18)
and (19). As mentioned in Section 3.2.1, two coordinate options for spatial scatterer grids are possible:
rectangular in (x1, x2) or polar in (d, α). In either case, prior knowledge can be used from the standard
DRT processing to constrain the parameter span for the dictionary.

A rectangular scatterer grid was chosen spanning ±0.4 m with a nominal spacing proportional to
λ/2. As for the standard DRT demonstration, the two frequencies of 8 GHz (λ = 3.75 cm) and 12 GHz
(λ = 2.5 cm) are used. Over the selected discretization interval, the number Nσ of atoms was 1849 (for
8 GHz) or 4096 (for 12 GHz).

The coefficient magnitudes of the first 20 atoms extracted from the 8 GHz signal show a clear
convergence, as shown in Figure 11.

Figure 11. Magnitude of atom coefficients at f = 8 GHz for first 20 atoms, shown for a subset of the
total number of CPIs.
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To reduce signal processing noise effects in the resulting image, a simple thresholding method can
be used to control the number of atoms to keep in the sparse representation: in each CPI, stop the OMP
iteration when atom coefficient magnitude falls below 20% of the maximum magnitude, as an example.
This criterion can also save on computational cost, as less atoms need to be extracted in the processing.

The spectrogram of the reconstructed and ‘OMP-focused’ signal is shown in Figure 12 which
clearly shows more resolvable sinusoidal traces compared to Figure 7.

An example is shown in Figure 13 for the 8 GHz signal. Compared to Figure 8, this is a clearly
significantly more focused image where the scatterers are more easily resolvable.

For completeness, we also show results in Figure 14 for the 12 GHz signal, which also resolve the
scatterers significantly better using the OMP processing as compared to Figure 10 for standard DRT.
The double scattering effects resulting in ‘double rods’ are also enhanced.

Figure 12. Spectrogram reconstructed, OMP-focused signal with first 20 atoms, at f = 8 GHz (compared
to Figure 7).

Figure 13. The slow time k-space support (left) and image (right) after OMP processing using a 20%
coefficient magnitude threshold at f = 8 GHz (compared to Figure 8).
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Figure 14. The slow time k-space support (left) and image (right) after OMP processing using a 20%
coefficient magnitude threshold at f = 12 GHz (compared to Figure 10).

4.2. Large Target

4.2.1. Experimental Setup for Large Target

The experiment was carried out on the turntable at the RAAF Edinburgh airbase, which has a
diameter of 17 m. The test target consists of three metallic cylinders as shown in Figure 15 with physical
specification listed in Table 1. The experimental X-band radar employed a vertically polarised pulsed
stepped frequency waveform starting at 9 GHz with 4 MHz steps, spanning a total of 256 frequencies.
The turntable was rotated at approximately one revolution per 15 minutes with a receiver sampling
rate of PRF = 20 Hz at each frequency, which translates to an angular sampling interval of 0.02◦.

Figure 15. The turntable at the RAAF Edinburgh airbase with three metallic cylinders as a test target.

Table 1. Metallic cylinder configuration.

Cylinder rm (m) Diameter (m) Height (m)

1 2.5 0.15 0.30

2 5 0.38 0.18

3 8 0.21 0.46

4.2.2. System Requirements

As previously described in Section 4.1.2 we designed the system requirements such that the
backscattered radar signal is dependent on the angular sampling rate as follows.

• We choose fk = 9 GHz, corresponding to λ = 3.0 cm. With rmax ≈ 8.0 m, ∆θDM ≈ 2.48◦; this is
well below the typical linear limit of several degrees. The system is thus ∆θDM-limited;

• PRFa = 1067 for this experiment which satisfies inequality (A1) for ambiguity free Doppler
frequency.
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The angular sampling interval of 0.02◦ per sample in the experiment translates to a PRFa =

2864 samp/rad, which satisfies (A1).
Similar to the previous data set, an elliptic filter with a very narrow stop band is applied to the

signal for clutter removal. Results are shown in Sections 4.2.3 and 4.2.4.

4.2.3. Standard DRT Imaging

Figure 16 shows a spectrogram of the signal at 9 GHz, featuring three distinct sinusoidal traces
corresponding to the three cylinders. Figure 17 shows the corresponding slow-time k-space support
and standard DRT image. The standard DRT imaging performance is poor due to the small diameter
of the k-space support, with the cylinder locations represented by coarsely granulated pixels.

Figure 16. Spectrogram using standard DRT processing for f = 9 GHz. (The small gap near 600 sec is
due to an antenna pointing error during the measurements.)

Figure 17. Slow-time k-space support (left) and image (right) for standard DRT processing; f = 9 GHz.

When longer CPIs are used with the standard DRT algorithms; for example, when κ in (16) is set
to 6, the Doppler resolution in the spectrogram of the signal becomes higher, as evident in Figure 18;
the corresponding cross-range profiles (with Doppler bin migration effects present) applied to standard
DRT result in Figure 19.

Again it is shown that image blurring in standard DRT imaging is only in the azimuthal direction;
image focusing is still generally achieved in the radial direction. The blurring effect in the image is
more severe for scatterers at larger radial distances which travel along greater arc lengths within a
given angular rotation angle (i.e., larger Doppler effects) and hence more severe Doppler bin migration.

4.2.4. Augmented DRT Imaging with OMP

We choose the polar grids representation for this dataset as defined in Section 3.2.1. This approach
is useful when some prior knowledge about the radial coordinate of the major scatterers is available
from the standard DRT processing.
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Figure 18. Signal spectrogram with augmented CPIs, κ = 6 at f = 9 GHz.

Figure 19. The slow time k-space support (left) and image (right) for standard DRT with κ = 6,
at f = 9 GHz.

A relatively narrow window is used for discretization of the d-dimension derived from the
Doppler information of the scatterers in Figure 16 with a λ/2 spacing. The full 360◦ with 1◦ spacing is
used for α. Twenty atoms were extracted in each CPI from the OMP process giving a reconstructed
spectrogram that is virtually identical to that in Figure 18, affirming the sufficient accuracy of the
sparse representation. After the de-chirping operation, the scatterer locations are much more focussed
as shown in Figure 20 compared to the same scatterers in Figure 19 with the same augmentation
factor. The technique shows some degradation with the furthermost cylinder which exhibited the
most blurring.

Figure 20. The slow time k-space support (left) and image (right) after OMP processing using a 20%
coefficient magnitude threshold at 9 GHz (compared to Figure 19).

Our current study is focused more on imaging performance rather than computational cost;
nevertheless, to give some idea on computational cost, we ran the algorithm on the high performance
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computer called ‘Phoenix’ at the University of Adelaide which took approximately 1 hour to run on 16
CPUs using 64 GB RAM.

5. Further Discussion

This paper is an expansion to the work reported earlier in [2], demonstrating high-resolution
DRT imaging with real experimental data. As this is not a real moving and rotating target in a typical
operational scenario, a number of issues could be noted.

Firstly, the target’s translational velocity is exactly zero for the entire data collection. Nevertheless,
this is not expected to be a sensitive factor. For most real moving targets, translational velocity can
be readily compensated by shifting the ‘body Doppler’ line to zero Doppler. Sensitive propagation
phases, as in the case of fast-time k-spaces, do not enter the slow-time k-spaces.

Secondly, the measured data were collected at precise angular sampling rates PRFa, which can
only be estimated in typical operational scenarios. Errors in PRFa or Ωe would translate into errors of
the locations of populated samples as well as image scaling factor. Hence both image focusing and
image scaling could be affected. We have not fully addressed these issues in this work.

The experimental data does reveal interesting electromagnetic phenomenology, highlighting the
limiting simplicity of the ideal point-scatterer assumption; creeping waves and nonlinear scattering
effects do exist, which are not taken into account in the current DRT theory.

On application of the OMP algorithm, what this work has demonstrated its feasibility: techniques
such as OMP can be used for slow-time k-space augmentation. Other alternative sparse approximation
techniques can possibly be used to yield higher performance. Numerous other aspects can also be
considered, such as dictionary ‘learning’: how to select an optimum spatial scatterer grid for the best
focusing performance while keeping computational cost at manageable levels? Or how to deal with
the off-grid/mismatched scatterer problem [30]. Many open questions remain, some of which will be
addressed in future publications.

6. Concluding Remarks

We have demonstrated, with two datasets, the ability to improve image resolution using a rotating
target with an ultra-narrowband radar. The enabling signal processing technique presented was a
combination of Doppler radar tomography and a sparse reconstruction technique such as OMP, with a
unifying mathematical framework based on the slow-time k-space. We have shown that closely spaced
scatterers can be resolved by illustrating the creeping wave effect when the scatterer size is similar to
the radar wavelength. The technique also performed well addressing the adverse effect of blurring in
the image with scatterers at larger radial distances to the centre of rotation. By compensating for the
blurred scatterer locations in the image, the ability to resolve closely spaced scatterers is improved
providing finer details for target recognition.

Although the demonstration of this technique is effective, the application to a real complex target
with many non-ideal scatterers may present additional challenges including discontinuous scattering
effects, larger dictionaries affecting computational cost and inaccuracies due to signal mismatch with
finite dictionary elements. In future work, we aim at investigating the use of multiple widely separated
radar receivers to reduce the requirement on large target rotation angles for DRT imaging, where the
direct application of OMP may not scale efficiently for large amounts of data. The increase in data may
require a modified approach such as dictionary learning to help reduce the computational cost.
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Appendix A. Standard DRT: System Parameters and Image Resolution

Figure A1 illustrates the spectral composition of a segmented CPI in the DRT algorithm.
The sinusoidal traces depicts the instantaneous Doppler frequencies of scattererers as the target
rotates, which are generally chirp signals. The chirps are approximately linear for short CPIs.

Figure A1. Instantaneous Doppler traces of point scatterers on a rotating target.

There are three main constraints on system parameters for standard DRT to be applicable. The first
one is Doppler ambiguity free condition: the sampling rate PRF must be at least two times the largest
Doppler components in the received signal–the well-known Nyquist criterion. With rmax denoting a
largest radial distance of scatterers on the target, this constraint can be written as

PRF ≥ 4 ω rmax

λ
, or PRFa ≥

4 rmax

λ
, (A1)

where PRFa = PRF/ω is the angular sampling rate (in units of samples/rad).
The second constraint is: Doppler migration-free (DMF), i.e., variation of the instantaneous

Doppler frequency of any scatterer is less than a Doppler bin size. This constraint may be derived as
follows: a scatterer’s cross range is given by x1 = r cos θ, hence the differential change in x1 is

dx1 = −rω sin θ dt.

Maximum cross range migration occurs near θ = nπ/2 for odd integral values of n. If dt
represents a CPI time, here denoted as TCPI , then the DMF requirement translates to having

|dx1| ≡ rωTCPI (A2)

to be not larger than a cross range bin size, at all range bins.
A cross range bin size ∆x1 is related to Doppler filter size ∆ f through the well-known relationship

∆ f = (2 ω/λ)∆x1 for monostatic radars, hence

∆x1 =
λ

2ω
∆ f =

λ

2ω

PRF
K

. (A3)

Here, K denotes both the number of samples spanning the CPI and the FFT length; and therefore

TCPI =
K

PRF
. (A4)
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Using (A2), (A3) and (A4) in the DMF requirement |dx1| ≤ ∆x1 then leads to the condition

∆θ =
ω K
PRF

≤
(

λ

2 rmax

)1/2
≡ ∆θDM, (A5)

where ∆θ is the (segmented) CPI rotation angle (or angular extent), and ∆θDM is an effective angle
the target would need to rotate to induce a Doppler migration (DM) through one frequency bin. Note
that ∆θDM depends only on radar wavelength λ and maximum radial extent rmax, not rotation speed.
Another useful related expression is

TCPI =
K

PRF
≤ ∆θDM

ω
, (A6)

for the corresponding CPI time.
The third constraint is the so-called ‘linear limit’: the maximum rotation angle at which the Taylor

expansion in (6) up to the first order in time remains valid. In other words,

∆θ < ∆θLM, (A7)

where ∆θLM ≈ 10◦.
Combining the three constraints above, the system constraints on PRF and K are (A1) and

K ≤ PRFa min {∆θDM, ∆θLM} . (A8)

As an example, suppose ∆θLM = 8◦ is used; and λ = 5 cm, rmax = 1 m and ω = 300 RPM,
then (A5) gives ∆θDM ≈ 9.1◦ > ∆θLM, and the choice of PRF = 15 kHz and K = 64 would satisfy
all constraints.

The result in (A8) also highlights a useful comparison between the DMF condition and the linear
limit ∆θLM: the CPI length K may be limited by either of the two factors; it is however more desirable
to be DMF-limited, i.e, without strong dependence on wide rotation angles. Indeed, shorter radar
wavelengths and larger target dimensions would induce more pronounced Doppler effects which are
required for the applicability of the DRT imaging algorithm itself.

Image resolution for standard DRT can be derived as follows. The minimum PRF for
unambiguous Doppler effects, given by (A1), means a cross-range profile given by (11) exactly spans
the cross-range extent of the target. Larger values would lead to outer range bins of the profile
containing noise only, while those range bins spanning the target remain the same, in both bin size and
number. For the case of minimum unambiguous PRF, the maximum selectable value of K, given by
(A6), is

KSTD =

(
8 rmax

λ

)1/2
, (A9)

or smaller if K is limited by ∆θLM in (A8). The resolution of a cross-range profile is therefore

∆xRB =
2 rmax

KSTD
=

(
λ rmax

2

)1/2
. (A10)

The same result can be obtained from (10) and (7) by using the equality in (A5) for ∆θ. The result
in (A10) is also the expected image resolution in standard DRT imaging.
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